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A B S T R A C T

The practice of burning agricultural waste is ubiquitous around the world, yet the external human capital costs
from those fires have been underexplored. Using data from the National College Entrance Examination (NCEE)
and agricultural fires in China from 2005 to 2011, this paper investigates the impacts of fires on cognitive per-
formance. We find that a one-standard-deviation increase in the difference between upwind and downwind fires
during the exam decreases the total exam score by 1.42 percent of a standard deviation (or 0.6 points), and further
decreases the probability of getting into first-tier universities by 0.51 percent of a standard deviation.
1. Introduction

The deliberate setting of fires as a tool for agricultural management
has a long history that remains ubiquitous around the world today
(Andreae and Merlet, 2001). In modern agriculture, the principal benefit
from these fires takes the form of avoided labor costs otherwise required
to clear brush, remove crop residues, and manage invasive plant species
(Levine, 1991). At the same time, these fires generate considerable smoke
comprised of a number of pollutants that are known to be harmful to
human health (e.g., Chay and Greenstone, 2003; Currie and Neidell,
2005; Schlenker and Walker, 2015). Yet, the direct study of the causal
relationship between agricultural fires on human health has been greatly
hampered by concerns of endogeneity and the competing benefits and
costs from local fires. One notable exception is Rangel and Vogl (2018),
which examines the impacts of sugarcane harvest fires in Brazil on infant
health by exploiting wind direction for empirical identification. A recent
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study by He et al. (2020) shows that straw burning pollution primarily
kills the middle-aged and elderly in rural China. Given the emergent
literature showing that pollution can also harm a range of other human
capital outcomes (e.g., Graff Zivin; Neidell, 2012; Sanders, 2012; Hanna
and Oliva, 2015; Stafford, 2015; Chang et al., 2016, 2019; Ebenstein
et al., 2016; Bharadwaj et al., 2017; Austin et al., 2019), the goal of this
paper is to examine the impacts of agricultural fires on one important
component of human capital – cognitive performance. Our analysis of
impacts on young adults in a high-stakes environment, generalizes and
extends evidence from Lai et al. (2018) that examines the impact of fires
on survey-based measures of cognitive decline amongst the elderly in
China.

More specifically, we exploit high-resolution satellite data on agri-
cultural fires in the granary regions of China and a unique geocoded
dataset on test performance on the Chinese National College Entrance
Examination (NCEE) to investigate the impacts of fires on cognitive
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performance. This setting is attractive for a number of reasons. First, the
majority of agricultural fires take place in the developing world where
environmental controls are less stringent and the returns to human
capital are generally substantial. China, in particular, is the largest grain
and straw producer in the world, with approximately one-third of all
grain cropland managed through burning practices.

Second, the NCEE is one of the most important institutions in China. It
is taken by all seniors in high school (around 9 million students each
year) and the exam score is almost the sole determinant of admission to
institutions of higher learning in China. As such, the NCEE serves as a
critical channel for social mobility with important implications for
earnings over the lifecycle (Jia and Li, 2017). Test takers face
high-powered incentives to do well on the test and thus any impact from
agricultural fires is likely to represent an impact on cognitive perfor-
mance rather than effort.

Finally, several features of the NCEE make it particularly well suited
to causal inference. The exam date is fixed, and thus self-selection on test
dates are impossible. Fortuitously for our research design, the exam takes
place during the height of the agricultural burning season. Moreover,
students must take the exam in the county of their household registration
(hukou), rendering self-selection on exam locations virtually impossi-
ble.1Our NCEE data include test scores for the universe of students who
were admitted into colleges and universities between 2005 and 2011
from the granary regions which form the basis of our study.

Despite the many virtues of our empirical setting, identifying the
causal effect of agricultural fires on cognitive performance is challenging
for reasons alluded to earlier. Agricultural fires are designed to reduce
labor demands and improve farm profitability, both of which could also
impact test performance. For example, if some agricultural labor is
typically supplied by students, agricultural fires could improve test per-
formance by providing them with more time to prepare for their exams.
To address concerns of this type, we follow the approach recently pio-
neered by Rangel and Vogl (2018), and leverage exogenous variation in
local wind direction during the exam period. Specifically, we compare
the effect of upwind and downwind fires on students’ test scores, and
interpret that difference as the causal effect of pollution exposure on
students’ cognitive performance net of economic impacts. The implicit
assumption under this approach is that, ceteris paribus, students upwind
and downwind of the fire are differentially exposed to its pollution but
share equally in its economic influences.

Our results suggest that a one-standard-deviation increase in the
difference between upwind and downwind fires during the NCEE de-
creases the total exam score by 1.42 percent of a standard deviation (or
0.6 points), and further decreases the probability of getting into first-tier
universities by 0.51 percent of a standard deviation. These impacts are
entirely contemporaneous and concentrated above the 75th percentile of
the performance distribution. Fires one to four weeks before the exam
have no impact on performance. Reassuringly, neither do fires one to four
weeks after the exam. The results are robust to alternative approaches for
assigning pollution to test-takers as well as a number of other specifica-
tion checks.

While a lack of pollution data from our study period does not allow us
to utilize fires as an instrumental variable, analyses from a more recent
period in which pollution data from ground monitoring stations are more
readily available suggests that the principal output of these fires is par-
ticulate matter. A simple back-of-the-envelope calculation suggests that a
10 μg/m3 increase in PM2.5 reduces test scores by 4.6 percent of a stan-
dard deviation. This effect size is non-trivial, and while we are unable to
arbitrate between the many potentially pathways that drive these im-
pacts, they are clearly consistent with the emerging evidence on the
detrimental effects of particulate matter on labor productivity in cogni-
tively demanding occupations (Heyes et al., 2016; Chang et al., 2019;
1 The hukou system was established in 1958 to restrict migration within
China.

2

Archsmith et al., 2018).
Together, the findings suggest that agricultural fires impose non-

trivial external costs on the citizens living near them. Given the sub-
stantial returns to higher education in China, agricultural fires may
exacerbate the challenges associated with rural-urban inequality that
pervades the Chinese economy (Yang, 1999; Liu, 2016; Piketty et al.,
2019). These results also help bolster the case for the enforcement of new
regulations that limit agricultural fires in China and provide additional
evidence on the need for interventions in much of the less developed
world where these practices are largely ungoverned. Moreover, the im-
pacts almost certainly extend beyond agricultural fires to include forest
and other forms of wildfires, which are expected to intensify in the
coming decades under climate change (Malevsky-Malevich et al., 2008;
Abatzoglou and Williams, 2016). Since these types of fires tend to be
large and far more harmful to human health (e.g., Frankenberg et al.,
2005; Jayachandran, 2009; Borgschulte et al., 2018), it seems likely that
their impacts on human capital endpoints like cognition are also likely to
be substantial.

The implications beyond fires are also profound. Our findings
contribute to ongoing debates about the appropriate role of standardized
testing in determining access to higher education and employment op-
portunities (Ceci, 2000). While our analysis is based on NCEE test per-
formance, the impacts are likely much broader, touching all aspects of
life that rely on sharp thinking and careful calculations. Indeed, the im-
pacts in lower-stakes environs may well be larger as the incentives to
succumb to the fatigue and lack of focus that also typically accompanies
exposure to pollution are greater, and thus more likely to exacerbate any
impacts on cognitive decision making.

The rest of the paper is organized as follows. In Section 2, we provide
more background on the institutional setting. In Section 3 we describe
each of the elements in our merged dataset. Section 4 describes our
empirical strategy followed by our results in Section 5. Section 6 offers
some concluding remarks.

2. Background

2.1. Agricultural fire and pollution

The practice of burning crop residues after an agricultural harvest in
order to cheaply prepare the land for the next planting is commonplace
across the developing world (e.g., Dhammapala et al., 2006; Viana et al.,
2008; Gadde et al., 2009). While such burning can greatly reduce labor
costs to farmers and potentially help with pest management, it also
generates considerable particulate matter pollution (e.g., Li et al., 2007;
Wang et al., 2009; Chen et al., 2017). Particulate matter (PM) consists of
airborne solid and liquid particles that can remain suspended in the air
for extended periods and travel lengthy distances. A large public health
literature suggests that exposure to PM harms health (see EPA, 2004 for a
comprehensive review). These risks arise primarily from changes in
pulmonary and cardiovascular functioning (Seaton et al., 1995), which
may, in turn, impair cognitive performance due to increased fatigue and
decreased focus.

Particles at the finer end of the spectrum are particularly important in
our empirical setting since they are small enough to be absorbed into the
bloodstream and can even become embedded deep within the brain stem
(Oberd€orster et al., 2004). This can lead to inflammation of the central
nervous system, cortical stress, and cerebrovascular damage (Peters
et al., 2006). As such, greater exposure to fine particles is associated with
lower intelligence and diminished performance over a range of cognitive
domains (Suglia et al., 2008; Power et al., 2010; Weuve et al., 2012).
Consistent with this epidemiological evidence, a recent study focused on
the impacts of high-stakes exams on the long-run economic outcomes of
Israeli youth, found a negative relationship between PM levels that are
largely caused by random variation in dust storms and test performance
in their first-stage analysis (Ebenstein et al., 2016).
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2.2. Agricultural fire in China

China is the largest grain producer in the world, accounting for 24%
(0.62 billion tons) of global production.2Despite a legal ban on burning
practices, approximately 31% of the stubble/stalks from maize, wheat,
and rice plantings are burnt in situ, largely within China’s granary re-
gions. 3These fires generally take place annually each summer, poten-
tially coinciding with the timing of the NCEE which takes place each year
on June 7th and 8th.

Fig. 1 illustrates the spatial distribution of agricultural fires during the
NCEE from 2005 to 2011. Fire points are largely concentrated in four
granary regions: Henan, Shandong, Anhui, and Jiangsu Provinces.4Due
to missing NCEE data in Jiangsu in several years, our core analyses are
focused on Henan, Shandong, and Anhui (referred to as baseline prov-
inces hereafter). As can be seen in Fig. 2, the peak of agricultural fires in
these regions generally coincides with the time of the NCEE. In total,
there are 401 counties in our baseline provinces.
2.3. NCEE

As the name suggests, the NCEE is a national exam used to determine
admission into higher education institutions at the undergraduate level
in China. It is held annually on June 7th and 8th, and is generally taken
by students in their last year of high school. In contrast to college testing
in the U.S., it is almost the sole determinant for higher education
admission in China. Given the substantial returns to higher education in
this setting (Jia and Li, 2017), this is a very high stakes exam. Every year,
approximately 9 million students in China take the exam to compete for
admission to approximately 2,300 colleges and universities.

The NCEE has two primary tracks: the arts track and the science
track.5All students are tested on three compulsory subjects regardless of
track: Chinese, mathematics, and English, with each worth 150 points.
Students in the arts track take an additional combined test that includes
history, politics, and geography worth 300 points, while students in the
science track take an additional combined test that includes physics,
chemistry, and biology worth 300 points. Thus, regardless of track, the
maximum achievable score for each student is 750 points.

In our focal provinces, the Chinese and math exams are scheduled for
9–11:30 a.m. and 3–5 pm on June 7th, and the English and track test are
scheduled for 9–11:30 a.m. and 3–5 pm on June 8th.6Since provinces
have some discretion in the design of their tests, exam difficulty can vary
by track, province, and year. Our core analysis deploys province-by-year-
by-track fixed effects to account for this possibility.

The NCEE tests are graded one to two weeks after the exams are
completed by professionals (trained teachers) in hotels in each of the
respective provincial capitals. Since this grading occurs in locations that
differ from test-takers in terms of both space and time, we are confident
that the effect we estimate on NCEE scores is not the result of any po-
tential impacts on graders.
2 Food and Agricultural Organization, United Nations: http://www.fa
o.org/worldfoodsituation/csdb.
3 China Ministry of Agriculture: http://www.moa.gov.cn/zwllm/zwdt/201

605/t20160526_5151375.htm.
4 A province is the largest administrative subdivision in China, followed by

the prefecture, county and town.
5 Students choose to study either in the arts track or in the science track at the

end of their first year of high school.
6 Shandong province extended the NCEE from two days to three days from

June 7th to June 9th during 2007–2014. One exam on basic knowledge of
technology, arts, sports, social practice, humanities and science was added on
the morning of June 9th. This exam has 60 points. The total score for the NCEE
is still 750 points because the combined test shrunk from 300 points to 240
points. To take this change into consideration, we include fires from June 7th to
June 9th in 2007–2011 for Shandong, and find similar results, as shown in the
robustness checks.

3

3. Data

In order to measure the causal effect of agricultural fires on NCEE test
performance in China, we require data from several broad categories.
This section describes each of those pieces as well as details on how they
are linked. As noted earlier, our core analysis is based on the test per-
formance of students from Henan, Shandong, and Anhui Provinces who
took the NCEE between 2005 and 2011.
3.1. Test score data

The NCEE data were obtained from the China Institute for Educa-
tional Finance Research at Peking University. This dataset provides a
unique identifier and the total test score for the universe of students
enrolled in a Chinese institution of higher education during our study
period. The dataset also reports the subject specialization for each stu-
dent, allowing us to explore heterogeneity across the science and art
tracks.7 Social and demographic characteristics for exam takers are not
available.

Importantly, the student ID contains a six-digit code for the county of
residence, which allows us to match students to the county administra-
tive centers. Testing facilities are located in local schools which are
universally very close to county administrative center.8Therefore, we use
the county administrative center to approximate the testing facilities. The
information on which testing facility a student is assigned is unavailable.
Our core analytic sample includes observations from approximately 1.3
million students. We supplement this dataset with data on the cut-off
scores that determine admission eligibility to the elite universities in
order to separately examine the impacts at the upper-end of the perfor-
mance distribution. The data provide province-year-track specific
thresholds, and are obtained from a website specialized for the exam:
gaokao.com.
3.2. Agricultural fire data

Data on daily agricultural fires are collected from two satellites
named TERRA and AQUA, which rely uponModerate Resolution Imaging
Spectroradiometer (MODIS) sensors to infer ground-level fire activity.
The satellites overpass China four times a day (around 1:30 a.m., 10:30
a.m., 1:30 p.m., and 10:30 p.m. in local time), and report all fire points
detected with 1-km resolution (Justice et al., 2002; Kaufman et al.,
1998). The fires are detected based on thermal anomalies, surface
reflectance, and land use (Giglio et al., 2016). Since the size of a fire
cannot reliably be inferred from satellite data (Giglio et al., 2009), we
treat fires in adjacent pixels as distinct fires. We exploit data on fire
radiative power, a measure of fire intensity, to at least partially probe the
importance of this assumption.

A fire is linked to NCEE performance within a county if it occurs
within a 50-km of the county administrative center during the two-day
exam period in each year. Alternative distances are explored as part of
our robustness analyses. Since proximity to a fire is likely correlated with
the economic benefits as well as the environmental harms from fires, we
eschew distance-weighting strategies on fires in our core analysis. These
are, nonetheless, explored in our robustness checks.
7 Unfortunately, the dataset does not report scores by specific subjects, thus
precluding our ability to examine the impact of fires on specific subsets of the
test.
8 While we do not have data on the precise location of testing facilities during

our study period, we can access this from more recent periods. In 2018, there
were 494 testing facilities in our provinces of interest and 94% were within 5
km from the county administrative center. The furthest testing facility was less
than 10 km from the center. Since testing occurs in high schools, and these
locations are largely fixed, we are confident in our assertion that nearly all
testing occurred near the county administrative center during our study period.

http://gaokao.com
http://www.fao.org/worldfoodsituation/csdb
http://www.fao.org/worldfoodsituation/csdb
http://www.moa.gov.cn/zwllm/zwdt/201605/t20160526_5151375.htm
http://www.moa.gov.cn/zwllm/zwdt/201605/t20160526_5151375.htm


Fig. 1. Agricultural fires during NCEE in China in 2005–2011.Notes: Red dots indicate agricultural fires detected by satellites during June 7th–8th (NCEE) in
2005–2011 in China.
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3.3. Meteorological data

Meteorological data are important for two reasons. First, as detailed
in the next section, we exploit detailed data on wind direction to contrast
the impacts of those upwind and downwind of a given fire. Second,
weather may also confound the interpretation of our results since the
incidence of agricultural fires may be correlated with meteorological
Fig. 2. Daily agricultural fires in Anhui, Henan and Shandong in 2005–2011.Notes: T
Provinces during 2005–2011. Red dash lines indicate the NCEE period each year.

4

conditions. Our weather data are obtained from the National Oceanic and
Atmospheric Administration of the United States.

We collect daily average weather data on temperature, precipitation,
dew point, wind speed, wind direction and atmospheric pressure from 38
local weather stations during our sample period. Daily average wind
direction is reported in eight fixed octants based on the hourly wind
direction and wind speed through vector decomposition (Gilhousen,
his figure plots daily number of agricultural fires in Henan, Shandong and Anhui



Table 1
Summary statistics.

Obs. Mean SD Min Max

Variable (1) (2) (3) (4) (5)

Score (0–750) 1,387,974 553.3 42.4 102 708
Science 873,851 555.9 43.4 129 708
Arts 311,744 545.7 39.4 102 684

Agricultural Fires 1,087 7.0 26.3 0 345
Upwind: 45� 1,087 1.5 8.8 0 177
Downwind: 45� 1,087 2.0 8.6 0 155
Vertical: 45� 1,087 3.4 14.2 0 257
Non-Upwind: 45� 1,087 5.4 20.2 0 298
Meteorological Conditions
Temperature (ºF) 1,087 75.8 5.7 57 90
Dew Point (ºF) 1,087 60.6 5.7 40 73
Precipitation (inch) 1,087 0.1 0.3 0 2
Wind Speed (mile/hour) 1,087 5.4 2.0 1 15
Atmospheric Pressure (millibar) 1,087 599.0 356.9 0 1010

Notes: Summary statistics of key variables, including scores, agricultural fires and
meteorological conditions, during NCEE in Anhui, Henan and Shandong in
2005–2011 are listed. Upwind fires are defined fires within 45� from the daily
dominant wind direction in a county.
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1987; Grange, 2014).9Given the sensitivity of wind direction to topog-
raphy and other quite localized factors, we assign wind to test locations
based on monitor data from the source closest to the county adminis-
trative center, and drop counties with no wind stations within 50 km10

We extract other weather data during the exam time and then convert
from station to county using the inverse-distance weighting (IDW)
method (Deschênes and Greenstone, 2007, 2011). The basic algorithm
calculates weather for a given site based on a weighted average of all
station observations within a 50-km radius of the county center, where
the weights are the inverse distance between the weather station and the
county administrative center.

3.4. Pollution data

While the detrimental impacts of agricultural fires on air quality have
been documented in the environmental science literature, data avail-
ability does not allow us to make this link explicitly in our setting. Daily
ground monitoring pollution data in China are not available prior to
2011, and there are infamous stories of data manipulation of the Air
Pollution Index and PM10 in China apply to the period prior to 2013
(Ghanem and Zhang, 2014).11In addition, satellite data are not well
suited for ground-level measurement at fine temporal and spatial scales
required for our analyses, especially during burning seasons with smoke
plumes (You et al., 2015). Nonetheless, we provide a first-stage estima-
tion by estimating the relationship between air pollution and agricultural
fires using data from a more recent period: 2013–2016. Since NCEE data
are not available for this period, we view this analysis as one designed to
shed light on the mechanisms through which agricultural fires might
impact cognitive performance.

Daily pollution data are obtained from the China National Environ-
mental Monitoring Center (CNEMC), which is affiliated with the Ministry
of Environmental Protection of China. Monitoring stations report data for
the six major air pollutants – particulate matter less than 10 μm in
diameter (PM10), particulate matter less than 2.5 μm in diameter (PM2.5),
sulfur dioxide, nitrogen dioxide, ozone, and carbon monoxide – that are
used to construct the daily Air Quality Index (AQI) in China. For each
pollutant, we construct a two-day average concentration level, corre-
sponding to the length of the exam period. Fires that took place more
than 50 km from a county center are excluded from this analysis. We
select all pollution monitoring stations within 50 km from a county
administrative center and calculate the pollution level at the center using
the IDW method. Our analysis relies on data from 212 distinct pollution
monitors, with an average distance of 24.5 km.

3.5. Summary statistics

Table 1 reports summary statistics from our merged dataset. We have
data on nearly 1.4 million test-takers from 159 counties in our baseline
provinces from 2005 to 2011. Approximately 35% of our 1,087 county-
year observations are exposed to at least one agricultural fire. The
average test performance over our study period was 553.3 out of 750,
9 See http://www.webmet.com/met_monitoring/622.html and https://
www.ndbc.noaa.gov/wndav.shtml.
10 Given the relative sparsity of weather stations in our study areas, assigning
wind direction to a given location by using inverse distance weighting strategies
from multiple monitors is not feasible (Palomino and Martin, 1995). It is worth
noting that dropping counties without a wind station within 50 km is tanta-
mount to dropping the most rural counties in our sample. Consistent with this
notion that they are more agrarian, we see that the average number of fires
during the NCEE in the dropped counties was 14, as opposed to the 7 fires in the
counties that retain for our analysis. While these differences will not bias our
estimates, they do have potentially important implications for generalizability.
11 Pollution measurement is unlikely to be manipulated after 2013–2014 due
to automation and real-time reporting in the provision of data from monitoring
stations in China.
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with slightly higher average scores in the science track (relative to the art
track). Each county experiences an average of 7 fires during the two-day
test period over the course of our study period, although variability
across testing-site-years is considerable. These fires are nearly equally
likely to take place upwind and downwind of testing centers, with an
average of 1.5 upwind, 2.0 downwind, and the remainder vertical fires
that are neither upwind or downwind based on the 45-degree measure of
dominant wind direction (as detailed in the next section). Summary
statistics on meteorological conditions, including temperature, dew
point, precipitation, wind speed and atmospheric pressure, are also listed
in the bottom panel of Table 1.

4. Empirical strategy

Our goal is to estimate the effect of agricultural fires on NCEE test
performance. We start by estimating the following equation:

Yicpt ¼ α0 þ βfirecpt þ Xcptθ þ τc þ πptm þ ξicpt (1)

where Yicpt denotes the logarithm of the exam score of student i in county
c in province p in year t. We use firecpt to denote the total number of
agricultural fires in county c on the 2 Em day in each year. Xcpt is a vector
of the two-day averages of our meteorological variables during exam
days. As is standard in the literature (Deschênes and Greenstone, 2007),
we use a non-parametric binned approach to flexibly control for the
potential nonlinear effects of these weather variables.12We use county
fixed effectsτc to control for any unobserved county-specific time--
invariant characteristics. We also include πptm, province-by-year-by-track
fixed effects, to control for differences in exam difficulty bymajor track in
a province and year. These fixed effects will also control for any other
shock that is common across cohorts studying the same subjects within a
province, such as variation in instructor quality at local high schools. The
error terms ξicpt are clustered by county to allow for autocorrelation
within each county.13Thus, the identifying variation we exploit to esti-
mate Equation (1) is based on comparisons of student performance in the
same major track of counties within the same province who varied in
their exposure to agricultural fires within a given year.
12 Specifically, we select 7 bins for temperature and dew point (5 �F for each
bin), 8 bins for wind speed (2 miles per hour for each bin), 6 bins for precipi-
tation (0.5 inch for each bin), and 5 bins for pressure (200 mbars for each bin).
13 Our estimates are robust to alternative clustering by prefecture, as well as
two-way clustering by county and by year. See the robustness checks for details.

http://www.webmet.com/met_monitoring/622.html
https://www.ndbc.noaa.gov/wndav.shtml
https://www.ndbc.noaa.gov/wndav.shtml
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One limitation of the approach described above is that proximity to
agricultural fires is not randomly assigned, raising potential endogeneity
concerns. In particular, agricultural fires are meant to reduce the labor
demands of the farm. If children provide some of this labor, then the
presence or absence of nearby fires may influence the time that students
have to prepare for their exams. Similarly, agricultural fires may increase
farm profitability and indirectly influence test performance through a
variety of income channels. To address these concerns, we utilize data on
wind direction.14

In particular, we differentiate between upwind fires and downwind
fires, exploiting the fact that upwind fires will have a larger impact on air
quality at a county center than downwind fires, but that wind direction is
irrelevant for the labor and income channels that might threaten iden-
tification of the pollution-driven impacts of fires in this setting. As such,
the primary model specification that we deploy for the majority of our
analyses takes the following form:

Yicpt ¼α0 þ βucptupwindcpt þ βdcptdownwindcpt þ Xcptδþ τc þ πptm þ εicpt (2)

where upwindcpt denotes the number of agricultural fires located in the
upwind direction of county c in province p in year t, and downwindcpt
represents fires located in the opposite direction. The other variables are
identical to those used in Equation (1).

Upwind fires are defined as those located within a 45-degree central
angle from the dominant daily wind direction in each county following
the procedure detailed in Rangel and Vogl (2018).15Downwind fires are
defined as those scattered in the opposite direction to upwind fires. The
remaining fires are classified as vertical fires and should be viewed as
areas that are exposed to more fire-driven pollution exposure than those
exposed to downwind fires but less than those exposed to upwind fires. In
some cases, we aggregate downwind and vertical fires into a larger
category, which we refer to as non-upwind fires. See Fig. 3 for an illus-
tration of how these classifications are constructed.

In our analysis, daily upwind and downwind fires within a county are
aggregated to correspond to the two-day period of the exam. The pa-
rameters of interest are βucpt – the impact of upwind fires, βdcpt – the impact

of downwind fires, and βucpt � βdcpt , which captures the difference between
upwind and downwind effects on test scores, and therefore can be
interpreted as the causal effect of agricultural fires on test scores via air
pollution.

One potential concern with Equation (2) is that exposure to fires may
be endogenous if prevailing wind patterns are consistent throughout the
year and individuals sort based on those patterns. This does not appear to
be a significant issue in our setting for several reasons. First, wind di-
rection across our study sites in China is quite variable. The vast majority
of weather stations exhibit no pervasive or dominant wind direction (see
Appendix Figure A1) and, as can be seen in column (2) of Panel A in
Table 6, our estimates are robust to excluding the handful of locations
with some level of persistence. We also present the autocorrelation in
wind direction using a 6-day lag structure at each station from 2005 to
2011 in Appendix Table A1. Autocorrelation is strongest for a 1-day lag,
but only exceed 0.25 at one station and increasing lags drops all co-
efficients considerably. Appendix Table A2 shows that correlation
structure does not appear to differ between coastal and inland structures
over different reporting periods. Taken together, this evidence suggests
that wind direction at a testing location for a specific set of dates should
be viewed as plausibly i. i.d. These assertions are further strengthened by
the hukou restrictions that limit residential sorting and our empirical
specification, which includes county fixed effects, such that our
14 A nascent literature exploits variations in wind directions to causally esti-
mate pollution’s effect (e.g., Anderson, 2019; Schlenker and Walker, 2015;
Deryugina et al., 2016).
15 We also explore broader and narrower angles to determine upwind fires as
part of our robustness analysis. The results remain qualitatively unchanged.
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identification is based on variation in fires and wind direction within a
county.

5. Results

This section presents our empirical results. We begin by exploring the
impacts of agricultural fires on NCEE test performance. Then we conduct
additional analyses exploring the timing of those effects and several di-
mensions of heterogeneity. Next, we present a series of robustness
checks. This is followed by an exploration of mechanisms using available
pollution data from a more recent period to examine the relationship
between agricultural fires and criteria air pollutant concentrations up-
wind and downwind of the burn site.

5.1. Baseline findings

Table 2 presents our primary results on the impacts of agricultural
fires on exam scores in logarithms. As shown in column (1), combining all
fires together as in Equation (1) yields attenuated estimates that are close
to zero and statistically insignificant. Column (2) shows that upwind fires
significantly reduce test scores, whereas columns (3) and (4) reveal no
significant effect for downwind and non-upwind fires, respectively.

Our main specification in column (5), where we put upwind and
downwind fires together, shows that a one-point increase in the differ-
ence between upwind and downwind fires leads to a 0.0126 percent drop
in scores. When we compare upwind and non-upwind fires as an alter-
native, the coefficient remains negative and significant, but is smaller in
magnitude (see column 6). This diminished effect size is consistent with
the notion that students at testing locations that lie in a vertical wind
direction from the fire are exposed to more fire-related air pollution than
downwind students but less than those that are upwind. While we spend
more time putting these magnitudes in context later in the paper, it is
worth noting that they are broadly consistent with the negative impacts
of extreme heat on test performance found by others in China as well as
other countries (Park, 2018; Graff Zivin et al., 2018a, 2018b).

5.2. Dynamic effects

We next explore the temporal effects of exposure to agricultural fires.
In particular, Fig. 4 depicts results by moving exposure windows up to
four weeks before and four weeks after the NCEE exam dates. The results
confirm that the impacts are entirely contemporaneous. We find no sta-
tistically significant impact of agricultural fires in the one to four weeks
prior to the NCEE. Our falsification test based on future fires is similarly
insignificant. Whether exposure to fires has a long-run impact on
cognitive attainment, above and beyond the effects that we are finding
for cognitive performance is an open question that cannot be answered
using our research design which exploits short-run ‘shocks’ to pollution
exposure.

5.3. Heterogeneity

In this section, we explore the heterogeneity of our core results along
two dimensions, as shown in Table 3. The first column simply reproduces
the results from our preferred specification for our primary results (col-
umn 5 in Table 2). Columns (2) and (3) of Table 3 explore heterogeneity
along another dimension: the subject track. It appears that the impacts
are negative and highly statistically significant for those in the science
track while larger in magnitude but only marginally significant for those
in the arts track. While we are reluctant to make too much of these dif-
ferences since the estimates do not statistically differ from each other, it
is possible that they reflect the differential sensitivity of the prefrontal
cortex – the part of the brain responsible for more mathematical style
reasoning, and is consistent with other evidence on the impacts of
environmental stressors on cognitive performance (Graff Zivin et al.,
2018a). This pattern of results might also, at least partly, be driven by the



Fig. 3. Definition of upwind and non-upwind agricultural fires. Notes: Definitions of upwind, downwind and vertical agricultural fires within 50 km from the center of
a county is illustrated using northwest wind as an example. Non-upwind fires include fires in the downwind and vertical directions.

Table 2
Effects of agricultural fires on score in baseline provinces (%).

VARIABLES (1) (2) (3) (4) (5) (6)

(per 1 fire)
All �0.0005

(0.0012)
Upwind �0.0054*** �0.0070*** �0.0072***

(0.0018) (0.0021) (0.0019)
Downwind 0.0038 0.0056

(0.0035) (0.0036)
Nonupwind 0.0000 0.0015

(0.0014) (0.0015)

Upwind-Downwind �0.0126**
(0.0051)

Upwind-Nonupwind �0.0087***
(0.0031)

Observations 1,188,933 1,188,933 1,188,933 1,188,933 1,188,933 1,188,933
R-squared 0.317 0.317 0.317 0.317 0.317 0.317
County FE Y Y Y Y Y Y
Prov-Year-Track FE Y Y Y Y Y Y
Weather Y Y Y Y Y Y

Notes: Each column represents a separate regression with different fixed effects and controls. Weather conditions, include temperature, dew point, wind speed, pre-
cipitation and atmospheric pressure, are controlled nonlinearly using bins. Standard errors in parentheses are clustered by county. ***p < 0.01, **p < 0.05, *p < 0.1.

J. Graff Zivin et al. Journal of Development Economics 147 (2020) 102560
gender composition of students across tracks. While we do not have
individual-level gender data, the male ratio is typically much higher in
the science track than the arts track, and there is some evidence that
males may be more sensitive to pollution than females (see, for example,
Sanders and Stoecker, 2015).

The next four columns of Table 3 examine how the impacts of agri-
cultural fires vary across the student ability distribution by estimating
Equation (2) using a quantile regression approach. This regression is
especially important for two reasons. First, since we only observe NCEE
7

scores for students that were eventually admitted to an institution of
higher learning, we might be worried about sample selection resulting
from negative effects at the lower end of the ability distribution. Second,
differences in impacts across the ability distribution could have profound
long-run impacts on income inequality given the highly nonlinear returns
to scores. Our results find no impacts among low ability students, thus
minimizing concerns about selection bias. Moreover, the impacts appear
to be concentrated near the very top of the performance distribution –

above the 75th percentile. This can be seen most clearly in Fig. 5, which



Fig. 4. Dynamic effects of agricultural fires on score (%). Notes: This figure plots
the dynamic effects of agricultural fires on NCEE scores in percentage. Dashed
lines indicate the 95% confidence intervals.

Table 3
Heterogeneity (%).

VARIABLES (1) (2) (3) (4) (5) (6) (7) (8)

Track Score Admission

Baseline Arts Science 25% 50% 75% 95% First-Tier

(per 1 fire)
Upwind �0.0070*** �0.0104* �0.0058*** �0.0013 �0.0022 �0.0064* �0.0109*** �0.0198**

(0.0021) (0.0053) (0.0017) (0.0018) (0.0022) (0.0034) (0.0026) (0.0089)
Downwind 0.0056 0.0142 0.0024 �0.0039 �0.0046 0.0011 0.0204*** 0.0070

(0.0036) (0.0105) (0.0023) (0.0032) (0.0036) (0.0034) (0.0071) (0.0111)

Upwind-Downwind �0.0126** �0.0246 �0.0083*** 0.0026 0.0024 �0.0075 �0.0313** �0.0269*
(0.0051) (0.0153) (0.0030) (0.0038) (0.0058) (0.0057) (0.0048) (0.0159)

Observations 1,188,933 311,744 873,851 1,188,933 1,188,933 1,188,933 1,188,933 1,185,595
R-squared 0.3171 0.3987 0.2426 0.0001 0.0001 0.0000 0.0000 0.0464

Notes: Each column represents a separate regression. Column (2)–(3) differentiate the effects of agricultural fires on scores by track. Column (4)–(7) list the estimates by
student score quantile. Column (8) reports the effects on admission likelihood to first-tier universities. Weather conditions, include temperature, dew point, wind speed,
precipitation and atmospheric pressure, are controlled nonlinearly using bins. County and province-by-year-by-track fixed effects are always controlled. Standard errors
in parentheses are clustered by county. ***p < 0.01, **p < 0.05, *p < 0.1.
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further breaks down estimates by decile. One potential explanation for
this result is that students at the upper-tail of the performance distribu-
tion experience greater levels of stress during the exam due to the fierce
competition for entry into elite universities, and that this stress makes
themmore vulnerable to the harmful effects of the fire-induced pollution.
It may also be the case that the best students are more likely to be per-
forming at the frontier of their ability and that there is little compensa-
tory bandwidth remaining for them when they experience pollution
insults. While all of this is clearly quite speculative, we also note that this
finding is not inconsistent with some of those found by Ebenstein et al.
(2016) in a very different setting. In particular, they find that largest
negative impacts on university enrollment and wages as a result of PM2.5
exposure during high-stakes testing were experienced by the highest
ability students in Israel.

Column (8) offers another perspective on the higher end of the ability
distribution by focusing on the impacts of agricultural fires on the like-
lihood of admission into an elite university in China based on the cutoff
scores that govern that process. The cutoff score in each province is the
lowest score of students admitted to the first-tier universities in China. It
is determined by the admission quota of each university and the ranking
16 Admission is not solely determined by scores, and students have to fill their
preferences for universities and majors based on their actual or estimated scores.
Around 75% of students are admitted into first-tier universities if their scores are
above the cutoff (Jia and Li, 2017).
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of student scores in each province.16Upwind fires continue to have a
significant negative impact on test performance. A one percentage point
(or one standard deviation) increase in the difference between upwind
and downwind fires, decreases the probability of admission to an elite
university by 0.027 percent (or 0.51 percent of a standard deviation).
Given the sizable impacts of elite education in China on lifetime earnings
(Jia and Li, 2017), these impacts should be viewed as economically
meaningful, even if they may be largely re-distributional by privileging
the admission of students from less exposed counties over those from
more exposed ones.
5.4. Robustness checks

In this section, we provide a number of robustness checks. We begin
by exploring alternative ways to assign the exposure of test-takers to
agricultural fires. The first column of Table 4 reproduces our main re-
sults, which limit our focus to fires within 50 km of a testing center. The
next four columns vary that distance from 30 to 70 km in 10-km in-
crements. As can be seen in Panel A, the impact of an additional fire is
considerably larger when we focus on nearer fires, but this pattern of
results no longer holds when we standardize our outcome measure based
on the variability of test scores, as in Panel B. Unsurprisingly, the results
become smaller as we include test takers further away from the fire. At a
70-km radius, as seen in column (5) of Table 4, the results are no longer
significant. Together, these results highlight the relatively localized im-
pacts of agricultural fires.

In columns (6)–(8) of Table 4, we explore the sensitivity of our results
to alternative central angle measures to determine whether an individual
is upwind or downwind of a fire. Recall that our baseline model speci-
fication uses the angle of 45� to define upwind and downwind fires (see
column 1). As we alter the angle to 30, 60, and 90�, the estimates remain
significant, but become smaller as the angles become larger. This pattern
of results is consistent with standard models of pollution dispersion, as
wider angles will expand the ‘treated’ upwind sample to include more
individuals with peripheral levels of exposure. It also further validates
that our upwind and downwind measures are doing a reasonable job of
capturing the relevant transport of pollution from fires to test centers.

Table 5 experiments with alternative ways to define a fire. Column (1)
reproduces our core results from Table 2, while column (2) takes a more
aggressive approach to classifying fires as exogenous by limiting our
attention to those fires within the 50-km radius of a county administra-
tive center but that take place in a different county. While our use of wind
direction is meant to capture the economic effects from agricultural fires,
the enforcement of any policies designed to limit agricultural fires or
protect air quality occurs primarily at the county level (He et al., 2020).
Thus, our focus on non-local fires should help address any potential



Fig. 5. Effects of agricultural fires on scores by decile. Notes: The estimates of
upwind-downwind differences in agricultural fires’ impact on percentage point
changes in NCEE scores are plotted in the solid connected line. The dashed lines
represent the 95% confidence intervals.

Table 4
Alternative distances and angles.

Distances Angles

50 km 40 km 30 km 60 km 70 km 30� 60� 90�

VARIABLES (1) (2) (3) (4) (5) (6) (7) (8)

Panel A: per 1 fire
Score (%)

Upwind - Downwind �0.0126** �0.0201** �0.0219** �0.0070* �0.0024 �0.0140** �0.0101*** �0.0079***
(0.0051) (0.0086) (0.0107) (0.0040) (0.0033) (0.0064) (0.0037) (0.0023)

Panel B: per 1 S.D.
Score (% S.D.)

Upwind - Downwind �1.42 �1.43 �0.97 �1.13 �0.49 �1.18 �1.47 �1.51
Observations 1,188,933 1,188,933 1,188,933 1,188,933 1,188,933 1,188,933 1,188,933 1,188,933

Notes: Columns (1)–(5) report the effects of agricultural fires on NCEE score in provinces of Anhui, Shandong and Henan using different distances from a county center
with 45� for wind directions. Columns (6)–(8) list the estimates using different definitions of upwind and non-upwind direction, namely 30, 60 and 90�. Panel A lists the
percentage change in scores in response to an increase of one agricultural fire. Panel B lists the percentage changes in standard deviation (S.D.) of scores when agri-
cultural fires increase by one S.D. Weather conditions, including temperature, dew point, wind, precipitation and atmospheric pressure, are controlled nonlinearly using
bins. County and province-by-year-by-track fixed effects are always controlled. Standard errors in parentheses are clustered by county. ***p < 0.01, **p < 0.05, *p <

0.1.
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concerns about the endogeneity of local policies vis-�a-vis testing out-
comes. The results using this specification are largely unchanged.17

In column (3), we inverse-distance weight fires to better reflect the
distance of the fire from the county administrative center. In column (4),
we account for the intensity of the fire by weighting by the fire radiative
power (FRP) in Watts of each event. The estimates remain statistically
significant, but are slightly smaller in magnitude than those under our
preferred specification. Finally, we use reliability measures from the fire
dataset to adjust for the probability that a hotspot is genuinely a fire (see
Rangel and Vogl, 2018 for more details). The results after this adjustment
are statistically significant and slightly larger in magnitude.

In Table 6, we explore a final set of robustness checks. As before, in
Panel A, the first column reproduces our core results for ease of
comparability. Column (2) drops the very few counties in which wind
direction blows in one direction more than 60 percent of the time. The
estimates are very close to the baseline. Column (3) controls for weather
conditions in decile bins following a similar approach by Deschênes et al.
(2017). Columns (4) and (5) control for visibility and cloud cover at the
county level, respectively. These controls are important as impaired
17 On average, 6 of the 7 fires within 50 km of the county center occur in
another county. That said, they are typically further from testing locations –

35.2 km versus 19.5 km away on average – which may explain their diminished
significance.
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visibility may trigger avoidance behavior in the lead up to the exam. In
addition, gray skies can impair one’s sense of psychological well-being,
particularly if worried that diminished air quality might affect their
test performance. Our estimates are robust to adding these controls. We
find that visibility itself is positively associated with scores, but the as-
sociation is insignificant conditional on agricultural fire pollution and
other weather conditions.18Column (6) controls for GDP per capita at the
county level, which does not alter the estimates.

In Panel B, column (1) uses raw scores as the dependent variable. We
report the estimates using alternative ways of clustering standard errors
either by prefecture in column (2), or by county and by year (two-way
clustering) in column (3). The estimates are robust to these different
clustering approaches, further supporting our earlier claims that spatial
and temporal autocorrelation is not a big concern in our setting. Column
(4) reports the estimates at the county-year level with Conley standard
errors using a 200-km radius and 1-year lag length as the cutoffs for
spatial and serial correlation (Conley, 1999; Hsiang, 2010). All the esti-
mates remain robust and are consistent with our baseline findings. In
column (5), we expand our focus in Shandong to the third day, which
only takes place in this province. In column (6), we add the data we have
from Jiangsu Province, which only covers part of our study period. The
coefficients barely budge across the first three checks. The results are
slightly smaller and now only significant at the 10-percent level under
the final one.

In the end, our results appear quite robust to alternative methods of
measuring fires, assigning exposure, clustering standard errors, adding
additional controls, and defining our sample population. That the mag-
nitudes of results change in expected directions as we tighten or liberalize
the approach we use to assign fires to testing facilities is particularly
reassuring.
5.5. Mechanisms: The effect of agricultural fires on air pollution

In this section, we estimate the effect of agricultural fires on air
pollution, to confirm that air pollution is the channel through which
agricultural fires affect students’ exam scores and to place our results in a
broader context. As described earlier, we do so by using data from the
2013–2016 period for which daily air pollution measurements, even in
more rural areas, are available. The ideal design for this analysis would
18 Since visibility is significantly correlated with PM (the Pearson coefficient
between visibility and PM2.5 is �0.24, and is �0.38 after controlling for tem-
perature and dew point), we also model it using 3 miles-of-visibility bins (a total
of 5 bins). The estimates are very close to the linear specification, and there is no
evidence of nonlinear effect of visibility.



Table 5
Alternative measures of fires.

Baseline Non-Local Distance-Weighted FRP-Weighted Probability-Weighted

VARIABLES (1) (2) (3) (4) (5)

Panel A: per 1 fire
Score (%)

Upwind-Downwind �0.0126** �0.0139* �0.0086** �0.0081** �0.0193**
(0.0051) (0.0079) (0.0040) (0.0039) (0.0077)

Panel B: per 1 S.D.
Score (% S.D.)

Upwind-Downwind �1.42 �1.25 �1.17 �1.46 �1.55
Observations 1,188,933 1,188,933 1,188,933 1,188,933 1,188,933

Notes: Column (1) repeats the baseline estimates on the effects of upwind-downwind difference in agricultural fires on score. Column (2) reports the effects of non-local
upwind-downwind difference on score. Column (3) lists the estimate from distance-weighted fires. Column (4) weights the fires by intensity measured by fire radiative
power (FRP). Column (5) lists the estimates using probability-weighted agricultural fires. Panel A lists the percentage change in scores in response to an increase of 1 fire
point. Panel B lists the percentage changes in standard deviation (S.D.) of scores when agricultural fires increase by 1 S.D. Weather conditions, including temperature,
dew point, wind, precipitation and atmospheric pressure, are controlled nonlinearly using bins. County and province-by-year-by-track fixed effects are always
controlled. Standard errors in parentheses are clustered by county. ***p < 0.01, **p < 0.05, *p < 0.1.

Table 6
Robustness checks.

(1) (2) (3) (4) (5) (6)

Panel A Baseline Drop Prevailing Wind Weather Bin by Decile Visibility Cloud Cover GDP per Capita

per 1 fire: Score (%)
Upwind-Downwind �0.0126** �0.0128** �0.0140** �0.0116** �0.0133*** �0.0134***

(0.0051) (0.0052) (0.0058) (0.0049) (0.0051) (0.0051)
Observations 1,188,933 1,162,335 1,188,933 1,188,933 1,188,933 1,188,933

Panel B Raw Score Cluster by Prefecture Cluster by County and by Year Conley Standard Error Shandong-3 Days Four Provinces

Upwind-Downwind �0.0585*** �0.0126** �0.0126* �0.0142*** �0.0138** �0.0088*
(0.0204) (0.0054) (0.0057) (0.0053) (0.0054) (0.0045)

Observations 1,188,933 1,188,933 1,188,933 1,087 1,188,933 1,372,466

Notes: The percentage changes in scores in response to an increase of one agricultural fire are listed. In Panel A, column (1) repeats the baseline estimates on the effects of
upwind-downwind difference in agricultural fires on score. Column (2) drops the few counties with seemingly prevailing wind direction with a share over 60 percent.
Column (3) controls for weather conditions in decile bins. Columns (4) to (6) control for visibility, cloud cover and GDP per capita linearly at the county level,
respectively. In Panel B, column (1) uses the raw score as the dependent variable. Column (2) clusters the standard errors by prefecture. Column (3) two-way clusters the
standard errors by county and by year. Column (4) reports the estimates at the county-year level with Conley standard errors using a 200-km radius and 1-year lag as the
spatial and temporal cutoffs for serial correlation. Column (5) considers the changes in NCEE dates in Shandong since 2007. Column (6) shows estimates using 4
provinces (Jiangsu added). Weather conditions, including temperature, dew point, wind, precipitation and atmospheric pressure, are controlled nonlinearly using bins.
County and province-by-year-by-track fixed effects are always controlled, except for the Conley standard error which uses county and province-by-year fixed effects.
Standard errors in parentheses are clustered by county. ***p < 0.01, **p < 0.05, *p < 0.1.
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focus exclusively on the two-day exam period, but this leaves us with
limited statistical power. Instead, we construct a panel of two-day mov-
ing averages of pollutant concentrations in June and link them with
proximate agricultural fires during the same period. The empirical model
for this estimation is nearly identical to the one described in Equation (2),
except that the dependent variable is now one of the six criteria air
pollutants. Weather variables are now measured as two-day averages of
the corresponding to each moving two-day period in June for which we
have pollution measures.

The results are shown in Table 7. The first two rows list the two-day
averages and standard deviations of each pollutant in June during
2013–2016. The PM10 concentration is approximately 78 μg/m3 and the
PM2.5 concentration is approximately 46 μg/m3, both of which greatly
exceed World Health Organization guidelines. The other pollutant levels
are more modest, although still higher than those typically found in
developed countries. Turning to our estimates, we find a significant and
substantial effect of upwind agricultural fires on PM10 and PM2.5. A one-
point increase in upwind agricultural fires increases PM10 and PM2.5
concentrations by 0.476 μg/m3 and 0.262 μg/m3, respectively. We also
detect a weak effect of downwind fires on PM10, and the coefficient of
upwind-downwind difference becomes insignificant compared with that
of PM2.5. This may be due to the fact that PM10 is heavier than PM2.5 and
thus less responsive to wind direction. The impacts on PM2.5 are non-
trivial: a one-standard-deviation change in the upwind-downwind
10
difference is associated with a 5.6 percent standard-deviation change in
PM2.5.

In contrast, downwind fires have no impacts on air quality, providing
further validation for our empirical strategy to uncover the pollution-
driven impacts of agricultural fires on NCEE test performance. We find
no effect of agricultural fires on other pollutants, including SO2, NO2, CO,
and O3. In general, these estimates are consistent with those found in the
scientific literature (Li et al., 2007) and recent empirical analysis done by
Rangel and Vogl (2018) in Brazil, both of which find that agricultural
fires primarily emit PM.

Given that the samples are different for our estimates of the impacts of
fires on pollution and the impacts of fires on test performance, we are
unable to provide an instrumental variable estimate of the effect of PM on
student scores. We provide a rough estimate akin to the Wald estimator
as an alternative. Using the ratio of the reduced-form estimates over the
first-stage estimates based on the differences in upwind and downwind
fires, we find that a one-standard-deviation elevation in PM2.5 (29.6 μg/
m3) will lower average student scores by 13.6 percent of a standard de-
viation (5.8 points). Alternatively, our results suggest that a 10 μg/m3

increase in PM2.5 reduces test scores by 4.6 percent of a standard devi-
ation. While these magnitudes are quite modest, they are roughly three
times as large as those found for Israeli test takers (Ebenstein et al.,
2016).

This likely reflects the higher levels of pollution in our setting as well



Table 7
Two-day moving averages of agricultural fires and air pollution in June during 2013–2016.

(1) (2) (3) (4) (5) (6)

PM10 PM2.5 SO2 NO2 CO O3

(per 1 fire) (μg/m3) (μg/m3) (ppb) (ppm) (ppb) (ppb)
Mean 78.1 45.5 9.1 13.3 0.7 39.3

(50.7) (29.6) (7.6) (8.0) (0.4) (19.2)
Upwind 0.476*** 0.262** �0.005 0.012 0.000 0.012

(0.179) (0.108) (0.019) (0.022) (0.001) (0.037)
Downwind 0.221* �0.052 0.008 �0.009 �0.001** �0.011

(0.122) (0.045) (0.008) (0.009) (0.000) (0.022)
Upwind-Downwind 0.254 0.314** �0.013 0.022 0.001 0.022

(0.261) (0.134) (0.024) (0.027) (0.002) (0.051)
Observations 18,408 18,450 18,676 18,678 18,442 18,434
R-squared 0.498 0.426 0.493 0.459 0.557 0.533
County FE Y Y Y Y Y Y
Prov-Year FE Y Y Y Y Y Y
Weather Y Y Y Y Y Y

Notes: Each column represents a separate regression at the county level. Columns (1)–(6) regress the two-day moving average concentrations of each pollutant on the
number of upwind and downwind agricultural fires within 50 km from a county during June in Anhui, Henan and Shandong. County and province-by-year fixed effects,
weather (temperature, dew point, precipitation, atmospheric pressure, wind speed) are always controlled. Standard errors in parentheses are clustered by county.
***p < 0.01, **p < 0.05, *p < 0.1.

J. Graff Zivin et al. Journal of Development Economics 147 (2020) 102560
as the source of that pollution – agricultural fires versus sandstorms. It
may also be the result of our empirical strategy which relies on wind
direction rather than an approach that assigns pollution equally to all of
those within a certain distance of a pollution monitor and then compares
performance across different tests using an individual fixed effects
approach. It is also worth noting that, while not directly comparable, our
estimates are also larger than those estimated for the impacts of extreme
temperature on test performance (e.g., Graff Zivin et al., 2018a, 2018b;
Park et al., 2020). That said, our estimates here should be treated with
some caution, as our ‘two-stage approach’ relies on data from adjacent
but distinct periods.

Lastly, our estimated impact of agricultural fires on scores may not
just capture a pure biological or physiological response. Indirect channels
such as psychological stress, mood, and attentiveness may also play an
important role and we cannot distinguish between these channels. That
said, we believe that we can, at least, rule out some alternative expla-
nations. First, our results do not appear to be driven by mood-induced
changes resulting from dark skies. In columns (4) and (5) of Panel A in
Table 6, we control for visibility and cloud cover, and our estimates are
largely unchanged. Second, caregiver burden (or stress related to care-
giving) is unlikely to drive our results given that wind direction at a given
location on a given day is plausibly exogenous in our setting (see Ap-
pendix Tables A1/A2 and Figure A1). As such, the transitory nature of
pollution exposure is unlikely to impose significant health harms on
family or friends absent substantial underlying health conditions.

6. Conclusions

In this paper, we analyze the relationship between agricultural fires
and cognitive performance on high-stakes exams in China. We find that
fires decrease the performance of students, with effects concentrated
amongst the highest ability test takers. A one-standard-deviation increase
in the difference between upwind and downwind fires during the NCEE
decreases the total exam score by 1.42 percent of a standard deviation (or
0.6 points), and further decreases the probability of getting into first-tier
universities by 0.51 percent of a standard deviation. The effects are
entirely contemporaneous and generally quite localized. The principal
driver of these cognitive impairments is particulate matter pollution, and
the effect is non-trivial: a 10 μg/m3 increase in PM2.5 concentrations
lowers test scores by 4.6 percent of a standard deviation. To our
knowledge, this is the first evidence that the negative impacts of agri-
cultural fires extend beyond health to include impacts on human cogni-
tion among otherwise unimpaired young adults.

It is important to note, however, that our understanding of the
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mechanisms underpinning our key findings remains elusive. Our analysis
is unable to distinguish between a variety of direct physiological effects
resulting from pollution exposure and any indirect effects, such as psy-
chological stress, mood alterations, and diminished attentiveness, that
may also test performance. Moreover, while performance on high-stakes
exams is clearly cognitively demanding, it remains an open question how
these impacts translate to the cognitive tasks that are more typical of
everyday living. Our results are also silent on how exposure to fires, or
the pollution they emit, may impact learning and thus cognitive attain-
ment. Should such impacts exist, they pose particular challenges for
communities that experience repeated and prolonged exposure to fires of
this sort. Together, they comprise a fruitful area for future research.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.jdeveco.2020.102560.
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