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Abstract

This paper characterizes the dynamic empirical properties of comparative advantage. We revisit two strong
empirical regularities in international trade that have previously been studied in parts and in isolation. There
is a tendency for countries to concentrate exports in a few sectors. We show that this concentration arises from
a heavy-tailed distribution of industry export capabilities that is approximately log normal and whose shape
is stable across 90 countries, 133 sectors, and 40 years. Likewise, there is a tendency for mean reversion in
national industry productivities. We establish that mean reversion in export capability, rather than indicative of
convergence in productivities or degeneracy in comparative advantage, is instead consistent with a stationary
stochastic process. We develop a GMM estimator for a stochastic process that generates many commonly
studied stationary distributions and show that the Ornstein-Uhlenbeck special case closely approximates the
dynamics of comparative advantage. The OU process implies a log normal stationary distribution and has a
discrete-time representation that can be estimated with simple linear regression.
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1 Introduction

Comparative advantage has made a comeback in international trade. After a hiatus, during which the Ricardian
model was widely taught to students but rarely applied in research, the role of comparative advantage in explain-
ing trade flows is again at the center of inquiry. Its resurgence is due in large part to the success of the Eaton
and Kortum (2002) model (EK hereafter). Chor (2010) and Costinot et al. (2012) find strong support for EK
in cross-section trade data, and a rapidly growing literature uses EK as a foundation for quantitative modeling
of changes in trade policy and other shocks (e.g., Costinot and Rodriguez-Clare 2014, Di Giovanni et al. 2014,
Caliendo and Parro 2015).

In this paper, we characterize empirically how comparative advantage evolves over time. From the gravity
model of trade, we extract a measure of country export capability, which we use to evaluate how export perfor-
mance changes for 90 countries in 133 industries from 1962 to 2007. Distinct from Waugh (2010), Costinot et al.
(2012), and Levchenko and Zhang (2013), we do not use industry production or price data to evaluate country ex-
port prowess.! Instead, we rely solely on trade data, which allows us to impose less structure on the determinants
of trade and to examine both manufacturing and nonmanufacturing industries at a fine degree of disaggregation
and over a long time span. These features of the analysis help us to uncover the stable distributional properties of
comparative advantage, which heretofore have been unrecognized.

The gravity framework is consistent with a large class of trade models (Anderson 1979, Anderson and van
Wincoop 2003, Arkolakis et al. 2012), of which EK is one example. These have in common an equilibrium re-
lationship in which bilateral trade in a particular industry and year can be decomposed into an exporter-industry
fixed effect, which measures the exporting country’s export capability in an industry; an importer-industry fixed
effect, which captures the importing country’s effective demand for foreign goods in an industry; and an exporter-
importer component, which accounts for bilateral trade frictions (Anderson 2011).> We estimate these compo-
nents for each year in our data, using both OLS and methods developed by Silva and Tenreyro (2006) and Eaton et
al. (2012) to correct for zero bilateral trade flows.? In the EK model, the exporter-industry fixed effect embodies
the location parameter of a country’s productivity distribution for an industry, which fixes its sectoral efficiency
in producing goods. By taking the deviation of a country’s log export capability from the global industry mean,
we obtain a measure of a country’s absolute advantage in an industry. Further normalizing absolute advantage by
its country-wide mean, we remove the effects of aggregate country growth. We refer to export capability under

its double normalization as a measure of comparative advantage.

!On the gravity model and industry productivity also see Finicelli et al. (2009, 2013), Fadinger and Fleiss (2011), and Kerr (2013).

2For an alternative approach to decomposing underlying sources of changes in bilateral trade, see Gaubert and Itskhoki (2015).

3We verify that our results are robust to replacing our gravity-based measure of export capability with Balassa’s (1965) index of
revealed comparative advantage. Additional work on approaches to accounting for zero bilateral trade includes Helpman et al. (2008),
Fally (2012), Head and Mayer (2014).



After estimating the gravity model, our analysis proceeds in two parts. We first document two strong em-
pirical regularities in country exporting, and then, informed by these regularities, specify a stochastic process
for export advantage. Though we motivate our approach using EK, we are agnostic about the origins of country
export capabilities. The Krugman (1980), Heckscher-Ohlin (Deardorff 1998), Melitz (2003), and Anderson and
van Wincoop (2003) models also yield gravity specifications and give alternative interpretations of the exporter-
industry fixed effects that we use in our analysis. Our aim is not to test one model against another but rather to
identify the dynamic properties of absolute and comparative advantage that any theory of their determinants must
explain. As we will show, these properties include a stationary distribution for comparative advantage whose
shape is common across countries, industries, and time.

The first empirical regularity that we report is stable heavy tails in the distribution of country-industry exports.
In a given year, the cross-industry distribution of absolute advantage for a country is approximately log normal,
with ratios of the mean to the median of about 7. For the 90 countries in our data, the median share for the top
good (out of 133) in a country’s total exports is 23%, for the top 3 goods is 46%, and for the top 7 goods is
64%.* The heavy-tailedness of export advantage is both persistent and pervasive. The approximate log-normal
shape applies to individual countries over time and, at a given moment in time, across countries that specialize in
different types of goods.

Stability in the shape of the distribution of comparative advantage makes the second empirical regularity all
the more surprising: there is continual and relatively rapid turnover in countries’ top export industries. Among
the goods that account for the top 5% of a country’s current absolute-advantage sectors, 60% were not in the

top 5% two decades earlier.’

This churning is consistent with mean reversion in comparative advantage. In
an OLS regression of the ten-year change in log export capability on its initial log value and industry-year
and country-year fixed effects—a specification to which we refer compactly as a decay regression—we estimate
mean reversion at the rate of about one-third per decade. Levchenko and Zhang (2013) also find evidence of mean
reversion in comparative advantage, in their case for 19 aggregate manufacturing industries, which they interpret
as evidence of convergence in industry productivities across countries and of the degeneracy of comparative

advantage. This interpretation, however, is subject to the Quah (1993, 1996) critique of cross-country growth

regressions: mean reversion in a variable is uninformative about its distributional dynamics. Depending on

*See Easterly and Reshef (2010) and Freund and Pierola (2013) for related findings on export concentration. Hidalgo and Hausmann
(2009) and Hausmann and Hidalgo (2011) link export concentration to sparsity in the bilateral export-flow matrix. Using cross sections of
Balassa comparative advantage measures for select years (1985, 1992 and 2000, or 2005) from data similar to ours but at the SITC 4-digit
or HS 6-digit product levels, they document that a country’s concentration in few products above a comparative-advantage threshold is
positively correlated with the average “ubiquity” of the country’s comparative-advantage products (where “ubiquity” is the frequency
that a product exceeds the comparative-advantage threshold in any country). Our stochastic model admits such covariation in the cross
section.

50n changes in export diversification over time see Imbs and Wacziarg (2003), Cadot et al. (2011), and Sutton and Trefler (2016).



the stochastic properties of a series, mean reversion may alternatively coexist with a cross-section distribution
that is degenerate, non-stationary, or stationary. To understand distributional dynamics, one must take both the
stochastic process and the cross-sectional distribution over time as the units of analysis. Our finding that the heavy
tails of export advantage are stable over time suggests that, quite far from being degenerate, the distribution of
comparative advantage for a country is stationary.

In the second part of our analysis, we estimate a stochastic process that can account for the combination
of a stable cross-industry distribution for export advantage with churning in national industry export rankings.
Our OLS decay regression provides a revealing starting point for the exercise. As a mean-reverting AR(1)
specification, the decay regression is a discrete-time analogue of a continuous-time Ornstein-Uhlenbeck (OU)
process, which is the unique Markov process that has a stationary normal distribution (Karlin and Taylor 1981).
The OU process is governed by two parameters, which we recover from our OLS estimates. The dissipation
rate regulates the rate at which absolute advantage reverts to its long-run mean and determines the shape of its
stationary distribution; the innovation intensity scales the stochastic shocks to absolute advantage and determines
how frequently industries reshuffle along the distribution. Our estimates of the dissipation rate are very similar
across countries and sectors, which confirms that the heavy-tailedness of export advantage is close to universal.
The innovation intensity, in contrast, is higher for developing economies and for nonmanufacturing industries,
which affirms that the pace at which industry export ranks turn over is idiosyncratic to countries and sectors.

Although attractive for its simplicity, the OU is but one of many possible stochastic processes to consider.
To be as expansive as possible in our characterization of export dynamics while retaining a parametric stochastic
model, we next specify and estimate via GMM a generalized logistic diffusion (GLD) for absolute advantage.
The GLD has the OU process as a limiting case, which allows us to test the linearity restrictions of the OLS
decay regression and the implied assumption of log normality for export advantage. The GLD adds an additional
parameter to estimate—the decay elasticity—which allows the speed of mean reversion to differ from above ver-
sus below the mean. Slower reversion from above the mean, for instance, would indicate that absolute advantage
tends to be “sticky,” eroding slowly for a country once acquired. The appeal of the GLD is its ample flexibility
in describing the distribution of export advantage. The stationary distribution for the process is a generalized
gamma, which unifies the extreme-value and gamma families and therefore nests many common distributions
(Crooks 2010), including those used in the analysis of city size (Gabaix and Ioannides 2004, Luttmer 2007) and
firm size (Sutton 1997, Gabaix 1999).

Having estimated the GLD, we evaluate the fit of the model and its performance under alternative parameter

restrictions. We take the GMM time-series estimates of the three global parameters—the dissipation rate, the

SCabral and Mata (2003) use a similar generalized gamma to study firm-size distributions.



innovation intensity, and the decay elasticity—and predict the cross-section distribution of absolute advantage,
which is not targeted in our estimation. Based on just three parameters (for all industries in all countries and
in all years), the predicted values match the cross-section distributions with considerable accuracy. We also
compare the observed churning of industry export ranks within countries over time with the model-predicted
transition probabilities between percentiles of the cross-section distribution. The predicted transitions match
observed churning, except in the very lower tail of the distribution. This exercise also allows us to compare the
performance of the GLD to the OU process. While the data select the GLD over the more restrictive OU form,
the two models yield nearly identical predictions for period-to-period transition probabilities between quantiles
of the distribution of export advantage. This finding is of significant practical importance for it suggests that in
many applications the OU process, with its linear representation of the decay regression, will adequately describe
export dynamics. An OU process greatly simplifies estimating multivariate diffusions, which would encompass
the intersectoral and international linkages in knowledge transmission that are at the core of recent theories of
trade and growth (Eaton and Kortum 1999, Alvarez et al. 2013, Buera and Oberfield 2016, Gaubert and Itskhoki
2015).

What does it mean for comparative advantage to follow a diffusion process? In purely econometric terms,
the process implies that ongoing stochastic innovations to export capability offset mean reversion and perpetually
reshuffle industries along the distribution, thereby preserving the stable heavy tails in the cross section. In eco-
nomic terms, it means that the dynamics of export growth are common to broad classes of industries, including
manufacturing and nonmanufacturing activities that we typically think of as having distinct forms of innovation.
Though countries may discover what they are good at producing in numerous ways(Hausmann and Rodrik 2003),
the rise and fall of industries appear to have common patterns. In Finland, Nokia’s reasearch and development
in cellular technology turned the country into a powerhouse in mobile telephony in the early 2000s. For Costa
Rica, it was foreign direct investment, in particular Intel’s 1996 decision to build a chip factory near San Jose,
that made electronics the country’s largest export (Rodriguez-Clare 2001). In other contexts, discovery may arise
from mineral exploration, such as Bolivia’s realization in the 1980s that it held the world’s largest reserves of
lithium, or experimentation with soil conditions, which in the 1970s allowed Brazil to begin exporting soybeans
(Bustos et al. 2015). Seemingly random discoveries are often followed by equally unexpected declines in global
standing. While Brazil remains a leading exporter of soybeans, the rise of smart phones has dented Finland’s
prominence in mobile technology, Intel’s decision to close its operations in Costa Rica is abruptly shifting the
country’s comparative advantage, and ongoing conflicts over property rights have limited Bolivia’s exports of
lithium. The parsimonious stochastic process that we specify treats discovery as random and the erosion of these

discoveries as governed by reversion to the mean.



In Section 2 we present a theoretical motivation for our gravity specification. In Section 3 we describe the data
and gravity model estimates, and document stationarity and heavy tails in export advantage as well as churning
in top export goods. In Section 4 we introduce a stochastic process that generates a cross-sectional distribution
consistent with heavy tails and embeds innovations consistent with churning, and we derive a GMM estimator

for this process. In Section 5 we present estimates and evaluate the fit of the model. In Section 6 we conclude.

2 Theoretical Motivation

We use the EK model to motivate our definitions of export capability and absolute advantage, and describe our

approach for extracting these measures from the gravity equation of trade.

2.1 Export capability, absolute advantage, and comparative advantage

In EK, an industry consists of many product varieties. The productivity g of a source-country s firm that
manufactures a variety in industry ¢ is determined by a random draw from a Fréchet distribution with CDF
Fo(q) = exp{—(q/ gis)_a} for ¢ > 0. The location parameter g, determines the typical productivity level of a
firm in the industry while the shape parameter 8 controls the dispersion in productivity across firms. Consumers,
who have CES preferences over product varieties within an industry, buy from the firm that delivers a variety
at the lowest price. With marginal-cost pricing, a higher productivity draw makes a firm more likely to be the
lowest-price supplier of a variety to a given market.

Comparative advantage stems from the location of the industry productivity distribution, given by ¢, , which
may vary by country and industry. In a country-industry with a higher ¢, firms are more likely to have a high
productivity draw, such that in this country-industry a larger fraction of firms succeeds in exporting to multiple
destinations. Consider the many-industry version of the EK model in Costinot et al. (2012). Exports by source

country s to destination country d in industry ¢ can be written as,

-0
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where w; is the unit production cost in source country s, 7,54 is the iceberg trade cost between s and d in industry
i, i; is the Cobb-Douglas share of industry ¢ in global expenditure, and Y; is national expenditure in country d.

Taking logs of (1), we obtain a gravity equation for bilateral trade

In Xisq = kis + miqg — 01n 744, )



where k;s = 61n(g, /ws) is source country s’s log export capability in industry ¢, which is a function of the

country-industry’s efficiency (¢,,) and the country’s unit production cost (w;),” and

miq = In [Hin/ > <w<Ti§d/ Qk) 9]

is the log of effective import demand by country d in industry ¢, which depends on national expenditure on goods
in the industry divided by an index of the toughness of industry competition in the country.

Though we focus on EK, any trade model that has a gravity structure will generate exporter-industry fixed
effects and a reduced-form expression for export capability (k;s). In the Armington (1969) model, as applied
by Anderson and van Wincoop (2003), export capability is a country’s endowment of a good relative to its
remoteness from the rest of the world. In Krugman (1980), export capability equals the number of varieties a
country produces in an industry times effective industry marginal production costs. In Melitz (2003), export
capability is analogous to that in Krugman adjusted by the Pareto lower bound for productivity in the industry.
In a Heckscher-Ohlin model (Deardorff 1998), export capability reflects the relative size of a country’s industry
based on factor endowments and sectoral factor intensities. The common feature of these models is that export
capability is related to a country’s productive potential in an industry, be it associated with resource supplies, a
home-market effect, or the distribution of firm-level productivity.

Looking forward to the estimation, the presence of the importer-industry fixed effect m;4 in (2) implies that
export capability k;, is only identified up to an industry normalization. We therefore re-express export capability
as the deviation from its global industry mean (1/.5) Zle kic, where S is the number of source countries.
Exponentiating this value, we measure absolute advantage of source country s in industry ¢ as

explhis) _ (g/w) ®

exp {% 25:1 kig} exp {% zf:l(gk/wg)e} |

Ais

The normalization in (3) differences out both worldwide industry supply conditions, such as shocks to global
TFP, and worldwide industry demand conditions, such as variation in the expenditure share p;.

Our measure of absolute advantage is one of several possible starting points as we work towards comparative
advantage. When A;; rises for country-industry is, we say that country s’s absolute advantage has increased in
industry ¢ even though it is only strictly the case that its export capability has risen relative to the global geometric

mean for ¢. In fact, the country’s export capability in ¢ may have gone up relative to some countries and fallen

"Export capability k;. depends on endogenously determined production costs w, and therefore is not a primitive. The EK model
does not yield a closed-form solution for wages, so we cannot solve for export capabilities as explicit functions of the gis’s. In a model
with labor as the single primary factor of production, the gis’s are the only country and industry-specific fundamentals—other than trade
costs—that determine factor prices, implying in turn that the w;’s are implicit functions of the q,.’s



relative to others. Our motivation for using the deviation from the industry geometric mean to define absolute
advantage is that this definition simplifies the specification of a stochastic process for export capability. Rather
than specifying export capability itself, we model its deviation from a worldwide industry trend, which frees us
from having to model the global trend component.

To relate our use of absolute advantage A;s to conventional approaches, average (2) over destinations and

define (harmonic) log exports from source country s in industry ¢ at the country’s industry trade costs as
1< 1 &
In Xis = kis + ;mid - D;Mnnsd, )

where D is the number of destination markets. We say that country s has a comparative advantage over country

¢ in industry 7 relative to industry j if the following familiar condition holds:

Xis/Xic Ais/Aic
eVl L S > 1. ©)
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Intuitively, absolute advantage defines country relative exports, once we neutralize the distorting effects of trade
costs and proximity to market demand on trade flows, as in (4). In practice, a large number of industries and
countries makes it cumbersome to conduct double comparisons of country-industry ¢s to all other industries
and all other countries, as suggested by (5). The definition in (3) simplifies this comparison in the within-
industry dimension by setting the “comparison country” in industry ¢ to be the global mean across countries
in 7. In the final estimation strategy that we develop in Section 4, we will further normalize the comparison
in the within-country dimension by estimating the absolute advantage of the “comparison industry” for country
s, consistent with an arbitrary stochastic country-wide growth process. Demeaning in the industry dimension
and then estimating the most suitable normalization in the country dimension makes our empirical approach
consistent with both worldwide stochastic industry growth and stochastic national country growth.

Our concept of export capability k;s can be related to the deeper origins of comparative advantage by treating
the country-industry specific location parameter ¢, as the outcome of an exploration and innovation process. In
Eaton and Kortum (1999, 2010), firms generate new ideas for how to produce existing varieties more efficiently.
The efficiency ¢ of a new idea is drawn from a Pareto distribution with CDF G(q) = (¢/z;,)~?, where 2;, > 0
is the minimum efficiency. New ideas arrive in continuous time according to a Poisson process, with intensity
rate p;s (t). At date t, the number of ideas with at least efficiency ¢ is then distributed Poisson with parameter
T;s (t) =%, where Tj, (t) is the number of previously discovered ideas that are available to producers and that

is in turn a function of z¥, and past realizations of p;s (t).® Setting Tjs(t) = Qis(t>9’ this framework yields

8Eaton and Kortum (2010) allow costly research effort to affect the Poisson intensity rate and assume that there is “no forgetting” such



identical predictions for the volume of bilateral trade as in equation (1). Our empirical approach is to treat the
stock of ideas available to a country in an industry T;, (t)—relative to the global industry mean stock of ideas

(1/5) Zle T;. (t)—as following a stochastic process.’

2.2 Estimating the gravity model

Allowing for measurement error in trade data or unobserved trade costs, we can introduce a disturbance term into
the gravity equation (2), converting it into a linear regression model. With data on bilateral industry trade flows
for many importers and exporters, we can obtain estimates of the exporter-industry and importer-industry fixed

effects from an OLS regression. The gravity model that we estimate is
In Xisar = Kist + Midr + Toqebir + Visar, (6)

where we have added a time subscript {. We include dummy variables to measure exporter-industry-year k;s;
and importer-industry-year m;q; terms. The regressors rgq; represent the determinants of bilateral trade costs,
and v;sq 1S a residual that is mean independent of ryy;. The variables we use to measure trade costs rgg; in (6)

are standard gravity covariates, which do not vary by industry.' However, we do allow the coefficient vector

11

b;; on these variables to differ by industry and by year."" Absent annual measures of industry-specific trade

costs for the full sample period, we model these costs via the interaction of country-level gravity variables and
time-and-industry-varying coefficients.

The values that we will use for empirical analysis are the deviations of the estimated exporter-industry-year
dummies from global industry means. The empirical counterpart to the definition of absolute advantage in (3)

for source country s in industry ¢ is

exp {k\° B exp {kist }

S - S )
exp {% Zczl k%s} exp {% Zg:l kigt}

that all previously discovered ideas are available to firms. In our simple sketch, we abstract away from research effort and treat the stock
of knowledge available to firms in a country (relative to the mean across countries) as stochastic.

“Buera and Oberfield (2016) microfound the innovation process in Eaton and Kortum (2010) by allowing agents to transmit ideas
within and across borders through trade. A Fréchet distribution for country-industry productivity emerges as an equilibrium outcome in
this environment, where the location parameter of this distribution reflects the current stock of ideas in a country.

'0These include log distance between the importer and exporter, the time difference (and time difference squared) between the importer
and exporter, a contiguity dummy, a regional trade agreement dummy, a dummy for both countries being members of GATT, a common
official language dummy, a common prevalent language dummy, a colonial relationship dummy, a common empire dummy, a common
legal origin dummy, and a common currency dummy.

'We estimate (6) separately by industry and by year. Since in each year the regressors are the same across industries for each bilateral
exporter-importer pair, there is no gain to pooling data across industries in the estimation, which helps reduce the number of parameters
to be estimated in each regression.

Aist =

(N




where £7\° is the OLS estimate of k,, in (6).

As is well known (Silva and Tenreyro 2006, Head and Mayer 2014), the linear regression model (6) is
inconsistent with the presence of zero trade flows, which are common in bilateral data. We recast EK to allow
for zero trade by following Eaton et al. (2012), who posit that in each industry in each country only a finite
number of firms make productivity draws, meaning that in any realization of the data there may be no firms from
country s that have sufficiently high productivity to profitably supply destination market d in industry <. Instead
of augmenting the expected log trade flow E [In X;,4] from gravity equation (2) with a disturbance, Eaton et al.
(2012) consider the expected share of country s in the market for industry ¢ in country d, E [X;54/X;q4], and write
this share in terms of a multinomial logit model. This approach requires that one know total expenditure in the
destination market, X4, including a country’s spending on its own goods. Since total spending is unobserved in

our data, we invoke independence of irrelevant alternatives and specify the dependent variable as the expectation

for the share of source country s in import purchases by destination d in industry ¢:

Xisdt __exp {kist — /bt }
Zc;ﬁd Xicar Zg;&d exXp {kigt - rédtbit}

E ®)

In practice, estimation of (8) turns out to be well approximated by estimation of the Poisson pseudo-maximum-
likelihood (PPML) gravity model proposed by Silva and Tenreyro (2006). We re-estimate exporter-industry-year
fixed effects by applying PPML to (8).!?

Our baseline measure of absolute advantage relies on regression-based estimates of exporter-industry-year
fixed effects. Estimates of these fixed effects may become imprecise when a country exports a good to only a
few destinations in a given year. As an alternative measure of export performance, we use the Balassa (1965)

measure of revealed comparative advantage:

_ o 2aXisat/ ¢ D Xicat
= ‘
" Zj Zd stdt/ Zj Zg Zd Xjcdt

RCA 9

While the RCA index is ad hoc and does not correct for distortions in trade flows introduced by trade costs or
proximity to market demand, it has the appealing attribute of being based solely on raw trade data. Throughout
our analysis we will employ OLS and PPML gravity-based measures of absolute advantage (7) alongside the

Balassa RCA measure (9). Reassuringly, our results for the three measures are quite similar.

12We thank Sebastian Sotelo for estimation code.



3 Data and Main Regularities

The data for our analysis are World Trade Flows from Feenstra et al. (2005), which are based on SITC revision 1
industries for 1962 to 1983 and SITC revision 2 industries for 1984 to 2007. We create a consistent set of country
aggregates in these data by maintaining as single units countries that divide or unite over the sample period.'3
To further maintain consistency in the countries present, we restrict the sample to nations that trade in all years
and that exceed a minimal size threshold, which leaves 116 country units.'* The switch from SITC revision 1
to revision 2 in 1984 led to the creation of many new industry categories. To maintain a consistent set of SITC
industries over the sample period, we aggregate industries to a combination of two- and three-digit categories.'>
These aggregations and restrictions leave 133 industries in the data. In an extension of our main analysis, we
limit the sample to SITC revision 2 data for 1984 forward, so we can check the sensitivity of our results to
industry aggregation by using two-digit (60 industries) and three-digit definitions (225 industries), which bracket
the industry definitions that we use for the full-sample period.'®

A further set of country restrictions is required to estimate importer and exporter fixed effects. For coefficients
on exporter-industry dummies to be comparable over time, it is important to require that destination countries
import a product in all years. Imposing this restriction limits the sample to 46 importers, which account for an
average of 92.5% of trade among the 116 country units. In addition, we need that exporters ship to overlapping
groups of importing countries. As Abowd et al. (2002) show, such connectedness assures that all exporter fixed
effects are separately identified from importer fixed effects. This restriction leaves 90 exporters in the sample
that account for an average of 99.4% of trade among the 116 country units. Using our sample of 90 exporters, 46
importers, and 133 industries, we estimate the gravity equation (6) separately by industry ¢ and year ¢ and then

extract absolute advantage A;s; given by (7). Data on gravity variables are from CEPIlLorg.

These are the Czech Republic, the Russian Federation, and Yugoslavia. We join East and West Germany, Belgium and Luxembourg,
as well as North and South Yemen.

“This reporting restriction leaves 141 importers (97.7% of world trade) and 139 exporters (98.2% of world trade) and is roughly
equivalent to dropping small countries from the sample. For consistency in terms of country size, we drop countries with fewer than 1
million inhabitants in 1985, reducing the sample to 116 countries (97.4% of world trade).

'SThere are 226 three-digit SITC industries that appear in all years, which account for 97.6% of trade in 1962 and 93.7% in 2007.
Some three-digit industries frequently have their trade reported only at the two-digit level (which accounts for the just reported decline
in trade shares for three-digit industries). We aggregate over these industries, creating 143 industry categories that are a mix of SITC two
and three-digit sectors. From this group we drop non-standard industries: postal packages (SITC 911), special transactions (SITC 931),
zoo animals and pets (SITC 941), non-monetary coins (SITC 961), and gold bars (SITC 971). We further exclude uranium (SITC 286),
coal (SITC 32), petroleum (SITC 33), natural gas (SITC 341), and electrical current (SITC 351), which violate the Abowd et al. (2002)
requirement of connectedness for estimating identified exporter fixed effects in many years.

'SIn an earlier version of our paper, we estimated OLS gravity equations for four-digit SITC revision 2 products (682 industries).
PPML estimates at the four-digit level turn out to be quite noisy, owing to the many exporters in industries at this level of disaggregation
that ship goods to no more than a few importers. Consequently, we exclude data on four-digit industries from the analysis.
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Figure 1: Concentration of Exports

(1a) All exporters (1b) LDC exporters
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Source: WTF (Feenstra et al. 2005, updated through 2008) for 133 time-consistent industries in 90 countries from 1962-2007.
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countries (LDC) see the Supplementary Material (Section S.1).

3.1 Stable heavy tails in export advantage

We first characterize export behavior across industries for each country. For an initial take on the concentration
of exports in leading products, we tabulate the share of industry exports in a country’s total exports across the
133 industries X /(> _; Xjst) and then average these shares across the current and preceding two years.

In Figure 1a, we display median export shares across the 90 countries in our sample for the top export
industry as well as the top 3, top 7, and top 14 industries, which correspond to the top 1%, 2%, 5% and 10%
of products. For the typical country, a handful of industries dominate exports. The median export share of the
top export good is 24.6% in 1972, which declines modestly to 21.4% in 1982 and then remains stable around
this level for the next two-and-a-half decades. For the top 3 products, the median export share declines slightly
from the 1960s to the 1970s and then is stable from the early 1980s onward, averaging 43.5% for 1982 to 2007.
The median export shares of the top 7 and top 14 products display a similar pattern, averaging 63.1% and 78.6%,
respectively, for 1982 to 2007. Figure 1b, which limits the sample to less developed countries, reveals similar
patterns, though median export shares of top products are somewhat higher.!”

An obvious concern about using export shares to measure export concentration is that these values may be
distorted by demand conditions. Exports in some industries may be large simply because these industries capture

a relatively large share of global expenditure, leading the same industries, such as automobiles or electronics, to

17See the Supplementary Material (Section S.1) for the set of countries. In analyses of developing-country trade, Easterly and Reshef
(2010) document the tendency of a small number of destination markets to dominate national exports by industry and Freund and Pierola
(2013) describe the prominent export role of a country’s largest firms.
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be the top exporter in many countries. Similarly, a country’s geographic proximity to major consumer markets
may contribute to its apparent export success beyond its inherit capability. To control for variation in industry
size and geographic proximity that affect trade volumes beyond a country-industry’s export capability, we turn to
our measure of absolute advantage in (7) expressed in logs as In A;;.'8

Figure 2 depicts the full distribution of absolute advantage across industries for 12 countries in 2007. Here,
we plot the log number of industries for exporter s that have at least a given level of absolute advantage in year
t against the corresponding log level of industry absolute advantage In A;s;. By design, the plot characterizes
the cumulative distribution of absolute advantage by country and by year (Axtell 2001, Luttmer 2007). Plots
for 28 countries in 1967, 1987 and 2007 are shown in Appendix Figures A1, A2 and A3. While the lower
cutoff for absolute advantage shifts right over time, the shape of the cross sectional CDF is remarkably stable
across countries and years. This shape stability of the cross-sectional absolute advantage distribution suggests
that comparative advantage is trend stationary, a robust feature that we will revisit under varying perspectives.

The figures also graph the fit of absolute advantage to a Pareto distribution and to a log normal distribution
using maximum likelihood, where each distribution is fit separately for each country in each year. The Pareto and
the log normal are common choices in the literatures on the distribution of city and firm sizes (Sutton 1997). For
the Pareto distribution, the cumulative distribution plot is linear in the logs, whereas the log normal distribution
generates a relationship that is concave to the origin.

The cumulative distribution plots clarify that the empirical distribution of absolute advantage is not Pareto.
The log normal, in contrast, fits the data closely. The concavity of the cumulative distribution plots drawn
for the data indicate that gains in absolute advantage fall off progressively more rapidly as one moves up the
rank order of absolute advantage, a feature absent from the scale-invariant Pareto but characteristic of the log
normal. Consistent with Figure 1, the upper tails of the distribution are heavy. Across all countries and years,
the ratio of the mean to the median is 11.1 for absolute advantage based on our baseline OLS estimates of export
capability, 23.5 for absolute advantage based on PPML estimates, and 1.2 for the Balassa RCA index, which
further standardizes absolute advantage to comparative advantage.'® Though the log normal approximates the

shape of the distribution for absolute advantage well, there are certain discrepancies between the fitted log normal

18In the Supplementary Material (Table S1), we show the top two products in terms of In A;.; for select countries and years. To remove
the effect of national market size and make values comparable across countries, we normalize log absolute advantage by its country mean,
which produces a double log difference—a country-industry’s log deviation from the global industry mean less the country-wide average
across all industries—and captures comparative advantage. The magnitudes of export advantage are enormous. In 2007, comparative
advantage in the top product is over 300 log points in 88 of the 90 exporting countries. To verify that our measure of export advantage
does not peg obscure industries as top sectors, in the Supplementary Material (Figure S1) we plot In A;,; against the log of the share of
the industry in national exports In(Xis:/(3_; Xjst)). In all years, there is a strongly positive correlation between log absolute advantage
and the log industry share of national exports (0.77 in 1967, 0.78 in 1987, and 0.83 in 2007).

To compute the reported mean-median ratios, we omit outliers consistent with later estimation and weight by sector counts within
country-years.
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Figure 2:

Cumulative Probability Distribution of Absolute Advantage for Select Countries in 2007
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Source: WTF (Feenstra et al. 2005, updated through 2008) for 133 time-consistent industries in 90 countries in 2005-2007 and CEPIIL.org;
three-year means of OLS gravity measures of export capability (log absolute advantage) k = In A from (6).

Note: The graphs show the frequency of industries (the cumulative probability 1 — Fa(a) times the total number of industries I = 133)
on the vertical axis plotted against the level of absolute advantage a (such that A;s; > a) on the horizontal axis. Both axes have a log
scale. The fitted Pareto and log normal distributions are based on maximum likelihood estimation by country s in year ¢ = 2007 (Pareto
fit to upper five percentiles only).
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Figure 3: Percentiles of Comparative Advantage Distributions by Year
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Note: We obtain log comparative advantage as the residuals from OLS projections on industry-year and source country-year effects (J;:
and ds¢) for (a) OLS gravity measures of log absolute advantage In A;s: and (b) the log Balassa index of revealed comparative advantage

InRCA;s¢ = ln(Xist/ Zg XKt)/(Z] XjSt/ Zj Zg ngt)'

plots and the raw data plots. For some countries, the number of industries in the upper tail drops too fast (is more
concave), relative to what the log normal distribution predicts. These discrepancies motivate our specification of
a generalized logistic diffusion for absolute advantage in Section 4.

To verify that our findings are not the byproduct of failing to control for zero bilateral trade in the gravity
estimation, we also show plots based on PPML estimates of export capability, with similar results. To verify that
the graphed cross-section distributions are not a byproduct of specification error in estimating the gravity model,
we repeat the plots using the Balassa RCA index in 1987 and 2007, again with similar results. And to verify
that the patterns we uncover are not a consequence of arbitrary industry aggregation, we construct plots at the
three-digit level based on SITC revision 2 data in 1987 and 2007, yet again with similar results.?’

Figures A1, A2 and A3 in the Appendix provide visual evidence that the heavy tails of the distribution of
absolute advantage for individual countries are stable over time. To substantiate this property of the data, we
pool industry-level measures of comparative advantage across countries and plot the percentiles of this global
distribution in each year, as shown in Figure 3 for OLS-based measures of export capability and for Balassa
RCA indexes.?! The plots for the 5th/95th, 20th/80th, 30th/70th, and 45th/55th percentiles are, with minor

fluctuation, parallel to the horizontal axis. This is a strong indication that the global distribution of comparative

2Each of these additional sets of results is available in the Supplementary Material: Figures S2 and S3 for the PPML estimates,
Figures S4 and S5 for the Balassa measure, and Figures S6, S7, S8 and S9 for the two- and three-digit industry definitions under SITC
revision 2.

2I'The Supplementary Material (Figure S10) shows percentile plots for PPML-based measures of export capability.
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advantage is stationary. If it were the case that comparative advantage was degenerate, the percentile lines would
slope downward from above the mean and upward from below the mean, as the distribution became increasingly
compressed over time, a pattern clearly not in evidence. If, instead, the distribution of comparative advantage
was non-stationary, we would see the upper percentile lines drifting upward and the lower percentile lines drifting
downward. There is mild drift only in the extreme tails of the distribution, the 1°* and 99" percentiles, and there
only during the early 2000s, a pattern which stalls or reverses after 2005.

Before examining the time series of export advantage in more detail, we consider whether a log normal distri-
bution of absolute advantage could be an incidental consequence of the gravity estimation. The exporter-industry
fixed effects are estimated sample parameters, which by the Central Limit Theorem converge to being normally
distributed around their respective population parameters as the sample size becomes large. However, normality
of this log export capability estimator does not imply that the cross-sectional distribution of absolute advantage
becomes log normal. If no other element but the residual noise from gravity estimation generated log normality
in absolute advantage, then the cross-sectional distribution of absolute advantage between industries in a country
would be degenerate around a single mean. The data are clearly in favor of non-degeneracy for the distribution
of absolute advantage. Figure 2 and its counterparts (Figures A1, A2 and A3 in the Appendix) document that
industries within a country differ markedly in terms of their mean export capability. The distribution of Balassa
revealed comparative advantage is also approximately log normal, which indicates that non-regression based

measures of comparative advantage elicit similar distributional patterns.

3.2 Churning in export advantage

The stable distribution plots of absolute advantage give an impression of little variability. The strong concavity
in the cross-sectional plots is present in all countries and in all years. Yet, this cross-sectional stability masks
considerable turnover in industry rankings of absolute advantage behind the cross-sectional distribution. Of the

7.22 Over

90 total exporters, 68 have a change in the top comparative-advantage industry between 1987 and 200
this period, Canada’s top good switches from sulfur to wheat, China’s from fireworks to telecommunications
equipment, Egypt’s from cotton to crude fertilizers, India’s from tea to precious stones, and Poland’s from barley
to furniture. Moreover, most new top products in 2007 were not the number one or two product in 1987 but came
from lower down the ranking. Churning thus appears to be both pervasive and disruptive.

To characterize turnover in industry export advantage, in Figure 4 we calculate the fraction of top products

in a given year that were also top products in the past. For each country in each year, we identify where in the

distribution the top 5% of absolute-advantage products (in terms of A;¢;) were 20 years before, with the categories

Z2Evidence of this churning is seen in the Supplementary Material (Table S1).
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Figure 4: Absolute Advantage Transition Probabilities
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Source: WTF (Feenstra et al. 2005, updated through 2008) for 133 time-consistent industries in 90 countries from 1962-2007; OLS
gravity measures of export capability (log absolute advantage) k = In A from (6).

Note: The graphs show the percentiles of products ¢s that are currently among the top 5% of products, 20 years earlier. The sample
is restricted to products (country-industries) ¢s with current absolute advantage A, in the top five percentiles (1 — Fa(Aise) > .05),
and then grouped by frequencies of percentiles twenty years prior, where the past percentile is 1 — Fa(A;s,t—20) of the same product
(country-industry) ¢s. For the classification of less developed countries (LDC) see the Supplementary Material (Section S.1).

being top 5%, next 10%, next 25% or bottom 60%. We then average across outcomes for the 90 export countries.
The fraction of top 5% products in a given year that were also top 5% products two decades earlier ranges from a
high of 42.9% in 2002 to a low of 36.7% in 1997. Averaging over all years, the share is 40.2%, indicating a 60%
chance that a good in the top 5% in terms of absolute advantage today was not in the top 5% two decades before.
On average, 30.6% of new top products come from the 85th to 95th percentiles, 15.5% come from the 60th to
85th percentiles, and 11.9% come from the bottom six deciles. Outcomes are similar when we limit the sample
to developing economies.

Turnover in top export goods suggests that over time export advantage dissipates—countries’ strong sectors
weaken and their weak sectors strengthen—as would be consistent with mean reversion. We test for mean

reversion in export capability by specifying the following AR(1) process,

OLS OLS OLS

ist+10 — Kist. = Phist + 0it + st + Eis 410, (10)

LOLS

where £

is the OLS estimate of log export capability from gravity equation (6). In (10), the dependent variable
is the ten-year change in export capability and the predictors are the initial value of export capability and dummies
for the industry-year J;; and for the country-year ds;. We choose a long time difference for export capability—a

full decade—to help isolate systematic variation in country export advantages. Controlling for industry-year
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fixed effects converts export capability into a measure of absolute advantage; controlling further for country-year
fixed effects allows us to evaluate the dynamics of comparative advantage. The coefficient p captures the fraction
of comparative advantage that decays over ten years. The specification in (10) is similar to the productivity
convergence regressions reported in Levchenko and Zhang (2013), except that we use trade data to calculate
country advantage in an industry, examine industries at a considerably more disaggregate level, and include both

J;OLS

manufacturing and nonmanufacturing sectors in the analysis. Because we estimate log export capability k;);

from the first-stage gravity estimation in (6), we need to correct the standard errors in (10) for the presence of
generated variables. To do so, we apply a generated-variable correction discussed in Appendix D.??

Table 1 presents coefficient estimates for equation (10). The first three columns report results for log export
capability based on OLS, the next three for log export capability based on PPML, and the final three for the
log Balassa RCA index. Estimates for p are uniformly negative and precisely estimated, consistent with mean
reversion in export advantage. We soundly reject the hypothesis that there is no decay (Hp: p = 0) and also the
hypothesis that there is instantaneous dissipation (Hg: p = —1). Estimates for the full sample of countries and
industries in columns 1, 4, and 7 are similar in value, equal to —0.35 when using OLS log export capability, —0.32
when using PPML log export capability, and —0.30 when using log RCA. These magnitudes indicate that over
the period of a decade the typical country-industry sees approximately one-third of its comparative advantage
(or disadvantage) erode. In columns 2, 5, and 8, we present comparable results for the subsample of developing
countries. Decay rates for this group are larger than the worldwide averages in columns 1, 4, and 7, indicating
that in less-developed economies mean reversion in comparative advantage is more rapid. In columns 3, 6, and
9, we present results for nonmanufacturing industries (agriculture, mining, and other primary commodities). For
PPML export capability and Balassa RCA, decay rates for the nonmanufacturing sector are similar to those for
the full sample of industries.

As an additional robustness check, we re-estimate (10) for the period 1984-2007 using data from the SITC
revision 2 sample, reported in Appendix Table A1l. Estimated decay rates are comparable to those in Table 1. At
either the two-digit level (60 industries) or three-digit level (224 industries), the decay-rate estimates based on
PPML export capability and RCA indexes are similar to those for the baseline combined two- and three-digit level
(133 industries), with estimates based on OLS export capability being somewhat more variable. Because these
additional samples use data for the 1984-2007 period and the original sample uses the full 1962-2007 period,
these results also serve as a robustness check on the stability in coefficient estimates over time.

Our finding that decay rates imply incomplete mean reversion is further evidence against absolute advantage

being incidental. Suppose that the cumulative distribution plots of log absolute advantage reflected random varia-

BThis correction is for GMM. For a discussion of the OLS correction as a special case of the GMM correction, see the Supplementary
Material (Section S.2).
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tion in export capability around a common expected value for each country in each year due, say, to measurement
error in trade data. If this measurement error were classical, all within-country variation in the exporter-industry
fixed effects would be the result of iid disturbances that were uncorrelated across time. We would then observe no
temporal connection between these distributions. When estimating the decay regression in (10), mean reversion
would be complete, yielding a value of p close to —1. The coefficient estimates are inconsistent with such a

pattern.

3.3 Comparative advantage as a stochastic process

On its own, reversion to the mean in log export capability is uninformative about the dynamics of its distribu-
tion.”* While mean reversion is consistent with a stationary cross-sectional distribution, it is also consistent with
a non-ergodic distribution or a degenerate comparative advantage that collapses at a long-term mean of one (log
comparative advantage of zero). Degeneracy in comparative advantage is the interpretation that Levchenko and
Zhang (2013) give to their finding of cross-country convergence in industry productivities. Yet, the combination
of mean reversion in Table 1 and temporal stability of the cumulative distribution plots in Figure 2 is suggestive
of a balance between random innovations to export capability and the dissipation of these capabilities. Such
balance is characteristic of a stochastic process that generates a stationary cross-section distribution.>

To explore the dynamics of comparative advantage, we limit ourselves to the family of stochastic processes
known as diffusions. Diffusions are Markov processes for which all realizations of the random variable are con-
tinuous functions of time and past realizations. We exploit the fact that the decay regression in (10) is consistent
with the discretized version of a commonly studied diffusion, the Ornstein-Uhlenbeck (OU) process. Consider
log comparative advantage In Ay (t)—export capability normalized by industry-year and country-year means.

Suppose that, when expressed in continuous time, comparative advantage flis(t) follows an OU process given by

2

dlIn As(t) = _%m,&is(t) dt + o dWi (1), (11)

where VV;?(t) is a Wiener process that induces stochastic innovations in comparative advantage.?® The parameter

2See, e.g., Quah’s (1993, 1996) critique of using cross-country regressions to test for convergence in rates of economic growth.

BThe underlying perpetual mean reversion of capability, and largely sector-invariant stochastic innovation, sit oddly with the notion
that capability evolution is directed, such as from current industries to more sophisticated industries with related inputs (as posited, e.g.,
by Hidalgo et al. 2007).

%To relate equation (11) to trade theory, our specification for the evolution of export advantage is analogous to the equation of motion
for a country’s stock of ideas in the dynamic EK model of Buera and Oberfield (2016). In their model, each producer in source country
s draws a productivity from a Pareto distribution, where this productivity combines multiplicatively with ideas learned from other firms,
either within the same country or in different countries. Learning—or exposure to ideas—occurs at an exogenous rate as(t) and the
transmissibility of ideas from one producer to another depends on the parameter 3, which captures the transmissibility of ideas between
producers. In equilibrium, the distribution of productivity across suppliers within a country is Fréchet, with location parameter equal
to a country’s current stock of ideas. The OU process in (11) emerges from the equation of motion for the stock of ideas in Buera and
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n regulates the rate at which comparative advantage reverts to its global long-run mean and the parameter o
scales time and therefore the Brownian innovations dI/VZé(t).27 Because comparative advantage reflects a double
normalization of export capability, it is natural to consider a global mean of zero for In flis(t). The OU case is
the unique non-degenerate Markov process that has a stationary normal distribution (Karlin and Taylor 1981).
An OU process of log comparative advantage In 121@-5(75) therefore implies that Ay (t) has a stationary log normal
distribution.

In (11), we refer to the parameter 7 as the rate of dissipation of comparative advantage because it contributes
to the speed with which In Ajs (t) would collapse to a degenerate level of zero if there were no stochastic innova-
tions. The parametrization in (11) implies that 1 alone determines the shape of the stationary distribution, while
o is irrelevant for the cross section. Our parametrization treats 7 as a normalized rate of dissipation that measures
the “number” of one-standard deviation shocks that dissipate per unit of time. We refer to o as the intensity of
innovations. It plays a dual role: on the one hand, o governs volatility by scaling the Wiener innovations; on the
other hand the parameter helps regulate the speed at which time elapses in the deterministic part of the diffusion.

To connect the continuous-time OU process in (11) to our decay regression in (10), we use the fact that
the discrete-time process that results from sampling an OU process at a fixed time interval A is a Gaussian
first-order autoregressive process with autoregressive parameter exp{—nc2A/2} and innovation variance (1 —
exp{—no?A})/n (Ait-Sahalia et al. 2010, Example 13). Applying this insight to the first-difference equation

above, we obtain our decay regression:
kis(t + A) — kis(t) = phis(t) + 6i(t) 4 05(t) + €is(t, 1 +A), (12)
which implies for the reduced-form decay parameter that
p=—(1—exp{-no®A/2}) <0,

for the unobserved country fixed effect that 65(¢) = In Zs(t+A) — (1+p) In Z4(t), where Z(t) is an arbitrary
time-varying country-specific shock, and for the residual that e;5(¢,t+A) ~ N (0, (1 — exp{—no?A})/n).?

An OU process with p € (—1,0) generates a log normal stationary distribution in the cross section, with a shape

Oberfield (2016, equation (4)) as the limiting case with the transmissibility parameter 5 — 1, provided that the learning rate o (¢) is
subject to random shocks and producers in a country only learn from suppliers within the same country. In Section 6, we discuss how
equation (11) could be extended to allow for learning across national borders.

%" Among possible parameterizations of the OU process, we choose (11) because it is related to our later extension to a generalized
logistic diffusion and clarifies that the parameter o is irrelevant for the shape of the cross-sectional distribution. We deliberately specify
n and o to be invariant over time, industry and country and in section 5 explore the goodness of fit under this restriction.

ZFor theoretical consistency, we state the country fixed effect §5(¢) as a function of the shock Z(t), which we will formally define as
a country-wide stochastic trend in equation (14) below and then identify in subsequent GMM estimation.
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parameter of 1/ and a mean of zero.

The reduced-form decay coefficient p in (12) is a function both of the dissipation rate 7 and the intensity of
innovations ¢ and may differ across samples because either or both of those parameters vary. This distinction is
important because p may vary even if the shape of the distribution of comparative advantage does not change.?

From OLS estimation of (12), we can obtain estimates of 7 and ¢ using the solutions,

1—(1+p)°
n o= >
S
2 In(1+p)
o2 = i n(l+p) ~ (13)

where / is the estimated decay rate and 3 is the estimated variance of the decay regression residual.

Table 1 shows estimates of 1 and o implied by the decay regression results, with standard errors obtained
using the multivariate delta method.’® The estimate of 7 based on OLS export capability, at 0.28 in column 1
of Table 1, is larger than those based on PPML export capability, at 0.20 in column 4, or the log RCA index, at
0.22 in column 7, implying that the distribution of OLS export capability will be more concave to the origin. But
estimates generally indicate strong concavity, consistent with the visual evidence in Figure 2. To gain intuition
about 7, suppose the intensity of innovations of the Wiener process is unity (¢ = 1). Then a value of 7 equal to
0.28 means that it will take 5.0 years for half of the initial shock to log comparative advantage to dissipate (and
16.4 years for 90% of the initial shock to dissipate). Alternatively, if n equals 0.20 it will take 6.9 years for half
of the initial shock to decay (and 23.0 years for 90% of the initial shock to dissipate).’!

To see how the dissipation rate and the innovation intensity affect the reduced-form decay parameter p, we
compare 7) and o2 across subsamples. First, compare the estimate for p in the subsample of developing economies
in column 2 of Table 1 to that for the full sample of countries in column 1. The larger estimate of p in the former
sample (—0.45 in column 2 versus —0.35 in column 1) implies that reduced-form mean reversion is relatively
rapid in developing countries. However, this result is silent about how the shape of the distribution of comparative
advantage varies across nations. The absence of a statistically significant difference in the estimated dissipation
rate 1) between the developing-country sample (n = 0.29) and the full-country sample (7 = 0.28) indicates that

comparative advantage is similarly heavy-tailed in the two groups. The larger reduced-form decay rate p for

PThe estimated value of p is sensitive to the time interval A that we define in (12), whereas the estimated value of 7 is not. At shorter
time differences—for which there may be relatively more noise in export capability—the estimated magnitude of ¢ is larger and therefore
the reduced-form decay parameter p is as well. However, the estimated intrinsic speed of mean reversion 7 is unaffected. In unreported
results, we verify these insights by estimating the decay regression in (10) for time differences of 1, 5, 10, and 15 years.

3Details on the construction of standard errors for 7 and o> are available in the Supplementary Material (Section S.3).

3'In the absence of shocks and for o = 1, log comparative advantage follows the deterministic differential equation dIn Ais(t) =
—(n/2)1In A (t) dt by (16) and It5’s lemma, with the solution In A;5 () = In A, (0) exp{—(n/2)t}. Therefore, the number of years
for a dissipation of In A;(0) to a remaining level In A;s(T) is T = 2log[In A;5(0)/In A (T)] /7.
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developing countries results from their having a larger intensity of innovations (¢ = 0.64 in column 2 versus
o = 0.56 in column 1, where this difference is statistically significant). In other words, a one-standard-deviation
shock to comparative advantage in a developing country dissipates at roughly the same rate as in an industrialized
country. But because the magnitude of this shock is larger for the developing country, its observed rate of decay
will be faster (otherwise the country’s export capabilities would not have a stationary cross-sectional distribution).

Second, compare nonmanufacturing industries in column 3 to the full sample of industries in column 1.
Whereas the average nonmanufacturing industry differs from the average overall industry in the reduced-form
decay rate p (—0.45 in column 3 versus —0.35 in column 1), it shows no such difference in the estimated dissipa-
tion rate 7 (0.28 in column 1 versus 0.29 in column 3). This implies that comparative advantage has comparably
heavy tails among manufacturing and nonmanufacturing industries. However, the intensity of innovations o is
larger for nonmanufacturing industries (0.65 in column 3 versus 0.56 in column 1), due perhaps to higher output
volatility associated with resource discoveries. These nuances regarding the implied shape of and the convergence
speed toward the cross-sectional distribution of comparative advantage are undetectable when one considers the
reduced-form decay rate p alone.>

The diffusion model in (11) and its discrete-time analogue in (12) reveal a deep connection between heavy
tails in export advantage and churning in industry export ranks. Random innovations in absolute advantage cause
industries to alternate positions in the cross-sectional distribution of comparative advantage for a country at a rate
of innovation precisely fast enough so that the deterministic dissipation of absolute advantage creates a stable,
heavy-tailed distribution of export prowess. Having established the plausibility of comparative advantage as

following a stochastic process, we turn next to a more rigorous analysis of the properties of this process.

4 The Diffusion of Comparative Advantage

The OU process is but one of many that would yield a stationary distribution for comparative advantage that has
heavy tails. In this section, we stay within the family of diffusions but define a generalized logistic diffusion
for comparative advantage, which includes the OU process as a limiting case. The GLD that we specify below
allows us to test the OU process against well-defined alternatives, to evaluate the fit of the model to the data, and

to characterize the dynamic implications of the model, all of which we undertake in Section 5.

32 Appendix Table A1 shows results for two- and three-digit industries for the subperiod 1984-2007. Whereas reduced-form decay rates
p increase in magnitude as one goes from the two- to the three-digit level, dissipation rates 7 remain stable. The difference in reduced-
form decay rates p is driven by a higher intensity of innovations ¢ among the more narrowly defined three-digit industries. Intuitively,
the magnitude of shocks to comparative advantage is larger in the more disaggregated product groupings.
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4.1 Generalized logistic diffusion

In Figures A1 through A3 in the Appendix, which show the cumulative distributions from Figure 2 over time,
the cross-sectional distributions of absolute advantage shift rightward for each country over time, consistent with
the series being non-stationary. Yet, the cross-sectional distributions preserve their shape across periods, which
suggests that once we adjust absolute advantage for country-wide productivity growth, we obtain a stationary

series. We define this series to be generalized comparative advantage, written in continuous time as,

(14)

where A;;(t) is observed absolute advantage and Z(t) is an unobserved country-wide stochastic trend (an arbi-
trary country-specific shock to absolute advantage).’® The relationship between comparative and absolute advan-
tage in equation (14) highlights an important difference between economy-wide growth, reflected in a country’s
mean absolute advantage, and trade specialization, reflected in comparative advantage. The time-varying country-
specific shock Z,(t) may exhibit systematic covariation with specific industries’ absolute advantages A;s(t) but
will be inconsequential for the stochastic evolution of comparative advantage. We specify that comparative ad-
vantage in (14) follows a generalized logistic diffusion (GLD).

We provide a formal derivation of the GLD and its stationary distribution in Appendix A. The stationary
distribution of the GLD is the generalized gamma, which unifies the gamma and extreme-value distributions, as
well as many others (Crooks 2010), and has the log normal, the Pareto, and other commonly used distributions
as special or limiting cases. To motivate our choice of the GLD, and hence of the generalized gamma as the
cross-sectional distribution for comparative advantage, consider the graphs in Figure 2 (as well as Figures A1
through A3 in the Appendix). These figures are broadly consistent with comparative advantage being log normal.
But they also indicate that for many countries the number of industries drops off more quickly or more slowly in
the upper tail than the log normal distribution can capture. The generalized gamma distribution accommodates
such kurtosis.**

Formally, in a cross section of the data after arbitrarily much time has passed, the generalized gamma proba-

bility density function for a realization a;s of the random variable comparative advantage Ay is given by:

dis ol dis ¢ ~
~ expl — | —= for a;s > 0, (15)

- 1
fﬁ(&zs‘ga K,y ¢) = m

3This measure satisfies the properties of comparative advantage in (5), which compares country and industry pairs.

3*Our implementation of the generalized gamma uses three parameters, as in Stacy (1962). In their analysis of the firm size distribution
by age, Cabral and Mata (2003) also use a version of the generalized gamma distribution with a support bounded below by zero and
document a good fit.

é
o1\ 6
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where T'(-) denotes the gamma function and (0, «, ¢) are real parameters with 6, > 0.3 The generalized
gamma nests the ordinary gamma distribution for ¢ = 1 and the log normal or Pareto distributions when ¢ tends
to zero.3® For real parameters (1), o, ¢), the generalized logistic diffusion,

dA;s(t) o2 Ais(t)? —1

S T | g 2T g 4 s dWAR 16
() 5 n 5 + o dWi(t), (16)

has a stationary distribution that is generalized gamma with a probability density f ;(ds 0, K, ¢) given by (15)

and the real parameters

0= (d)2/77)1/¢ >0 and k=1/6%>0.

A non-degenerate stationary distribution exists only if 7 > 0.3” The variable Wi‘;i(t) is the Wiener process. The
GLD nests the OU process as ¢ — 0 (with 7 finite).

The term (02/2)[1 — n{A;s(t)® — 1}/¢] in (16) is a deterministic drift that regulates the relative change
in comparative advantage dA;,(t)/A;s(t). It involves both constant parameters (1), o, ¢) and a level-dependent
component Ais(t)¢, where ¢ is the elasticity of the mean reversion with respect to the current level of absolute
advantage. We call ¢ the elasticity of decay. For the OU process (¢ — 0), the relative change in absolute
advantage is neutral with respect to the current level. If ¢ > 0, then the level-dependent drift component Ay (t)?
leads to a faster than neutral mean reversion from above than from below the mean, indicating that the loss
of absolute advantage in a currently strong industry tends to occur more rapidly than the buildup of absolute
disadvantage in a currently weak industry. Conversely, if ¢ < 0 then mean reversion tends to occur more slowly
from above than below the long-run mean.

The parameters n and o in (16) inherit their interpretations from the OU process in (11) as the rate of dis-
sipation and the intensity of innovations. Under the GLD, the dissipation rate n and decay elasticity ¢ jointly
determine the heavy tail of the cross-sectional distribution of comparative advantage, with the intensity of innova-

tions o regulating the speed of convergence to this distribution but having no effect on its shape. For subsequent

3We do not restrict ¢ to be strictly positive (as do e.g. Kotz et al. 1994, ch. 17). We allow ¢ to take any real value (see Crooks
2010), including a strictly negative ¢ for a generalized inverse gamma distribution. Crooks (2010) shows that this generalized gamma
distribution (Amoroso distribution) nests the Fréchet, Weibull, gamma, inverse gamma and numerous other distributions as special cases
and yields the normal, log normal and Pareto distributions as limiting cases.

¥ As ¢ goes to zero, it depends on the limiting behavior of £ whether a log normal distribution or a Pareto distribution results (Crooks
2010, Table 1). The parameter restriction ¢ = 1 clarifies that the generalized gamma distribution results when one takes an ordinary
gamma distributed variable and raises it to a finite power 1/¢.

"In the estimation, we will impose the constraint that 7 > 0. If ) were negative, comparative advantage would collapse over time for
¢ < 0 or explode for > 0. We do not constrain 7 to be finite.
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derivations, it is convenient to restate the GLD (16) more compactly in terms of log changes as,

. 2 A (1) _ )
dIn Ay (t) = —77;“4”(21 dt + o dWA (1), (17)

which follows from (16) by It5’s lemma.8

4.2 The cross-sectional distributions of comparative and absolute advantage

Absolute advantage, defined as in (3), is measurable by exporter-sector-year fixed effects estimated from the
gravity model in (6). In contrast, generalized comparative advantage, as defined in (14), has an unobserved
country-specific stochastic trend Zs(¢), and lacks a direct empirical counterpart. We therefore need to identify
Zs(t) in estimation. Intuitively, identification of the country-level shocks Z(t) is possible because we can
observe the evolving position of the cumulative absolute advantage distribution over time and, as we now show,
the evolving position is the only difference between the cumulative distributions of absolute and comparative
advantage.

The stationary distribution of absolute advantage is closely related to that of comparative advantage under
the maintained assumption that comparative advantage Ajs (t) follows a generalized logistic diffusion given by
(16). As stated before, the GLD of comparative advantage implies that the stationary distribution of comparative

advantage A;,(t) is generalized gamma with the CDF

. 5o\ ¢
FA(dlS‘97¢7’{):G (é) R

where G[z; k] = 7,(k; x)/T'(k) is the ratio of the lower incomplete gamma function and the gamma function. As
we show in Appendix A.3, then the cross-sectional distribution of absolute advantage A;s(¢) is also generalized

gamma but with the CDF

Fa(ais|0s(t), 6, 5) = G (;:Z))(b;fﬁ

for the strictly positive parameters

0= (62/m)"", 0.(t)=02Z,t) and r=1/6°.

3Returning to the connection between our estimation and the dynamic EK model in Buera and Oberfield (2016)—also see footnotes 9
and 26—the specification in (16) is equivalent to their equation of motion for the stock of ideas (Buera and Oberfield 2016, equation (4))
under the assumptions that producers only learn from suppliers within their national borders and the learning rate o (¢) is constantly
growing across industries, countries, and over time but subject to idiosyncratic shocks. The parameter ¢ in (16) is equivalent to the value
B — 1 in their model, where (3 captures the transmissibility of ideas between producers. Our finding, discussed in Section 5, that ¢ is
small and negative implies that the value of 3 in the Buera and Oberfield (2016) model is large (but just below 1, as they require).
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These cumulative distribution functions follow from Kotz et al. (1994, Ch. 17, Section 8.7).

The two cross sectional distributions of comparative and absolute advantage differ only in the scale parameter.
For comparative advantage, the scale parameter § is time invariant. For absolute advantage, the scale parameter
0,(t) = 0Z,(t) is time varying (and potentially stochastic) but country specific (industry invariant). Empirically,
0s(t) typically increases over time so that, visually, the plotted cumulative distributions of absolute advantage
shift rightward over time (as can bee seen from a comparison of the cumulative distribution plots for 1967, 1987
and 2007 in Appendix Figures A1, A2 and A3).

This connection between the cumulative distributions of absolute and comparative advantage allows us to
estimate a GLD for generalized comparative advantage based on data for absolute advantage alone. The mean of
the log of the distribution of absolute advantage can be calculated explicitly as a function of the model parameters,
enabling us to identify the trend from the relation that E[In A;s (t)] = Egt[ln A;5(t)]—In Z4(t), which follows by
definition (14).>° As we show in Appendix B, if comparative advantage Ais(t) follows the generalized logistic
diffusion (16), then the country specific stochastic trend Zs(¢) can be identified from the first moment of the

logarithm of absolute advantage as:

(18)

Z(t) = exp {Est In Ay (£)] — In(¢%/n) +T"(n/¢?) /T (n/¢?) }

¢

where (k) /T'(k) is the digamma function. We obtain detrended comparative advantage measures based on the

sample analog of equation (18):

A~

! /
Ais(t) =exp ¢ In A;5(t) — %Zln Ajs(t) + 1n(<;52/77) +T (”/¢2)/P(77/¢2)
j=1

¢

19)

This result allows us to estimate the GLD of comparative advantage A;(¢) using absolute advantage data A;(t).

4.3 A GMM estimator

The generalized logistic diffusion model (16) has no known closed-form transition density when ¢ # 0. We
therefore cannot evaluate the likelihood of the observed data and cannot perform maximum likelihood estimation.
However, an attractive feature of the GLD is that it can be transformed into a stochastic process that belongs to the
Pearson-Wong family, for which closed-form solutions of the conditional moments do exist.*’ As documented

in detail in Appendix C, we construct a consistent GMM estimator based on the conditional moments of a

¥ The expectations operator E;[-] denotes the conditional expectation for source country s at time .
“Opearson (1895) first studied the family of distributions now called Pearson distributions. Wong (1964) showed that the Pearson
distributions are stationary distributions of a specific class of stochastic processes, for which conditional moments exist in closed form.

26



transformation of comparative advantage, using results from Forman and Sgrensen (2008).
Formally, if comparative advantage Ajs (t) follows the generalized logistic diffusion (16) with real parameters

n,0,¢ (n > 0), then the transformed variable
Bis(t) = [Ais(t)™% — 1] /¢ (20)

follows the diffusion

A 0'2

dBis(t) = =% (1= 6%) Buslt) — o] at + o\ 2 Bia(0)? + 20Bi(1) + 1 aWE (1)

and belongs to the Pearson-Wong family (see Appendix C.1 for the derivation). As elaborated in Appendix C.2,
it is then possible to recursively derive the n-th conditional moment of the transformed process Bis(t) and to
calculate a closed form for the conditional moments of the transformed process at time ¢, conditional on the
information set at time ¢-_;. If we use these conditional moments to forecast the m-th power of Bis (t;) with
time ¢-_1 information, the resulting forecast errors are uncorrelated with any function of past Eis(tT,l). We can

therefore construct a GMM criterion for estimation. Denote the forecast error with
Uis(m7 tr—1, t‘r) = Bis(tﬂ')m —-E [Bis(tr)m ‘Bis(tTfl)} .

This random variable represents an unpredictable innovation in the m-th power of Bis(tT). As a result, the
forecast error U;s(m, t-_1,t;) is uncorrelated with any measurable transformation of Bis (tr—1).

A GMM criterion function based on these forecast errors is

giS‘r(na g, QZ)) = [hl (Bis(t‘l’fl))Uis(la tr—1, tT)v ceey hM(Bis(tffl))Uis(Ma tr1, tT)],a

where each h,, is a row vector of measurable functions specifying instruments for the m-th moment condition.
This criterion function has mean zero due to the orthogonality between the forecast errors and the time ¢,
instruments. Implementing GMM requires a choice of instruments. Computational considerations lead us to
choose polynomial vector instruments of the form hy,(Bis(t)) = (1, Bis(t), ..., Bis(t) ') to construct K
instruments for each of the M moments that we include in our GMM criterion.*! In the estimation, we use K = 2

instruments and M = 2 conditional moments, providing us with K - M = 4 equations and overidentifying the

*'We work with a suboptimal estimator because the optimal-instrument GMM estimator considered by Forman and Sgrensen (2008)
requires the inversion of a matrix for each observation. Given our large sample, this task is numerically expensive. Also, we found local
minima in our GMM criterion. At the cost of additional computation, we use a global optimization algorithm to find our estimates of ¢,
7, and 2. Specifically, we use Matlab’s Genetic Algorithm included in the Global Optimization Toolbox. These computational concerns
lead us to sacrifice efficiency and use suboptimal instruments.
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three parameters (7, o, ¢). Appendix C.3 gives further details on our GMM routine.

Standard errors of our estimates need to account for the preceding estimation of our absolute advantage
In A;s(t) measures. Newey and McFadden (1994) present a two-step estimation method for GMM, which ac-
counts for the presence of generated (second-stage) variables that are predicted (from a first stage). However,
our absolute advantage In A;,(t) measures are not predicted variables but parameter estimates from a gravity
equation: In A;4(t) is a normalized version of the estimated exporter-sector-year fixed effect in equations (6)
and (8). Whereas the Newey-McFadden results require a constant number of first-stage parameters, the number
of parameters we estimate in our first stage increases with our first-stage sample size. Moreover, the moments in
GMM time series estimation here (just as the variables in OLS decay estimation in Section 3.2 above) involve
pairs of parameter estimates from different points in time—In A;s(¢) and In A;5(t + A)—and thus require ad-
ditional treatments of induced covariation in the estimation. In Appendix D, we extend Newey and McFadden
(1994) to our specific finite-sample context, which leads to an alternative two-step estimation method that we
employ for the computation of standard errors. We use the multivariate delta method to calculate standard errors

for transformed functions of the estimated parameters.

5 Estimates

Following the GMM procedure described in Section 4.3, we estimate the dissipation rate 7, innovation intensity
o, and decay elasticity ¢ in the diffusion of comparative advantage, subject to an estimated country-specific
stochastic trend Zs(t). The trend allows absolute advantage to be non-stationary but, because it is common to
all industries in a country, the trend has no bearing on comparative advantage. Estimating the GLD permits us
to test the strong distributional assumptions implicit in the OLS estimation of the discretized OU process and to

evaluate the fit of the model, with or without the OU restrictions applied.

5.1 GMM results for the Generalized Logistic Diffusion

Table 2 presents our baseline GMM estimation results using moments on five-year intervals. We move to a five-
year horizon, from the ten-year horizon in the OLS decay regressions in Table 1, to allow for a more complete
description of the time-series dynamics of comparative advantage. For robustness, we also report GMM results
using moments on ten-year intervals (see the Supplementary Material, Table S3). Similar to the OLS decay
regressions, we use measures of export advantage based on OLS gravity estimates of export capability, PPML
gravity estimates of export capability, and the Balassa RCA index.

The key distinction between the OU process in (11) and the GLD in (17) is the presence of the decay elasticity
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¢, which allows for asymmetry in mean reversion from above versus below the mean. The sign of ¢ captures the
nature of this asymmetry. Using OLS gravity estimates of comparative advantage (columns 1 to 3 in Table 2), the
GMM estimate of ¢ is negative and statistically significant. Negativity in ¢ implies that comparative advantage
reverts to the long-run mean more slowly from above than from below. Industries that randomly churn into the
upper tail of the cross section will tend to retain their comparative advantage for longer than those below the
mean, affording high-advantage industries with opportunities to reach higher levels of comparative advantage as
additional innovations arrive. Thus, for OLS gravity estimates of comparative advantage we reject log normality
in favor of the generalized gamma distribution.

The rejection of log normality, however, is not robust across measures of comparative advantage. In Table 2,
using PPML gravity estimates of comparative advantage (columns 4 to 6) or the Balassa RCA index (columns 7
to 9) produces GMM estimates of ¢ that are statistically insignificant and small in magnitude.** These results are
an initial indication that imposing log normality on comparative advantage may not be a grave abuse of reality. A
second indication that imposing log normality may not be unwarranted is that GMM estimates of the dissipation
rate 77 for the GLD in Table 2 are similar to those derived from the OLS decay regression in Table 1. In both sets
of results, the dissipation rate 7 takes a value of about one-quarter for OLS gravity comparative advantage, about
one-sixth for PPML gravity comparative advantage, and about one-fifth for the Balassa RCA index.

To make precise comparisons of parameter estimates under alternative distribution assumptions for compar-
ative advantage, in Table 3 we report GMM results (for OLS gravity estimates of comparative advantage) with
and without imposing the restriction that ¢ = 0. Without this restriction (columns 1, 3, 5 and 7), we allow com-
parative advantage to have a generalized gamma distribution; with this restriction (columns 2, 4, 6, and 8), we
impose log normality. Estimates for the dissipation rate 7 and the innovation intensity ¢ are nearly identical in
each pair of columns. This parameter stability implies that the special case of the OU process captures the broad
persistence and overall variability of comparative advantage. Because the decay elasticity ¢ also determines the
shape of the stationary distribution of the GLD, two processes that have identical values of n but distinct val-
ues of ¢ will differ in the shape of their generalized gamma distributions. We see in Table 3 that the implied
mean/median ratios are modestly higher for columns where ¢ is unrestricted (and found to be small and negative)
versus columns in which ¢ is set to zero. The estimated mean-median ratio increases from 6.2 — 7.0 under the
constrained estimation of the OU process to 8.2 — 8.3 under the unconstrained case. The extension to a GLD
thus appears to help explain the export concentration in the upper tail documented in Section 3.1.

Table 3 also allows us to see the impact on the GMM parameter estimates of altering the time interval on

which moment conditions are based. Columns 7 and 8 show results for moments on ten-year intervals, which

#2As shown in Appendix Table A2, we obtain similar results for the 1984 to 2007 period when we use two- or three-digit SITC revision
2 industries, thus establishing the robustness of the GMM results under alternative industry aggregation.
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compare to the preceding columns whose results are for moments on five-year intervals.*> Whereas estimates
for the dissipation rate 7 are nearly identical for the two time horizons, estimates for the innovation intensity o
become smaller when we move from five-year to ten-year intervals. Similar to attenuation bias driving estimates
of persistence to zero in auto-regression models, measurement error appears to deliver larger values of ¢ at shorter

horizons.**

5.2 Model fit I: Matching dynamic transition probabilities

We next evaluate the dynamic performance of the model by assessing how well the GLD replicates the churning
of export industries observed in the data. Using estimates based on the five-year horizon from column 1 in
Table 2, we simulate trajectories of the GLD. In the simulations, we predict the model’s transition probabilities
over the one-year horizon across percentiles of the cross-section distribution. We deliberately use a shorter time
horizon for the simulation than the five-year horizon used for estimation to assess moments that we did not target
in the GMM routine. We then compare the model-based predictions to the empirical transition probabilities at
the one-year horizon.

Figure 5 shows empirical and model-predicted conditional cumulative distribution functions for annual tran-
sitions of comparative advantage. We pick select percentiles in the start year: the 10th and 25th percentile, the
median, the 75th, 90th and 95th percentile. The left-most upper panel in Figure 5, for example, considers indus-
tries that were at the 10th percentile of the cross-section distribution of comparative advantage in the start year;
panel Figure Sc shows industries that were at the median of the distribution in the start year. Each curve in a
panel then plots the conditional CDF for the transitions from the given percentile in the start year to any percentile
of the cross section one year later. By design, data that are re-sampled under an iid distribution would show up
at a 45-degree line, while complete persistence of comparative advantage would make the CDF a step function.
To characterize the data, we use three windows of annual transitions: the mean annual transitions during the
years 1964-67 around the beginning of our sample period, the mean annual transitions during the years 1984-87
around the middle of our sample, and the mean annual transitions during the years 2004-07 towards the end of
the sample. These transitions are shown in gray. Our GLD estimation constrains parameters to be constant over
time, so the model predicted transition probabilities give rise to a time-invariant CDF shown in blue.

The five-year GLD performs well in capturing the annual dynamics of comparative advantage for most in-
dustries. As Figure 5 shows, the model-predicted conditional CDF’s tightly fit their empirical counterparts for

industries at the median and higher percentiles in the start year. It is only in the lower tail, in particular around

“The Supplementary Material (Table S$3) presents GMM results for moments on ten-year intervals using PPML gravity estimates of
comparative advantage and the Balassa RCA index.
*In the limit when o becomes arbitrarily large, the GLD would exhibit no persistence, converging to an iid process.
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Figure 5: Diffusion Predicted Annual Transitions
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Source: WTF (Feenstra et al. 2005, updated through 2008) for 133 time-consistent industries in 90 countries from 1962-2007 and
CEPIlLorg; OLS gravity measures of export capability (log absolute advantage) k = In A from (6).

Note: Predicted cumulative distribution function of comparative advantage Ais,t+1 after one year, given the percentile (10th, 25th, me-

dian, 75th, 90th, 95th) of current comparative advantage /L-S,t. Predictions based on simulations using estimates from Table 2 (column 1).
Observed cumulative distribution function from mean annual transitions during the periods 1964-1967, 1984-1987, and 2004-2007.

the 10th percentile, that the fit of the GLD model becomes less close, though the model predictions are more
comparable to the data in later than in earlier periods. Country-industries in the bottom tail have low trade vol-
umes, especially in the early sample period, meaning that estimates of the empirical transition probabilities in the
lower tail are not necessarily precisely estimated and may fluctuate more over time. Figure 5 indicates that the
dynamic fit becomes relatively close for percentiles at around the 25th percentile. The discrepancies in the lowest
tail notwithstanding, for industries with moderate to high trade values, which account for the bulk of global trade,
the model succeeds in matching empirical transition probabilities.

The dynamic transition probabilities implied by the GLD also allow us to assess how well a simple Ornstein-
Uhlenbeck process approximates trade dynamics. In a statistical horse race between the unconstrained GLD and
the OU process, the former wins—at least for OLS gravity estimates of comparative advantage—because we
reject that ¢ = 0 in Table 3, columns 1 to 3. Yet, estimating the unconstrained GLD is substantially more bur-
densome than estimating the simple discretized linear form of the OU process. For both empirical and theoretical
modeling, it is important to understand how much is lost by imposing the constraint that comparative advantage

has a stationary log normal distribution.
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Figure 6: Diffusion Predicted Annual Transitions, Constrained and Unconstrained ¢
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Source: WTF (Feenstra et al. 2005, updated through 2008) for 133 time-consistent industries in 90 countries from 1962-2007; OLS
gravity measures of export capability (log absolute advantage) k = In A from (6).

Note: Predicted cumulative distribution function of comparative advantage A;s 11 after one year, given the percentile (10th, 25th, me-

dian, 75th, 90th, 95th) of current comparative advantage Ais,t. Predictions based on simulations using estimates from Table 2 (column 1)
and Table 3 (column 2, ¢ = 0). Observed cumulative distribution function from mean annual transitions during the period 2006-2009.

Following Figure 5, we simulate trajectories of the GLD, once from estimates with ¢ unconstrained and
once from estimates with ¢ = 0, using coefficients from columns 1 and 2 in Table 3. The simulations predict
the theoretical transition probabilities over the one-year horizon across percentiles of the cross-section distri-
bution. Figure 6 shows the empirical cumulative distribution functions for annual transitions of comparative
advantage over the full sample period 1962-2007 (in gray) and compares the empirical distribution to the two
model-predicted cumulative distribution functions (light and dark blue), where the fit of the unconstrained GLD
model (dark blue) is the same as depicted in Figure 5 above. As in Figure 5, each panel in Figure 6 consid-
ers industries that were at a given percentile of the cross-section distribution of comparative advantage in the
start year. Each curve in a panel shows the conditional CDF for the transitions from the given percentile in the
start year to any percentile of the cross section one year later. For all start-year percentiles, the model-predicted
transitions hardly differ between the constrained specification (light blue) and the unconstrained specification
(dark blue). When alternating between the two models, the shapes of the model-predicted conditional CDF’s
are very similar, even in the upper tail. In the lower tail, where the GLD produces the least tight dynamic fit,

the constrained OU specification performs no worse than the unconstrained GLD. The simple OU process thus
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appears to approximate the empirical dynamics of trade in a manner that is close to indistinguishable from the

GLD extension.

5.3 Model fit II: Matching the empirical cross-section distribution

As a closing exercise, we evaluate the fit of our diffusion for comparative advantage by examining how well the
GMM parameter estimates describe the cross-sectional distribution of comparative advantage. We have given
the GMM estimator a heavy burden: to fit the export dynamics across 90 countries for 46 years using only three
time-invariant parameters (1), o, ¢), conditional on stochastic country-wide growth trends. Because the moments
we use in GMM estimation reflect the time-series behavior of country-industry exports, our estimator fits the
diffusion of comparative advantage but not its stationary cross-sectional distribution. We can therefore use the
stationary generalized gamma distribution implied by the GLD process to assess how well our model captures
the heavy tails of export advantage observed in the repeated cross-section data. For this comparison, we use the
benchmark estimates from Table 2 in column 1. We obtain similar results when we use results for ¢ constrained
to zero in column 2 of Table 3.

For each country in each year, we project the cross-sectional distribution of comparative advantage implied
by the parameters estimated from the diffusion and compare it to the empirical distribution. To implement this
validation exercise, we need a measure of flist in (14), the value of which depends on the unobserved country-
specific stochastic trend Z;. This trend accounts for the observed horizontal shifts in distribution of log absolute
advantage over time, which may result from country-wide technological progress, factor accumulation, or other
sources of aggregate growth. In the estimation, we concentrate out Zg; by (18), which allows us to estimate its
realization for each country in each year. Combining observed absolute advantage A;,; with the stochastic-trend
estimate allows us to compute realized values of comparative advantage Aigs.

To gauge the goodness of fit of our specification, we first plot our empirical measure of absolute advantage
A;st. To do so, following the earlier exercise in Figure 2, we rank order the data and plot for each country-
industry observation the level of absolute advantage (in log units) against the log number of industries with
absolute advantage greater than this value, which is equal to the log of one minus the empirical CDF. To obtain
the simulated distribution resulting from the parameter estimates, we plot the global diffusion’s implied stationary
distribution for the same series. The diffusion implied values are constructed, for each level of A, by evaluating
the log of one minus the predicted generalized gamma CDF at Aist = Ajst/Zs. The implied distribution thus
uses the global diffusion parameter estimates (to project the scale and shape of the CDF) as well as the identified
country-specific trend Z; (to project the position of the CDF).

Figure 7 compares plots of the actual data against the GLD-implied distributions for four countries in three

35



Figure 7: Diffusion Predicted and Observed Cumulative Probability Distributions of Absolute Advantage
for Select Countries in 1967, 1987 and 2007
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Source: WTF (Feenstra et al. 2005, updated through 2008) for 133 time-consistent industries in 90 countries from 1962-2007 and
CEPIlLorg; OLS gravity measures of export capability (log absolute advantage) k = In A from (6).

Note: The graphs show the observed and the predicted frequency of industries (the cumulative probability 1 — F4(a) times the total
number of industries I = 133) on the vertical axis plotted against the level of absolute advantage a (such that A;s; > a) on the horizontal
axis. Both axes have a log scale. The predicted frequencies are based on the GMM estimates of the comparative advantage diffusion (17)
in Table 2 (parameters 77 and ¢ in column 1) and the inferred country-specific stochastic trend component In Zs; from (18), which
horizontally shifts the distributions but does not affect their shape.
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years, 1967, 1987, 2007. Figures A4, AS and A6 in the Appendix present plots in these years for the 28 countries
that are also shown in Figures A1, A2 and A3.*> While Figures A1 through A3 depicted Pareto and log normal
maximum likelihood estimates of each individual country’s cross-sectional distribution by year (number of pa-
rameters estimated = number of countries X number of years), our exercise now is vastly more parsimonious and
based on a fit of the time-series evolution, not the observed cross sections. Figure 7 and Appendix Figures A4
through A6 show that the empirical distributions and the GLD-implied distributions have the same concave shape
and horizontally shifting position. Considering that the shape of the distribution effectively depends on only two
parameters for all country-industries and years, the GLD-predicted distributions are remarkably accurate. There
are important differences between the actual and predicted plots in only a few countries and a few years, includ-
ing China in 1987, Russia in 1987 and 2007, Taiwan in 1987, and Vietnam in 1987 and 2007. Three of these four
cases involve countries undergoing a transition away from central planning during the designated time period,
suggesting periods of economic disruption.

There are other, minor discrepancies between the empirical distributions and the GLD-implied distributions
that merit further attention. In 2007 in a handful of countries in East and Southeast Asia—China, Japan, Rep.
Korea, Malaysia, Taiwan, and Vietnam—the empirical distributions exhibit less concavity than the generalized
gamma distributions (or the log normal for that matter). These countries show more mass in the upper tail
of comparative advantage than they ought, implying that they excel in too many sectors, relative to the norm.
It remains to be investigated whether these differences in fit are associated with conditions in the countries
themselves or with the particular industries in which these countries tend to specialize.

The noticeable deviations for some countries in certain years notwithstanding, across countries and for the
full sample period the percentiles of the country-level distributions of comparative advantage are remarkably
stable for each of our three measures of comparative advantage. This stability suggests that there is a unifying
global and stationary distribution of comparative advantage. Our estimates of the GLD time series imply shape-
parameter values of a generalized gamma CDF, and those predicted shape parameters tightly fit the relevant

percentiles of the global comparative-advantage distribution.*®

6 Conclusion

The traditional Ricardian trade model has long presented a conundrum to economists. Although it offers a simple

and intuitive characterization of comparative advantage, it yields knife-edge predictions for country specialization

#Because the country-specific trend Zs; shifts the implied stationary distribution horizontally, we clarify fit by cutting the depicted
part of that single distribution at the lower and upper bounds of the specific country’s observed support in a given year.

*“The Supplementary Material (Figure S11) shows percentile plots for OLS- and PPML-based measures of export capability over time
and the fit of our according GLD estimates to those percentiles.
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patterns that fit the data poorly. Eaton and Kortum (2002) have reinvigorated the Ricardian framework. By
treating the capability of firms from a country in a sector as probabilistic rather than deterministic, they derive
realistically complex country specialization patterns and provide a robust framework for quantitative analysis.
The primitives in the EK model are the parameters of the distribution for industry productivity, which pin down
country export capabilities. Comparative advantage arises from these capabilities varying across countries. Our
goal in this paper is to characterize the dynamic empirical properties of export capability in order to inform
modeling of the deep origins of comparative advantage.

The starting point for our analysis is two strong empirical regularities in trade that economists have studied
incompletely and in isolation. Many papers have noted the tendency for countries to concentrate their exports in
a relatively small number of sectors. Our first contribution is to show that this concentration arises from a heavy-
tailed distribution of industry export capability that is approximately log normal and whose shape is stable across
countries, sectors, and time. Likewise, the trade literature has detected in various forms a tendency for mean
reversion in national industry productivities. Our second contribution is to establish that mean reversion in export
capability, rather than indicative of convergence in productivities and degeneracy in comparative advantage, is
instead consistent with a stationary stochastic process, whose properties are common across borders and sectors.
In literatures on the growth of cities and the growth of firms, economists have used stochastic processes to
study the determinants of the long-run distribution of sizes. Our third contribution is to develop an analogous
empirical framework for identifying the parameters that govern the stationary distribution of export capability.
The main result of this analysis is that log normality offers a reasonable approximation. The stochastic process
that generates log normality can be estimated in its discretized form by simple linear regression.

In the stochastic process that we estimate, country export capabilities evolve independently across indus-
tries, subject to controls for aggregate country growth, and independently across countries, subject to controls
for global industry growth. This approach runs counter to recent theoretical research in trade, which examines
how innovations to productivity are transmitted across space and time. Our analysis can be extended straightfor-
wardly to allow for such interactions. The Ornstein-Uhlenbeck process generalizes to a multivariate diffusion,
in which stochastic innovations to an industry in one country also affect related industries in the same economy
(or the same industry in a nation’s trading partners). Because of the linearity of the discretized OU process,
it is feasible to estimate such interactions while still identifying the parameters that characterize the stationary
distribution of comparative advantage. An obvious next step in the analysis is to model diffusions that allow for

such intersectoral and international productivity linkages.
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Appendix

A Generalized Logistic Diffusion

The principal insights of Subsections 4.1 and 4.2 are based on the following relationship.

Lemma 1. The generalized logistic diffusion

dt + o dWA(t) (A1)

dA;(t) o2 L A ()? —1
Asy 2| T

for real parameters (n,0,®) has a stationary distribution that is generalized gamma with a probability density
falas }97 K, @) given by (15) and the real parameters

6= (¢2/77)1/¢ >0 and k=1/6%>0.
A non-degenerate stationary distribution exists only if n > 0.

Equation (A.1) restates equation (16) from the text.

A.1 Derivation of the generalized logistic diffusion

We now establish Lemma 1. As a starting point, note that the ordinary gamma distribution is known to be the sta-
tionary distribution of the stochastic logistic equation (Leigh 1968). We generalize this ordinary logistic diffusion
to yield a generalized gamma distribution as the stationary distribution in the cross section. Our (three-parameter)
generalization of the gamma distribution relates back to the ordinary (two-parameter) gamma distribution through
a power transformation. Take an ordinary gamma distributed random variable X with two parameters 6, x > 0
and the density function

fx (|6, k) = 1“(1@;_ (%)H_l exp{—%} for x> 0. (A.2)

Then the transformed variable A = X1/ has a generalized gamma distribution under the accompanying param-
eter transformation § = 6/% because

X

= 2 Pr(X <a®) = fx(a®]0%, k) - |pa® !
a1l 6| fae\" " a¢ 1 ol fa\? a\?
T T(n) m'(w) e"p{‘ew} T T(r) | (9) P _<é> ’

which is equivalent to the generalized gamma probability density function (15), where T'(-) denotes the gamma
function and 6 , K, ¢ are the three parameters of the generalized gamma distribution in our context (¢ > 0 can be
arbitrarily close to zero).

The ordinary logistic diffusion of a variable X follows the stochastic process

dX(t) = [a— BX ()] X(t)dt +o X (¢t)dW(¢t)  for X(t) >0, (A.3)
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where @, 3,6 > 0 are parameters, ¢ denotes time, W (¢) is the Wiener process (standard Brownian motion)
and a reflection ensures that X (¢) > 0. The stationary distribution of this process (the limiting distribution of
X = X (00) = limy_,00 X (t)) is known to be an ordinary gamma distribution (Leigh 1968):

_ 1 1) fax\r—1 T
fX(g;w,m):m 0‘(0) exp{—g} for >0, (A4)
as in (A.2) with
) = 5%/(28) >0, (A5)
K = 2a/3°—1>0

under the restriction @ > 2/2. The ordinary logistic diffusion can also be expressed in terms of infinitesimal
parameters as
dX(t) = pux (X (¢))dt + ox (X (t)) dW (t) for X(t) >0,

px(X)=(a—FX)X and o%(X)=35>X2

Now consider the diffusion of the transformed variable fl(t) =X (t)l/ ¢. In general, a strictly monotone
transformation A = g(X) of a diffusion X is a diffusion with infinitesimal parameters

1 (A)

Il
|
Q

$(X)g"(X) + nx(X)g'(X) and  o%(4) = 0% (X)g'(X)?

(see Karlin and Taylor 1981, Section 15.2, Theorem 2.1). Applying this general result to the specific monotone
transformation A = X/¢ yields our specification of a generalized logistic diffusion:

dA(t) = [a . 5A(t)ﬂ Aty dt + oA AW () for A(t) > 0. (A.6)

with the parameters

_ 452 &
a5[12¢g2+z], 3 (A7)

The term — BA(t)¢ now involves a power function and the parameters of the generalized logistic diffusion col-
lapse to the parameters of the ordinary logistic diffusion for ¢ = 1.

We infer that the stationary distribution of A(oo) = lim; oo fl(t) is a generalized gamma distribution by (15)
and by the derivations above:

B =
o 7T

<l

R T e N R
with
b = 00 =[0%/(2)]" = [90%/(28)]/* > 0,
K = 2a/5*—1=[2a/c*—1]/¢ >0 (A.8)
by (A.5) and (A.7).
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A.2 Existence and parametrization

Existence of a non-degenerate stationary distribution with 0,k > 0 circumscribes how the parameters of the
diffusion v, 8, o and ¢ must relate to each other. A strictly positive § implies that sign(3) = sign(¢). Second, a
strictly positive s implies that sign(a—o?/2) = sign(¢). The latter condition is closely related to the requirement
that comparative advantage neither collapse nor explode. If the level elasticity of dissipation ¢ is strictly positive
(¢ > 0) then, for the stationary probability density f j(') to be non-degenerate, the offsetting constant drift

parameter o needs to strictly exceed the variance of the stochastic innovations: o € (02/2,00). Otherwise
absolute advantage would “collapse” as arbitrarily much time passes, implying industries die out. If ¢ < 0 then
the offsetting positive drift parameter o needs to be strictly less than the variance of the stochastic innovations:
a € (—o0, % /2); otherwise absolute advantage would explode.

Our preferred parametrization of the generalized logistic diffusion is (A.1) in Lemma 1 for real parameters
n,0,¢. That parametrization can be related back to the parameters in (A.6) by setting a = (02/2) + 3 and
B = no?/(2¢). In this simplified formulation, the no-collapse and no-explosion conditions are satisfied for the
single restriction that 7 > 0. The reformulation in (A.1) also clarifies that one can view our generalization of the
drift term [A;4(£)? — 1]/¢ as a conventional Box-Cox transformation of A;(#) to model the level dependence.

The non-degenerate stationary distribution accommodates both the log normal and the Pareto distribution as
limiting cases. When ¢ — 0, both o and 3 tend to infinity; if 5 did not tend to infinity, a drifting random walk
would result in the limit. A stationary log normal distribution requires that a/5 — 1, so &« — oo at the same
rate with 8 — oo as ¢ — 0. For existence of a non-degenerate stationary distribution, in the benchmark case
with ¢ — 0 we need 1/« — 0 for the limiting distribution to be log normal. In contrast, a stationary Pareto
distribution with shape parameter p would require that e = (2—p)o?/2 as ¢ — 0 (see e.g. Crooks 2010, Table 1;
proofs are also available from the authors upon request).

A.3 From comparative to absolute advantage

If comparative advantage As(t s(t) follows a generalized logistic diffusion by (A.1), then the stationary distribution
of comparative advantage is a generalized gamma distribution with density (15) and parameters 6 = ((;52 /n )1/ ¢
Oandk =1/ 6% > 0 by Lemma 1. From this stationary distribution of comparative advantage Aj, we can infer
the cross-sectional distribution of absolute advantage A;s(¢). Note that, by definition (14), absolute advantage is
not necessarily stationary because the stochastic trend Z,(t) may not be stationary.

Absolute advantage is related to comparative advantage through a country-wide stochastic trend by defini-
tion (14). Plugging this definition into (15), we can infer that the probability density of absolute advantage must

be proportional to
o pr—1 o ¢
s(t), K, @) ox | —= exp{ — | —=
oo (iz) ()

It follows from this proportionality that the probability density of absolute advantage must be a generalized
gamma distribution with 65(t) = 0Z4(¢) > 0, which is time varying because of the stochastic trend Z(t). We
summarize these results in a lemma.

fA(ais Aa

Lemma 2. If comparative advantage flis(t) follows a generalized logistic diffusion (A.1) with real parameters
1,0, ¢ (n > 0), then the cross-sectional distribution of absolute advantage A;s(t) is generalized gamma with the

CDF
Qs ¢ .
0.1)) "

Fa(ais|0s(t), ¢,5) = G (A.9)
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for the strictly positive parameters
y_ 2 1/¢ ) o A¢
0= (¢ /77) , 0s(t) =0Z5(t) and k=1/6%.

Proof. Derivations above establish that the cross-sectional distribution of absolute advantage is generalized
gamma. The cumulative distribution function follows from Kotz et al. (1994, Ch. 17, Section 8.7). ]

Lemma 2 establishes that the diffusion and cross-sectional distribution of absolute advantage inherit all rel-
evant properties of comparative advantage after adjustment for an (arbitrary) country-level growth trend. Equa-
tion (A.9) predicts cumulative probability distributions of absolute advantage such as those in Figure 2 (and in
Appendix Figures A1, A2 and A3). The lower cutoff for absolute advantage shifts right over time, but the shape
of the cross sectional CDF is stable across countries and years. We will document in Appendix B how the trend
can be recovered from estimation of the comparative-advantage diffusion using absolute advantage data.

A.4 Moments and the mean-median ratio

As a prelude to the GMM estimation, the 7-th raw moments of the ratios a;s /0s(t) and é;, /6 are

E Qs T ) &is T :P(/ﬁ}-l-T’/(b)
0s(t) 0 I'(x)
and identical because both [a;,/0,(t)]"/? and [a;s/0]'/¢ have the same standard gamma distribution (Kotz et
al. 1994, Ch. 17, Section 8.7). As a consequence, the raw moments of absolute advantage A;, are scaled by

a country-specific time-varying factor Z4(¢)" whereas the raw moments of comparative advantage are constant
over time if comparative advantage follows a diffusion with three constant parameters (6, , ¢):

E [(ai2)"| Z:(0)7] = Za(t)" - E[(a)"] = Zs(1)" eW

By Lemma 2, the median of comparative advantage is a5 = 0(G~1[.5; x])'/?. A measure of concentration
in the right tail is the ratio of the mean and the median, which is independent of # and equals

D(s -+ 1/6)/T(+)
(GT5R)1e

Mean/median ratio = (A.10)

We report this measure of concentration to characterize the curvature of the stationary distribution.

B Identification of the Generalized Logistic Diffusion

Our implementation of the Generalized Logistic Diffusion requires not only identification of the three time-
invariant real parameters (7, o, ¢)—or equivalently (6, x, ¢)—, but also identification of a stochastic trend: the
country-specific time-varying factor Z4(t).

Proposition 1. If comparative advantage Ajs (t) follows the generalized logistic diffusion (A.1) with real param-
eters n,0,¢ (n > 0), then the country specific stochastic trend Z4(t) is recovered from the first moment of the
logarithm of absolute advantage as:

(B.11)

Z(t) = exp {Est[ln Ass()] — In(¢?/n) +1"(n/$?)/T(n/$”) }

¢
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where T (k) /T (k) is the digamma function.

Equation (B.11) restates equation (18) from the text. For a proof of Proposition 1, first consider a random
variable X that has a gamma distribution with scale parameter 6 and shape parameter x. For any power n € N
we have

E[ln(X™)] = /Oooln(x")r(lli); (g)ﬁ_lexp{—g}dx

where IV (k) /T'(k) is the digamma function.
From Appendix A (Lemma 1) we know that raising a gamma random variable to the power 1/¢ creates a
generalized gamma random variable X /¢ with shape parameters x and ¢ and scale parameter 6'/¢. Therefore

In(9) + I'(k)/T(x)
5

This result allows us to identify the country specific stochastic trend X (¢).
For A;s(t) has a generalized gamma distribution across 4 for any given s and ¢ with shape parameters ¢ and
n/¢? and scale parameter (¢?/n)'/? we have

Eﬁb&ﬁﬂzﬂfw+ﬂgwmmma

From definition (14) and A,-S(t) = Ais(t)/Zs(t) we can infer that Eg[In Als(t)] = Eglln 4;5(t)] — In Zs(¢).
Re-arranging and using the previous result for E[ln A;(t) | s, t] yields

In(¢?/n) +T"(n/¢*)/T(n/$?) }
¢

E [In(x"/%)] = ;E In X] =

Z(t) = exp {Est[ln Ais(t)] —

as stated in the text.

C GMM Estimation of the Associated Pearson-Wong Process

GMM estimation of the Generalized Logistic Diffusion requires conditional moments, which we obtain from a
Pearson-Wong transformation.

Proposition 2. If comparative advantage Ajs (t) follows the generalized logistic diffusion (A.1) with real param-
eters n,0,¢ (n > 0), then the following two statements are true.

o The transformed variable

Bis(t) = [Ais(t)™ = 1] /¢ (C.12)



follows the diffusion

A~ 0'2

(1= 6) Bus(t) — 6] dt + 0/ 62 Bua(t)? + 26Bia(t) + 1aWE()
and belongs to the Pearson-Wong family.

e For any time t, time ipterval A > 0, and integer n < M < n/ ¢2, the n-th conditional moment of the
transformed process B;s(t) satisfies the recursive condition:

E |Bis(t + A)"

Bis(t) = b} =exp{—a,A} i Tn,mb™ Z Tn,mE [ is(t+ A)" ’Bw = b} ,
m=0

(C.13)
for coefficients a,, and my, y, (n,m = 1,..., M) as defined below.

Equation (C.12) restates equation (20) in the text.

C.1 Derivation of the Pearson-Wong transform

To establish Proposition 2, first consider a random variable X with a standard logistic diffusion (the ¢ = 1 case).
The Bernoulli transformation 1/X maps the standard logistic diffusion into the Pearson-Wong family (see e.g.
Prajneshu 1980, Dennis 1989). Similar to our derivation of the generalized logistic diffusion in Appendix A, we
follow up on that transformation with an additional Box-Cox transformation and apply By, (t) = [A;s(t) =% —1]/¢
to comparative advantage, as stated in (C.12). Define WB (t) = —WZ‘;‘( ). Then A ¢ = $By(t) + 1 and, by
Ito’s lemma,

dBis(t) - d(flw(t)¢—1>

= A0 A (t) + = (¢ + 1) Ais(t) P2 (dAss(2))?
— du |2 (1—n‘4’s(t)¢‘1) Ais(6)dt -+ (1) W)
4506+ DAL 2 A (02

o’ [ n\ ; Ul i ? A
= —? (1 + d)) Azs(t)_¢ - :| dt — UAiS(t)_ szé(t) + 7(¢+ 1)A ( ) ¢dt
-7 (Z _¢) At ] dt — o Ay (1)~ dWA(t)

o [ - . 3
- -Z (Z _¢> (¢Bys(t) +1) — Z] dt + (¢ Bis(t) + 1) dW (¢)
- _"22 :(77_¢2) Bis(t) — gb] dt+a\/¢23i5(t)2 +20B:(t) + 1AW (2).

The mirror diffusion Bj(t) is therefore a Pearson-Wong diffusion of the form:

N

dBis(t) = —q(Bis(t) — B)dt + \/2Q(aBis(t)2 +bBis(t) +¢) dWi?(t)y
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where g = (n — 62)02/2, B = 0%/(24). a = ¢%0%/(2q), b = $02/q, and ¢ = 02/(2q).

To construct a GMM estimator based on this Pearson-Wong representation, we apply results in Forman and
Sgrensen (2008) to construct closed form expressions for the conditional moments of the transformed data and
then use these moment conditions for estimation. This technique relies on the convenient structure of the Pearson-
Wong class and a general result in Kessler and Sgrensen (1999) on calculating conditional moments of diffusion
processes using the eigenfunctions and eigenvalues of the diffusion’s infinitesimal generator.*’

A Pearson-Wong diffusion’s drift term is affine and its dispersion term is quadratic. Its infinitesimal generator
must therefore map polynomials to equal or lower order polynomials. As a result, solving for eigenfunctions and
eigenvalues amounts to matching coefficients on polynomial terms. This key observation allows us to estimate
the mirror diffusion of the generalized logistic diffusion model and to recover the generalized logistic diffusion’s
parameters.

Given an eigenfunction and eigenvalue pair (hg, As) of the infinitesimal generator of B, (t), we can follow
Kessler and Sgrensen (1999) and calculate the conditional moment of the eigenfunction:

E [ Bislt + A) [ Bis(t) | = exp {0t} h(Bis(1)). (C.14)

Since we can solve for polynomial eigenfunctions of the infinitesimal generator of B;(t) by matching coef-
ficients, this results delivers closed form expressions for the conditional moments of the mirror diffusion for
Bis(t).

To construct the coefficients of these eigen-polynomials, it is useful to consider the case of a general Pearson-
Wong diffusion X (¢). The stochastic differential equation governing the evolution of X (¢) must take the form:

dX (1) = —q(X(t) — X) + /2(aX ()2 + bX (t) + )T (r) /T () AW X (2).

A polynomial p,,(z) = Y, _ Tn mx"™ is an eigenfunction of the infinitesimal generator of this diffusion if there
is some associated eigenvalue A\, # 0 such that

n n n
—q(z — X) Z 7rn7mmwm_1 + 9(am2 + bx + ¢) Z Tn,mm(m — l)a:m_2 =\, Z Tnm®
m=1 m=0

m=2

We now need to match coefficients on terms.

From the z™ term, we must have \,, = —n[l — (n — 1)a]q. Next, normalize the polynomials by setting
Tm,m = 1 and define 7, ,,+1 = 0. Then matching coefficients to find the lower order terms amounts to
backward recursion from this terminal condition using the equation

b k
Tnm = miﬂﬂ'n,erl + miiﬂ-n,m+2 (C.15)

Qm n m n

with a,, = m[l — (m — 1)a]q, by, = m[X + (m — 1)b]g, and ¢;;, = m(m — 1)cq. Focusing on polynomials with
order of n < (14 1/a)/2 is sufficient to ensure that a,, # a,, and avoid division by zero.
Using the normalization that 7, , = 1, equation (C.14) implies a recursive condition for these conditional

“TFor a diffusion
dX(t) = px (X (t))dt + ox (X(1)) dWX(t)

the infinitesimal generator is the operator on twice continuously differentiable functions f defined by A(f)(z) = px(z)d/dz +

%a x ()2 d?/dz®. An eigenfunction with associated eigenvalue A # 0 is any function h in the domain of A satisfying Ah = Ah.
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moments:
n
E[X(t+A)") [X(t) = 2] = exp{—anA} Y mppma™ Z TnmBE [X(t+ A)™|X (1) = ].
o
These moments exist if we restrict ourselves to the first N < (1 4+ 1/a)/2 moments.

C.2 Conditional moment recursion

To arrive at the result in the second part of Proposition 2, set the parameters as q; = o2(n — ¢2)/2, X
/(N — ¢?), as = ¢*/(n — ¢?), bs = 2¢/(n — ¢?), and cs = 1/(n — ¢*). From these parameters, we can
construct eigenvalues and their associated eigenfunctions using the recursive condition (C.15). For any time ¢,
time interval A > 0, and integer n < M < 1/¢?, these coefficients correspond to the n-th conditional moment
of the transformed process B, (t) and satisfy the recursive moment condition

E |:B7,’s(t +A)"

Bz‘s(t) = b] =exp{—a,A} Zn: Tp,mb™ Z TnmE [ is(t 4+ A)™ ‘B,s = b] ,
m=0

where the coefficients a,, and 7, ,, (n,m = 1,..., M) are defined above. This equation restates (C.13) in
Proposition 2 and is n-th conditional moment recursion referenced in Subsection 4.3.

In practice, it is useful to work with a matrix characterization of these moment conditions by stacking the
first N moments in a vector Y4(t):

I E [Yis(t + A) [ Bis(h)] = AA) - T Y (1) (C.16)

with Yi,(t) = (1, Bis(t), . .., Bis(t)™)’ and the matrices A(A) = diag(e= @2, e | e~ @mA) and IT =
(11,702, ..., Tr), where T, = (M0, - - - s Tim, 0, ..., 0)’ for each m = 1,..., M. In our implementation of
the GMM criterion function based on forecast errors, we work with the forecast errors of the linear combination
IT - Y,5(t) instead of the forecast errors for Y,5(¢). Either estimator is numerically equivalent since the matrix
IT is triangular by construction and therefore invertible.

C.3 GMM minimization problem

To derive the GMM estimator (stated in Subsection 4.3), let T} denote the number of time series observations
available in industry i and country s. Given sample size of N = ) . > Tj,, our GMM estimator solves the
minimization problem

(n*,0%,¢*) = arg min (N Zzzgm n,0,¢ ) w (;;;zgm(n,a, ¢)) (C.17)

(n,0,9)

for a given weighting matrix W. Being overidentified, we adopt a two-step estimator. On the first step we
compute an identity weighting matrix, which provides us with a consistent initial estimate. On the second step
we update the weighting matrix to an estimate of the optimal weighting matrix by setting the inverse weighting
matrix to W= = (1/N) 3. 5.3 gisr (0,0, $)gisr (1, 0, $)’, which is calculated at the parameter value from
the first step. Forman and Sgrensen (2008) establish asymptotics for a single time series as 7 — 00.*® For

0ur estimator would also fit into the standard GMM framework of Hansen (1982), which establishes consistency and asymptotic
normality of our second stage estimator as /.S — oo. To account for the two-step nature of our estimator, we use an asymptotic
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estimation, we impose the constraints that 7 > 0 and o > 0 by reparametrizing the model in terms of In > —oc
and 2lno > —oo. We evaluate the objective function (C.17) at values of (7,0, ¢) by detrending the data at
each iteration to obtain AgMM (t) from equation (19), transforming these variables into their mirror variables
BgMM(t) = [AiGSMM(t)_¢ — 1]/¢, and using equation (C.13) to compute forecast errors. Then we calculate the
GMM criterion function for each industry and country pair by multiplying these forecast errors by instruments
constructed from EgMM(t), and finally sum over industries and countries to arrive at the value of the GMM
objective.

D Correction for Generated Variables in GMM Estimation

D.1 Sampling variation in estimated absolute and comparative advantage

Let k;.; denote the vector of export capabilities of industry ¢ at time ¢ across countries and m;.; the vector of
importer fixed effects. Denote the set of exporters in the industry in that year with S;; and the set of destinations,
to which a country-industry is ships in that year, with D;4;. The set of industries active as exporters from source
country s in a given year is denoted with Z,;. Consider the gravity regression (6)

/
In Xisar = Kist + miar + TeqDit + Visdr-
Stacking observations, the regression can be expressed more compactly in matrix notation as
b =I5k +I0my + Royby + vy
Xit = JjKip +Jdymig + Rogbi + v,

where x;..; is the stacked vector of log bilateral exports, J g and J 5 are matrices of indicators reporting the
exporter and importer country by observation, R..; is the matrix of bilateral trade cost regressors and v;..; is the
stacked vector of residuals.

We assume that the two-way least squares dummy variable estimator for each industry time pair 4t is con-
sistent and asymptotically normal for an individual industry ¢ shipping from source country s to destination d at
time ¢,* and state this assumption formally.

Assumption 1. Ifk?}S is the OLS estimate of k;.1, then

AV Dit(k?]t“s — ki-t) i) N(O, Eit) as Dit — 00,

where Dy = (1/|Su]) Y ses,, | Dist| is the source-country-average number of countries importing industry i

goods in year t and
-1

Sp=od | Jim — (35) My (35)

Dit—o0 Lt
with Uizt = Eitv?sdt’
M;; = I|S¢t|Dit - [Jz‘[)S)?R"t]{[Ji?vR“t],[Ji?v R--t]}_l[']z‘?v R--t]lv
and Lis, |p,, the identity matrix.

In finite samples, uncertainty as captured by X;; can introduce sampling variation in second-stage estimation

approximation where each dimension of our panel data gets large simultaneously (see Appendix D).
#This high-level assumption can be justified by standard missing-at-random assumptions on the gravity model.
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because k}° is a generated variable. To perform an according finite sample correction, we use

1 -1
B = 087 | 5 (35 M (39)]

with (095%)2 = (1/|Sit| D) (VELS)'VELS to consistently estimate the matrix ;.
Our second stage estimation uses demeaned first-stage estimates of export capability. For the remainder of
this Appendix, we define log absolute advantage and log comparative advantage in the population as
aist = 1n Aist = Kist — Z kzgt and a;¢ =In Azst = Qjst — ‘I ’ Z Qjst- (DIS)
t

’SZt’ GES;t JELst

Correspondingly, we denote their estimates with af;°> and a95°.

For each year, let KP'* denote an I x S matrix with entries equal to estimated export capability whenever
available and equal to zero otherwise, let H; record the pattern of non-missing observations and K; collect the
population values of export capability:

LOLS S, 1 S; kis Si
[K?Ls]is = ot 5 € o ’ [Ht]z’s = 5 € o > [Kt]is = Loee s :
0 S ¢ Sit 0 s ¢ Sit 0 S ¢ Sib

where [-|;s denotes the specific entry is. Similarly, collect estimates of log absolute advantage into the matrix
AP and estimates of log comparative advantage into the matrix AP"S:

[AOLS]. — In A%I;SS s € Sit [AOLS]. — In A;,)s];‘,s s € Sit )
¢ " 0 S ¢ Sit ’ t ' 0 S ¢ Sit

We maintain the OLS superscripts to clarify that absolute advantage A¢Y° and comparative advantage A?sLts are
generated variables.

The two matrices AP™S and A?LS are linearly related to the matrix containing our estimates of export capa-
bility KP"*. From equation (D.18), the matrix AP"® is related to K" and H; by

[HL ]} [He)s

Is = 0
vec(AP") = Trans(I, S) : : vec[(K?™)]. (D.19)
[H:].[He]r.
0 o Is = mrmy

Ezls(Ht)

Here vec(-) stacks the columns of a matrix into a vector and Trans(/, S) is a vectorized-transpose permutation
matrix.>® The function Z 1s(H¢) maps the matrix H; into a block diagonal .S x IS matrix, which removes the

The vectorized-transpose permutation matrix of type (m,n) is uniquely defined by the relation
vec(B) = Trans(m, n)vec(B’) VB € R™*",

The (i7)-th entry of this matrix is equal to 1 if j = 1 + m(i — 1) — (mn — 1)floor((¢ — 1)/n) and 0 otherwise.
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global industry average across countries. The matrix of comparative advantage estimates is then:

1, — e 0
t11- 1]y,
vec(AOS) = : , : vec(AS) = Zgr (H,)vec(A™S). (D.20)
L, HGH]s.
0 L= s
=Zs;(H})

The function Zg;(H}) maps the matrix H; into a block diagonal ST x ST matrix, which removes the national
average across industries.

For simplicity, we assume that the sampling variation in export capability estimates is uncorrelated across
industries and years.

Assumption 2. For any (it) # (jT), E(kP}® — ki) (k7 — kjr)’ = 0.
We then have the following result.

Lemma 3. Suppose Assumptions 1 and 2 hold and that there is an w;; > 0 for each (it) so that limp_, Dj; /D =
w;t. Then

VDlvec(A%S) — Trans(I, S)Z;5(H,)vec[(KO)]] 5 A(0, Trans(I, S)Z;s(H,) S} Z;5(H,) Trans(I, S)')
and
VD{vec(A™) — Zg;(H;})Trans(1, S)Z;s(H,)vec[(K{*)]
i) N(O, ZS](H;)Tl'aIlS(I, S)st(Ht) 2: st(Ht)/Tl‘anS(I, S)/ZS](H;)/)

with .
wyy ¥y 0
3= : : :

—1g
0 W Xy
where the s-th column of 33, is equal to country s’s corresponding column in 3;; whenever export capability is
estimated for (ist) and is a vector of zeros otherwise.

Proof. Assumptions 1 and 2 along with D;; — D — oo for all (it) implies that v/ D (vec[(K?"%)'] — vec[K}]) LN
N (0, X%). The results then follow from equation (D.19) and equation (D.20). ]
D.2 Second-stage generated variable correction

We estimate two time series models which both can be implemented as GMM estimators. For brevity, we focus
on GLD estimation here. (We present the case of OLS estimation of the decay regression in the Supplementary
Material (Section S.2), which simply uses a different GMM criterion and absolute advantage as data instead of
comparative advantage.) GLD estimation is based on a conditional moment of the form:

0 =Eis;—Ag (0, s, Gist—n) (D.21)

where © = (1, 0, ¢)’ is the vector of parameters. In our overidentified GMM estimator, g is a column vector of
known continuously differentiable functions (moment conditions) for any time lag A > 0.
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The moment conditions apply to any instant in continuous time, but our data come in discrete annual obser-
vations for a finite period of years. To account for missing data, let Sf; C &;; denote the set of countries that
were previously observed to export good ¢ and that are still exporting good ¢ at current time ¢: SZ-]; ={s eS|
3P < tst.s € S;;p}. Similarly, let S§ = {s € Sy | 377" > ts.t.s € S;,r} be current exporter countries
that ship good i to at least one destination also some future year. Denote the most recent prior period in which s
exported inindustry i by 75, = sup{7¥ < t | s € S;,r} and the most recent future period in which s will export
by 7&, = inf{r¥ >t | s € S;,r}. We will use these objects to keep track of timing.

For instance, foreachi =1,...,1,t =2,...,T,and s € SZ-]; we can design a GMM criterion based on the
following conditional moment:

]EZ P8 <6 Qist, ;g t) =0.

Our finite sample analog for second-stage estimation is:

I T

1 1 . ) )
WZZ D Ee(0)  with g (6) = g (0,40, 4% )

i=1 t=2 Sit sesk

where \85 | is the number of exporters in industry i at time ¢ that were also observed exporting good i at a previous
time.

The effective sample size for the second stage is N = S°7_, 32771 |S;| and the GMM criterion can be
expressed as

/

1 LI 1 I
QN (O; W) N ZZ Z SP )gzst(e) NZZ Z Wgzst(e)
esk "t i

=1 t=2g4 z:lt?sesp

where W is a weighting matrix.
In order to get consistency, we assume that all dimensions of our data are large as N gets large.

Assumption 3. As N — oo we have
1. D — oo;
2. V(it) Jwy > 050 that Dyt /D — wiy, N/[I|SE|(T—1)] — 1, and |Si| — oo;
3. Y(st) |Zst| — oo;
4. T = oo.

Letting D — oo and Dy /D — w;; > 0 ensures that we consistently estimate k;.; on the first stage and we
can use Lemma 3 for the first stage sampling distribution of comparative advantage. Then, letting |S;;| — oo
ensures that we consistently estimate absolute advantage and |Zy;| — oo lets us consistently estimate comparative
advantage. The asymptotic results of Forman and Sgrensen (2008) apply under the assumption that T — oo.

Under the maintained assumptions, we get the following consistency result.

Proposition 3. Suppose that
1. © € O for some compact set ©;

2. for any A > 0, there is a unique ©g € © such that
0= Eg (907 dista disﬂf—A) 5

54



3. for any given positive definite matrix W and for each N, there is a unique minimizer of Qn(0; W) given
by On;
4. both E; k;s; and Eg ks exist and are finite.
Then, under Assumptions 1 and 3, we have 0 N EN 0o.

Proof. The proof follows from a standard consistency argument for extremum estimators (see e.g. Newey and
McFadden 1994). Given (a) compactness of the parameter space, (b) the continuity of the GMM objective, and
(c) the existence of moments as in Forman and Sgrensen (2008), we get a uniform law of large numbers for the
objective function on the parameter space as N — oo. The GLD estimator is then consistent under the assumption
that the model is identified, provided that we consistently estimate comparative advantage. The consistency of
our comparative advantage estimates follows from the strong law of large numbers given Assumption 3 and the
existence and finiteness of E;;k;q; and Eg k;q;. ]

Proposition 4. Under the conditions of Proposition 3 and Assumptions 1, 2, and 3 we have
VN(Oy — 00) % N(0,(AWA) 'AW(E+ Q) WAAWA) Y,

where

0 S
A= E%g (907 Aijsty aiST{zt) )

/
= = Eg <607 dish (AI,L»S,T_Z_I;) g <907 dist, &iSTi}:t> 3
T
Q= lim —— Z GZs;(H))Trans(I,S)Z;s(H;) = Z;5(H;) Trans(I, S)'Zs;(H,)' G,
t=1

for a Gy matrix of weighted Jacobians of g;s(0), as defined below.

Proof. To get a correction for first stage sampling variation, we use a mean-value expansion of the GMM
criterion. Given continuous differentiability of the moment function g;s;(0) and the fact that  y maximizes
QN (0; W) we must have

= QQN(éN§W)

/

b R 1 I T
ZZ 2 7 85 %O | W53 Y Wgmtw 9

i=1 1=2 e8P i=1 1=2 e8P

The criterion function g is continuously differentiable. Therefore, by the mean value theorem, there exist random

variables 0 y and ;s such that |9N 0| < ]E)N 00!, |Gist — Qist| < |aPLS — @jst|, and
R ) 0 B B R
g(On;ist) = g (0o, dist, Gygrp + 598 0, Qjst, Qg P (6 — 00)
st ~
0=0y
=GY,
et 7G'}st
0 0 ~
~OLS ~ ~ P OLS
+ (9N7 7 7,,57‘P ) (aist - a’ist) + Pg <6N7 aiSta a ) (a P a’LSTP )
aa/ st = (9@ P_~ ¥8Tst ist
a=a;st a=a. p
~ isTi 4
EG?st EGS

15t

55



I T
- 1 N G
— AW }:}:}: GO G G ~OLS OLS _ ~
0= N N < I’S]; (T—l) |: ist + zst(eN 90) + zst( it a’LSt) + zst( stPt a’iSTllzt)]

where Ay = (T1 1) o1 Cis |5P| D sesk Gl
Solving for On — 0p and multiplying by \ﬁ N, we obtain

VN(Oy — 09) =

I T
- ~ 11 . N
!/ / 0 (; (; OLS A
- |: N WV AN} AN vV N E §: E I‘Sl]tD (T stt + zst( zst alSt) =+ zst(

_1) 157'P _ai”f;t) ’

Note that the set Sﬁ is empty since no country is observed exporting in years before the first sample year and
SZ-IZ} is empty since no country is observed exporting after the final sample year. Moreover,

0 SO
AN —) A= Eae (90, aist,aisnz:t)

CN"'?st G’?stE ;a (907 a, zsrP)

a=0jst

~ o R
G?st G?st = &Lipg (907 Qist, aP)

P_A
@ =0 P
18t

because 6 y and aPrts are consistent and g is the continuously differentiable.

As aresult, we can re-write the sum as

T
N
T X sriryy (Gt GRa ) + Gl ~ )]

TP )
=1 t=2 sESﬁ is U8T st
1 N
T UN DI TSE[(T=1) [G?st + Gl (Al — aist) + Gl (a7 — ay )} +op(1)
i=1 t=2 gesP * 17
I T
1 N
= =22 > Tgrip 1 G T o)
P 15t p
NiT= seSP 18 (T =1)
1 T S N N
— - 0 R e L. ~OLS _ o
R DL e € S gy Ol o< S (T_l)c;%] G5 o)

ELt
using the fact that 77" = zst o 7P oF =1

The term L; is a vector and a linear function of the entries of the matrix A?Ls — At. This vector can also be
expressed as

Lt = Gtvec(A?LS — At),
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and the matrix G; has entries

N
(G =11{s(j) e S, G,
j { (]),t} rlsP ‘(T—l) ()50t
().t
+1 {8(j) € ngj),Tfj) @ t} = GB(J) ST 00
i) ) I SF T_l i(7),s s
Wi st -1

for
i(j)=1+(j modS), s(j)=1+"floor((j—1)/9).

We can now re-write the sum as

I
TP L% X g (Gt G )+ G, )
=2 4 it

i=1 ¢
, LT T A
ZWZZZW st T Z GV Dvec(AP™S — Ay) + 0,(1).
=1 2 ? t=1

The first term is asymptotically normal under the results of Forman and Sgrensen (2008). The second term is
asymptotically normal because A" is asymptotically normal by Lemma 3. O

For an adaption of the GMM generated-variable correction to second-stage OLS estimation, see the Supple-
mentary Material (Section S.2).

E Additional Evidence

In this Appendix, we report additional evidence to complement the reported findings in the text.

E.1 Cumulative probability distribution of absolute advantage

Figures A1, A2 and A3 extend Figure 2 in the text and plot, for 28 countries in 1967, 1987 and 2007, the log
number of a source country s’s industries that have at least a given level of absolute advantage in year ¢ against
that log absolute advantage level In A;4; for industries 7. The figures also graph the fit of absolute advantage in
the cross section to a Pareto distribution and to a log normal distribution using maximum likelihood, where each
cross sectional distribution is fit separately for each country in each year (such that the number of parameters
estimated equals the number of parameters for a distribution X number of countries x number of years). In the
Supplementary Material (Section S.6) we show comparable cumulative probability distributions of log absolute
advantage for PPML-based exporter capability, the Balassa RCA index, and varying industry aggregates of OLS-
based exporter capability.

E.2 GLD predicted cumulative probability distributions of absolute advantage

Figures A4, AS and A6 present plots for the same 28 countries in 1967, 1987 and 2007 as shown before (in Fig-
ures Al, A2 and A3), using log absolute advantage from OLS-based exporter capability. Figures A4 through A6
contrast graphs of the actual data with the GLD implied predictions and show a lose fit.
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E.3 Comparative advantage at varying industry aggregates

As a robustness check, we restrict the sample to the period 1984-2007 with industry aggregates from the SITC
revision 2 classification. Data in this late period allow us to construct varying industry aggregates. We first obtain
gravity-based estimates of log absolute advantage from OLS (6) at the refined industry aggregates. Following
our benchmark specifications in the text, we then estimate the decay regression (10) at ten-year intervals and the
GLD model (C.17) using GMM at five-year intervals.

For the decay regression, Table A1 repeats in columns 1, 4 and 7 the estimates from Table 1 for our bench-
mark sector aggregates at the SITC 2-3 digit level (133 industries) during the full sample period 1962-2007.
Table A1 presents in the remaining columns estimates for the SITC revision 2 two-digit level (60 industries) and
the three-digit level (224 industries) during the late period 1984-2007. At the two-digit level (60 industries), the
ten-year decay rate for absolute advantage using all countries and industries is —0.26, at the three-digit level (224
industries) it is —0.37. When using PPML-based log absolute advantage or the log RCA index, decay rates vary
less across aggregation levels, ranging from —0.31 at the two-digit level for PPML-based log absolute advantage
to —0.34 at the three-digit level for log RCA. The qualitative similarity in decay rates across definitions of export
advantage and levels of industry aggregation suggest that our results are neither the byproduct of sampling error
nor the consequence of industry definitions.

For the GLD model under the GMM procedure, Table A2 confirms that results remain largely in line with
those in Table 2 before, for the benchmark aggregates at the SITC 2-3 digit level (133 industries) during 1962-
2007. The benchmark estimates are repeated in columns 1, 4 and 7. In the other columns, Table A2 presents
estimates for the SITC revision 2 two-digit level (60 industries) and the three-digit level (224 industries) during
the late period 1984-2007.

Estimates of the dissipation rate 1 are slightly larger during the post-1984 period than over the full sample
period and, similar to the implied 7 estimate in the decay regressions above, become smaller as we move from
broader to finer classifications of industries. Estimates of the elasticity of decay ¢ are statistically significantly
negative across all industry aggregates for the OLS-based absolute advantage measures but statistically indistin-
guishable from zero for PPML-based log absolute advantage and the log RCA index, again regardless of industry
aggregation.
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S.1 Classifications

Our empirical analysis requires a time-invariant definition of less developed countries (LDC) and industrialized
countries (non-LDC). Given our data time span of more then four decades (1962-2007), we classify the 90
economies, for which we obtain export capability estimates, by their relative status over the entire sample period.

In our classification, there are 28 non-LDC: Australia, Austria, Belgium-Luxembourg, Canada, China Hong
Kong SAR, Denmark, Finland, France, Germany, Greece,Ireland, Israel, Italy, Japan, Kuwait, Netherlands, New
Zealand, Norway, Oman, Portugal, Saudi Arabia, Singapore, Spain, Sweden, Switzerland, Trinidad and Tobago,
United Kingdom, United States.

The remaining 62 countries are LDC: Algeria, Argentina, Bolivia, Brazil, Bulgaria, Cameroon, Chile, China,
Colombia, Costa Rica, Cote d’Ivoire, Cuba, Czech Rep., Dominican Rep., Ecuador, Egypt, El Salvador, Ethiopia,
Ghana, Guatemala, Honduras, Hungary, India, Indonesia, Iran, Jamaica, Jordan, Kenya, Lebanon, Libya, Mada-
gascar, Malaysia, Mauritius, Mexico, Morocco, Myanmar, Nicaragua, Nigeria, Pakistan, Panama, Paraguay,
Peru, Philippines, Poland, Rep. Korea, Romania, Russian Federation, Senegal, South Africa, Sri Lanka, Syria,
Taiwan, Thailand, Tunisia, Turkey, Uganda, United Rep. of Tanzania, Uruguay, Venezuela, Vietnam, Yugoslavia,
Zambia.

We split the industries in our sample by broad sector. The manufacturing sector includes all industries with
an SITC one-digit code between 5 and 8. The nonmanufacturing merchandise sector includes industries in the
agricultural sector as well industries in the mining and extraction sectors and spans the SITC one-digit codes
from O to 4.

S.2 Application of the GMM generated-variable correction to second-stage OLS estimation

To adapt the results in Appendix D.2 to the decay regression, we need to specify the appropriate moment condi-
tion and to account for the use of export capability estimates, instead of treating absolute advantage or compara-
tive advantage as data.
Consider the decay relationship (10) and suppose true export capability were observed. Then, for any time
interval A such as ten years,
Kistrn — kist = pkist + it + 05t + €ist4A. (S.1)

The OLS estimator for p and the residual variance s? is the GMM estimator for the following conditional moment

(kis t+A — kist — pkist — dit — 5st)kz‘st )
Eistg(0, kis ykist; 8) = Eyg ’ =0, S.2
&l e+ Kist; §) ‘ <82 — (Kist+a — kist — pkist — Sit — Ost)? 5.2)

where 8 = (p,s%)’ and & collects the industry-year and country-year fixed effects. We do not calculate a
correction for standard errors on the industry-time and country-time fixed effects.
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In the decay regression, we work with estimates of export capability directly and only use time series pairs

spaced exactly A years apart. Let S;; denote the set of countries exportlng good ¢ in year ¢ and also export good
i in year t + A. The effective sample size is N' = DOrID Dri,

2 1Si¢|. Denote the OLS estimator of © with 6
and the OLS estimator for & with & N

A mean value expansion of the GMM criterion function (S.2) evaluated at the export capability estimates and
estimates of the fixed effects gives

g(éN7 OLS OLS, )

o - - .
18,t+A Vist ; g (907 kis REVAY) kist; 50) + %g <e7 kis,t-}—Aa kist; 6]\7) ~ (GN - 90)
_G(L)bt QzeN
_Ggst
9 0 F 7 .5 9 OLS
+ Wg (eNa k ) kista 6N> B (kzs t+A T kis,t+A) 8k (9]\[, kzsta k 8N> - (kzst _kist) 5
k’F:k‘isyt+A k:kist
—G?st —G?st

where\éN—60| < |éN—Gg|, \SN—60| < |$N—60\,and|];:ist kist| < |k — kist|. From this mean-value
expansion, we obtain

VN(Oy —0g) =

1 T—-A

—[NQVW[&N} W\/NZ 3 TSI T

I
=1 t=1 se8S; Zt|

G?st + stt (kzs A+A T kzs t+A) + stt(kOL - k:ist)

ist

where Ay = [1/I(T-A)] Zz 1 t 1 (1/‘8115‘)2565“ ézlst‘

The sum in this expression can be rewritten as

I T-A
1 N
\/N Z Z Z I’S t’( ) [G?St + stt(kzOsL?—&-A kis t+A) + stt(kz(?slis - kiSt)}
i=1 t=1 se§ ¢
1 I T-A
= N Z I‘S ‘ T A G?st + Op(l)
i—1 t

N

[1{5 € Sit-n}

N
G? 1{s € Sy} ————-G3 | (kOL5 —k;
S5 IS al(@—a) Srema t s € Sl gy, }( i)
E}:z‘t
given that
Gi, & Gl = ig(eo k" Kist; 80)
- ) ) 18Ty b
s s OkF N
3 b o3 _ O
sttﬁGist: 8]{‘ (607k28t+A7k: 60)
k:kist
Define the matrix G;; so that its s’th column is
N N
Gils= |1 Sii— G? 1 Sit}—————-G3,|. S.3
Git].s {s € Sis A}IIS@H\(T—A) Ziat1{se ”}IISZ-tI(T— Ry G (S.3)
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Then the vector L;; is
Lit = G (kY — kit).

Based on these derivations, the following proposition states the corrected asymptotic distribution for the
coefficients in the decay regression.

Proposition 5. Under the conditions of Proposition 3 and Assumptions 1, 2, and 3 we have that
VN @y — 00) % N (0, (AWA) AW (E + Q)WA(A'WA) ™)

with

0
E 708 (00, kis t+A, kist; 80)

Eg (00, kis 1A, Kist; 80) & (00, Kis 1A, Kist; 80)’

I T
. 1 .
Q= lim ND g g Gt X5 Gjy /wit,

N—oo ‘
i=1 t=1

>
Il

p—
=)
e

where the s’th column of the matrix G, is defined as in (S.3), and w;; and X7, are defined as in Appendix D.2.

Proof. The proof follows the same logic as the proof of Proposition 4, but uses the asymptotic expansion derived
in this section. O

S.3 The variance-covariance matrix of 7 and o>

Consider mean reversion of export capability under (S.1):
Eist+n — kist = pkist + it + Ost + €ist4A-

The coefficient p measures the fraction of log comparative advantage that dissipates over the time interval A.
A constant p implies that dissipation is symmetric in the sense that export capability below zero reverts towards
zero at the same rate as export capability above zero.

Suppose an Ornstein-Uhlenbeck (OU) process generates log comparative advantage In Ajs (t) in continuous
time, consistent with mean reversion of export capability following (S.1):

2 .
dinAz(t) = — % In Ay (t) dt + o dW;(8), (S.4)

where W{? (t) is a Wiener process that induces stochastic innovations in comparative advantage.’! Equation (S.4)
simply restates (11) from the text.

The discrete-time process that results from sampling from an OU process at a fixed time interval A is a
Gaussian first-order autoregressive process with autoregressive parameter exp{—no2A/2} and innovation vari-
ance (1 — exp{—no?A})/n (Ait-Sahalia et al. 2010, Example 13). Applying this insight to the first-difference
equation (S.1), we obtain

p = —(1—exp{-no*A/2}) <0, (S.5)
£ = (1—exp{-no®A}/n >0,
S'Recall from definition (14) that comparative advantage in continuous time is A;s(t) = Ais(t)/Zs(t), where Ais(t) =

exp{kis(t)}/ exp{(1/5) X . kic(t)} is measured absolute advantage by (7) and Z;(t) is an unobserved country-wide stochastic trend.
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as also shown in the main text, where s is the variance of the residual €; (t,t+A) in (S.1) and the residual is
normally distributed with mean zero. The decay model (S.1) is equivalent to an OU process with 7 > 0 given
the unobserved country fixed effect §5(¢) = In Z;(t+A) — (1+p)In Zs(t). An OU process with p € (—1,0)
generates a log normal stationary distribution of absolute advantage A;s(t) = Z(t)A;4(t) in the cross section,
with a shape parameter of 1/7 and a mean of zero.

The two equations (S.5) in (p, s?) can be solved out for the equivalent OU parameters (1, o2):

1—(1+p)?
’)7 = (82 ) > O’
In (1 + p)~2 52 In(1+p)~2
2 _ —
T T Ay i1+ a0 (5.0

To express derivations more compactly, we consider the OU parameter vector (1, o2)" a function h(p, s?; A) with

. , 1—(1jp)2
< 52 > = h(p,s ;A) = < .2 sln(1+p)*2 ) . (S.7)

1—(14p)2 A

Estimation. The OU process implies that equation (S.1) satisfies the assumptions of the classic regression
model. Estimation of (S.1) with ordinary least squares therefore provides us with consistent estimators:

(5,8) = (X'X)" X'y ~ N ((f), 8'), 32(X’X)—1) (S.8)
9 RSS 52 9
N-pP = N_pXN-P

3

where y = J§t+Aki.7t+A - thki.t is the dependent variable, X = [Jgki.t,lit, Is] is the N x P matrix of
regressors (N = Ztlzl th:—IA |Sit|), RSS is the residual sum of squares (the sum of the squared regression
residuals), and X% _ p denotes a x-distributed variable with N — P degrees of freedom.’?> The variance of the
estimator p is V;, = s?(X’X) ™1, the variance of the estimator §% is V2 = 2s*/(N — P) by the x>-distribution,
and the estimators p and 32 are independent of each other by the properties of the classic regression model. For
convenience, we define the variance-covariance matrix between the two estimators as

(V0 [ $2XX) 0
ps? = ( 0 Vi > - < 0 2s'/(N - P) ) ‘ 9

By (S.6) and (S.7), the according estimators of the equivalent OU parameters (7}, 52) can be compactly written

as the function R
n o A A2,
( 52 > —h(p,s ,A).

By the multivariate delta method, this estimator is normally distributed with

( ;72 > NN(h(p, 52;A) ,V{pﬁz}h(p, 52;A) DIP -V{pysz}h(p, 52;A)/), (S.10)

2As in Appendix D, k;.; denotes the vector of export capabilities of industry i at time ¢ across countries and J£, is a matrix of indicators
reporting the exporter country by observation.
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where

m  on (1+p) _1o(p)?

. o 8 82 - S
V{p,sz}h(pv 827A) = < 8gp & > - 22 [1—(1+P) } (1+P)21n(1+l7) 2 In(1+p) 2
dp  0s? A (1+p)2[1—(14p)2)? All—(1+p)?]

with 9n/dp, On/ds% 802 /0p < 0 and Jo?/3s* > 0 for p € (—1,0). For clarity, using (S.9) the variance-
covariance matrix of the estimator (7}, 52) can also be rewritten as
() (Ve BV i
5 ! o 8 9s% 957
Vips2yh(p, 5% A) B0 Vi eph(p, 5% A) = anpaa ansaa2 az ¢ ] Us 2
o0 Vot 052 oz Va2 (37> Vi + <@) \E

Similarly, for the full vector of all estimators H(p, s2; A) = (p, §2, 7, 62)’ the variance-covariance matrix
Cov =V, 2yH(p, 5% A) -2, 2 - Vi, 2 H(p, s%; A)’ can be written as

V; 0 SV, %V,
0 Ve 3” LV g2 2V52
Cov = ) ) ) 9 9
JVA BTZV§2 (8772’> V —+ ((98772> V§2 BZ dao,-o V + 68772 (?9(;2 V§2

2 2
802 do? In da? 9n 9o do2 R do?
Vo 92V g0, Vi T o292 Va2 o) Vot o) Vo

S.4 Top products

Table S1 shows the top two products in terms of normalized log absolute advantage In A;s; for 28 of the 90
exporting countries, using 1987 and 2007 as representative years. To obtain a measure of comparative advantage,
we normalize log absolute advantage by its country mean: In A5 —(1/1) ZJI In Ajg. The country normalization
of log absolute advantage In A;4 results in a double log difference of export capability k;s;—a country’s log
deviation from the global industry mean in export capability less its average log deviation across all industries.
For comparison, Table S2 presents the top two products in terms of the Balassa RCA index.

S.5 Absolute advantage and export shares

To verify that our measure of export advantage (7) does not peg obscure industries as top sectors, we plot In A;4;
against the log of the share of the industry in national exports In (Xist /2 ;X jst)). As Figure S1 documents
for the years 1967, 1987 and 2007, there is a strongly positive correlation between log absolute advantage and
the log industry share of national exports. This correlation is 0.77 in 1967, 0.78 in 1987, and 0.83 in 2007. (For
comparison, the correlation between In A;; and the log Balassa RCA index in these same years is 0.69, 0.70, and
0.68, respectively.

S.6 Additional evidence on cumulative probability distributions

We repeat the cumulative probability distribution plots, which were based on OLS estimated gravity measures of
absolute advantage, now using absolute advantage measures based on the Poisson pseudo-maximum-likelihood
(PPML) gravity model proposed by Silva and Tenreyro (2006). This exercise helps us verify that the cross
sectional distributions of OLS-based absolute advantage in Figures A2 and A3 in the Appendix to the main
paper are robust to alternative gravity estimation that can accommodate zero bilateral trade flows. Figures S2
and S3 plot, for the same 28 countries in 1987 and 2007, the log number of a source country s’s industries that
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Figure S1: Absolute Advantage and Export Shares
1967 1987 2007

Absolute Advantage
Absolute Advantage
Absolute Advantage

L T T T T T T T T T T
-20 -15 -10 -5 0 -20 -15 -10 -5 0 -20 -15 -10 -5
Share of Global Industry Exports Share of Global Industry Exports. Share of Global Industry Exports

Source: WTF (Feenstra et al. 2005, updated through 2008) for 133 time-consistent industries in 90 countries from 1962-2007.
Note: The vertical axis shows a country-industry’s gravity-based measure of log absolute advantage In A;s: given by (7), the horizontal
axis plots the same country-industry’s share of the industry 4’s global export value: Xys¢ /(3 Xict).

have at least a given level of PPML-based absolute advantage in year ¢ against that comparative advantage level
for industries <. The figures also graph the fit of the revealed comparative advantage index in the cross section to
a log normal distribution using maximum likelihood separately for each country in each year. Results resemble
those for export capabilities (7).

To verify that the graphed cross sectional distributions in Figures A2 and A3 in the Appendix to the main
paper are not a byproduct of specification error in estimating export capabilities (7) from the gravity model, we
also repeat the cumulative probability distribution plots using the revealed comparative advantage index by Bal-
assa (1965) for comparative advantage. Figures S4 and S5 plot, for the same 28 countries in 1987 and 2007, the
log number of a source country s’s industries that have at least a given level of revealed comparative advantage
(Xis/ 22 Xic)/ (D2 Xjs/ D2 - Xj¢) in year ¢ against that comparative advantage level for industries i. The
figures also graph the fit of the revealed comparative advantage index in the cross section to a log normal distri-
bution using maximum likelihood separately for each country in each year. Results broadly resemble those for
export capabilities (7).

To verify that the graphed cross sectional distributions in Figures A2 and A3 in the Appendix are not a
consequence of arbitrary industry aggregation, we construct plots also at the 2-digit and 3-digit levels, based on
SITC revision 2 data in 1987 and 2007. The figures also graph the fit of log absolute advantage in the cross
section to a log normal distribution using maximum likelihood separately for each country in each year. As
Figures S6 and S7 show for 60 time-consistent 2-digit industries, and Figures S8 and S9 for 224 time-consistent
3-digit industries, stability across countries and over time in the curvatures are broadly similar to those for export
capabilities at our benchmark SITC 2-3 digit level for 133 industries.

To further substantiate the stationarity of comparative advantage measures, we compare the pooled industry-
level measures of comparative advantage across countries from OLS-based export capability to those from
PPML-based export capability in Figure S10. We obtain log comparative advantage as the residuals from OLS
projections on industry-year and source country-year effects and plot the percentiles of the global distribution
of these comparative advantage measures over time. The time lines for the 5th/95th, 20th/80th, 30th/70th, and
45th/55th percentiles are, with minor fluctuation, parallel to the horizontal axis for both OLS-based and PPML-
based export capability—a strong indication that the global distribution of comparative advantage is stationary.
Figure S11 plots a selection of time lines from Figure S10 and compares them visually to the GMM estimates
of the comparative advantage diffusion (17) in Table 2 (parameters 7 and ¢ in columns 1 and 4). The fit is close,
especially for the PPML-based measures of export capability.
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Figure S10: Percentiles of Comparative Advantage Distributions by Year, OLS- and PPML-based Mea-
sures

(S10a) OLS gravity measures (S10b) PPML gravity measures

1962 1967 1972 1977 1982 1987 1992 1997 2002 2007 1962 1967 1972 1977 1982 1987 1992 1997 2002 2007

[ 1st/99th Petl. [ sth/gsth Petl. [ 1oth/90th Petl. [ 1sv99th Petl. [ sth/gsth Petl. "1 1oth/goth Pctl.
[ 20th/8oth Pct. I 30th/70th Pctl. I +5th/55th Pt [ 20th/8oth Pctl. I 30th/70th Pctl. I 45th/55th Pctl.

Source: WTF (Feenstra et al. 2005, updated through 2008) for 133 time-consistent industries in 90 countries from 1962-2007; OLS and
PPML gravity measures of export capability (log absolute advantage) k¥ = In A from (6) and (8).

Note: We obtain log comparative advantage as the residuals from OLS projections on industry-year and source country-year effects (d;+
and ds¢) for (a) OLS and (b) PPML gravity measures of log absolute advantage In A;s:. Panel (a) repeats Panel (a) of Figure 3

S.7 GMM estimates of comparative advantage diffusion at ten-year horizon

We repeat GMM estimation of the generalized logistic diffusion of comparative advantage at the ten-year horizon.
Table S3 shows that estimated coefficients at the ten-year horizon are comparable to those for our benchmark
estimation at the five-year horizon. The qualitative similarity in global diffusion coefficients at varying intervals
for the estimation moments suggest that our results tightly characterize the dynamics of comparative advantage.
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Figure S11: Fit to Percentiles of Comparative Advantage Distributions by Year, OLS- and PPML-based
Measures
(S11a) OLS gravity measures (S11b) PPML gravity measures

n [Te]
N N
T T T T T T T T T T T T T T T T T T T T
1962 1967 1972 1977 1982 1987 1992 1997 2002 2007 1962 1967 1972 1977 1982 1987 1992 1997 2002 2007
[ sth/gsth Petl. [ 2oth/soth Pt [ sth/esth Petl. [ 20th/soth Petl.
I 35th/65th Pctl. —+— —:= Predicted Percentiles I 35th/65th Pctl. — —:—:= Predicted Percentiles

Source: WTF (Feenstra et al. 2005, updated through 2008) for 133 time-consistent industries in 90 countries from 1962-2007; OLS and
PPML gravity measures of export capability (log absolute advantage) k£ = In A from (6) and (8).

Note: The graphs depict the observed percentiles as previously shown in Figure S10 and the predicted percentiles from the GMM estimates
of the comparative advantage diffusion (17) in Table 2 (parameters 1 and ¢ in columns 1 and 4). Observed log comparative advantage is
based on the residuals from OLS projections on industry-year and source country-year effects (J;+ and d5¢), absorbing the country-specific
stochastic trend component In Z,; from (18), for (a) OLS and (b) PPML gravity measures of log absolute advantage In A;s:.
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