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A B S T R A C T

Reliable representations of global urban extent remain limited, hindering scientific progress across a range of
disciplines that study functionality of sustainable cities. We present an efficient and low-cost machine-learning
approach for pixel-based image classification of built-up areas at a large geographic scale using Landsat data.
Our methodology combines nighttime-lights data and Landsat 8 and overcomes the lack of extensive ground-
reference data. We demonstrate the effectiveness of our methodology, which is implemented in Google Earth
Engine, through the development of accurate 30 m resolution maps that characterize built-up land cover in three
geographically diverse countries: India, Mexico, and the US. Our approach highlights the usefulness of data
fusion techniques for studying the built environment and is a first step towards the creation of an accurate
global-scale map of urban land cover over time.

1. Introduction

Urbanization has been a fundamental trend of the past two centuries
and a key force shaping the development of the modern world. Between
1950 and 2014, the share of the global population living in urban areas
increased from 30% to 54%, and in the next few decades is projected to
expand by an additional 2.5 billion urban dwellers, primarily in Asia
and Africa (Seto et al., 2011; UN, 2014). Urban population growth is
accompanied by a dramatic increase in the land area incorporated in
cities (Seto et al., 2011). While urbanization in rapidly growing nations
is helping lift hundreds of millions of people out of poverty, it is also
creating immense societal challenges by increasing greenhouse-gas
emissions, destabilizing fragile ecosystems, and creating new demands
on public services and infrastructure that impose significant burdens on
the environment (Ban et al., 2015). Timely and reliable information on
the extent of urban areas is fundamental for the support of sustainable
urban development and management (Ban et al., 2015; Jacob and Ban,
2015). Despite the importance of understanding the drivers of urban
growth, we are still unable to quantify the magnitude and pace of

urbanization in a consistent manner at high resolution and global scale
(Ban et al., 2015; Giri et al., 2013).

The revolution in geospatial data has transformed how we study
cities. Previous approaches leveraged household surveys but these are
expensive to collect, produced infrequently, and subject to measure-
ment problems. Since the 1970s, however, terrestrial Earth-observation
data have been continuously collected in various spectral, spatial and
temporal resolutions. As improved satellite imagery becomes available,
new remote-sensing methods and machine-learning approaches have
been developed to convert terrestrial Earth-observation data into
meaningful information about the nature and pace of change of urban
landscapes and human settlements (Ban et al., 2015; Chen et al., 2015;
CIESIN, 2005; Gaughan et al., 2013; Pesaresi et al., 2016; Potere et al.,
2009; Seto et al., 2011; Taubenböck et al., 2012).

The availability of satellite data has triggered the development of
new methods to map global land cover using remotely-sensed data such
as Landsat (Chen et al., 2015; Gaughan et al., 2013; Goldblatt et al.,
2016; Patel et al., 2015), MODIS (Moderate Resolution Imaging Spec-
troradiometer) (Schneider et al., 2009, 2010; Wan et al., 2015), DMSP-
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OLS (Elvidge et al., 2014; Liu et al., 2012; Xiao et al., 2014; Zhang and
Seto, 2013) and other spaceborne High-Resolution (HR), Very-High-
Resolution (VHR) and Synthetic-aperture radar (SAR) radar sensors
(Ban et al., 2015; Gamba et al., 2011; Jacob and Ban, 2015). Recent
studies have developed automated and semi-automated classification
procedures to map global land cover at a 30 m resolution with high
accuracy (Ban et al., 2015; Chen et al., 2015). Because Landsat satellites
have been collecting data from Earth since 1972, Landsat data are often
used for analysis of urban change (Patel et al., 2015), and are ideal for
land cover mapping (Woodcock et al., 2008). Nighttime light data are
also associated with developed land (Elvidge et al., 2014; Levin and
Duke, 2012; Sutton, 2003) and can be used to infer the extent of urban
areas (Bagan and Yamagata, 2015; Small and Elvidge, 2013; Zhang and
Seto, 2013), as well as economic activity at the local, regional and
national levels (Elvidge et al., 2014; Henderson et al., 2003; Keola et al.,
2015). Sensors on board the Operational Line-scan System of the De-
fense Meteorological Satellite Program (DMSP-OLS) have captured ar-
tificial lighting since the early 1990's. A pixel's nighttime light value
that exceeds a specified threshold, which may vary across regions or
countries, signifies urban development (Henderson et al., 2003; Liu
et al., 2016; Small and Elvidge, 2013; Su et al., 2015; Wei et al., 2014;
Zhou et al., 2014, 2015). However, inference using nighttime-light data
are often inaccurate, particularly in low-density urban areas (Zhang and
Seto, 2013). DMSP-OLS can also exaggerate the extent of urban areas
(Henderson et al., 2003; Small et al., 2005), while overlooking small or
developing settlements. In addition, the extent and intensity of lit areas
cannot directly delimit urban regions due to the “blooming” effect
(Imhoff et al., 1997) and “saturation” of pixels (Hsu et al., 2015).
Blooming refers to the identification of lit areas as consistently larger
than the settlements with which they are associated (Small et al., 2005);
saturation occurs when pixels in bright areas, such as in city centers,
reach the highest possible digital number (DN) value (i.e., 63) and no
further details can be recognized (Hsu et al., 2015).

Until recently, most remote sensing studies focused on local settings
(Herold, 2009). Mapping land cover at a national or regional scale is
challenging because of the lack of high-resolution global imagery, the
heterogeneous and complex spectral characteristics of land, and the
small and fragmented spatial configuration of many cities (Chen et al.,
2015; Herold, 2009). In the case of mapping urbanization, existing
maps of urban land show considerable disagreement on the location
and extent of urbanization (Potere et al., 2009; Seto et al., 2011) and
are limited across space and time. These inconsistencies arise in part
because the delineation of urban land depends on the input data
(Schneider et al., 2010), which may capture different dimensions of
urbanization, such as built-up land cover or land use and population
density (Bagan and Yamagata, 2014; Stevens et al., 2015; Tatem et al.,
2007).

1.1. Detecting urbanization using machine learning

Urban areas can be detected in satellite imagery using various ma-
chine-learning approaches (e.g., supervised, unsupervised and semi-
supervised). These approaches typically rely on reference data that
mark urban features, either for training or validation. Reference data
are fundamental not only for mapping urbanization across space, but
also for classification over time (Boucher and Seto, 2009). Some of the
reference datasets used for classification include Landsat-based urban
maps (Potere et al., 2009), census-based population databases (Stevens
et al., 2015), hand-labeled examples (Goldblatt et al., 2016), and data
collected via crowd-source platforms, such as OpenStreetMap (OSM)
(Belgiu and Drǎguţ, 2014; Estima and Painho, 2015). However, because
they are expensive to collect, reference datasets for large geographic
scales are scarce (Miyazaki et al., 2011). Due to the scarcity of ground-
reference data, it is often necessary to exploit existing global coarse
datasets and classification products to create accurate higher-resolution
maps of urban areas (Kasimu et al., 2009; Trianni et al., 2015).

Moreover, mapping land cover at a global scale and with high precision
requires effective, efficient and operational approaches to deal with a
very large volume of data. For example, it is estimated that over 10,000
Landsat satellite images are required to cover the entire Earth at 30 m
resolution (Chen et al., 2015). Until recently, the majority of studies
that analyze urbanization have been limited in their geographic scale
because of the lack of extensive high-resolution satellite data, scarcity
of ground-reference data, and computational constraints. Emerging
cloud-based computational platforms now allow for scaling analysis
across space and time. Google Earth Engine (GEE) is one platform that
leverages cloud-computing services to achieve planetary-scale utility.
GEE has been previously used to map population (Patel et al., 2015;
Trianni et al., 2015), urban areas (Goldblatt et al., 2016), and surface
water (Pekel et al., 2016). This paper contributes to this literature by
developing a machine-learning methodology for supervised high-re-
solution image classification of built-up areas using GEE's cloud-based
computational platform.

1.2. Research objective and contribution

The use of nighttime remotely-sensed data to map urbanization is
not new to the literature. Remotely-sensed data on artificial lighting has
long been considered an economical way to map urbanization and
development across the globe (Elvidge et al., 2009). By utilizing the
distribution of vegetation land cover, the combination of nighttime and
daytime data increases the heterogeneity of urban and suburban land
cover (e.g., distinguishing between built-up land cover and vegetation
in urban areas) and improves the characterization of inter-urban
variability in nighttime luminosity (Zhang et al., 2013). This, in turn,
improves the ability to detect urban features (Lu et al., 2008; Ma et al.,
2014) including sub-pixel fractional urban land cover (Huang et al.,
2016). Several spectral indices that combine nighttime light and ve-
getation spectral characteristics have been developed, including the
Vegetation Adjusted NTL Urban Index (VANUI) (Jing et al., 2015;
Zhang et al., 2013), the Normalized Difference Urban Index (NDUI)
(Zhang et al., 2015) and the Normalized Difference Spectral Vector
(NDSV) (Trianni et al., 2015). These indices increase the separability
between urban and non-urban land cover.

We develop a methodology that combines nighttime and daytime
remotely-sensed data. We collect training examples automatically using
DMSP-OLS data, and use them for classification of built-up areas with
daytime Landsat 30 m spatial resolution imagery. Previous studies that
combine nighttime and daytime data have either been limited in their
spatial application (i.e., the ability to generalize the method and to
apply it over regions with heterogeneous land cover) or spatial re-
solution (i.e., many of the existing approaches, for example those that
rely on MODIS or DMSP-OLS, are limited in their spatial resolution). In
this study, we adopt a hexagonal tessellation mapping approach to
handle large variation across regions (where we refer to each hexagon
in the hexagonal grid as a hex-cell). We collect training examples from
each hex-cell and classify the hex-cell as an independent unit of ana-
lysis.

Our methodology can be applied across heterogeneous land cover
and across time and, crucially, does not rely on expensive hand-labeled
examples. It requires minimal manual adjustments for training and
classification, and does not require adjustments to local parameters.
This feature makes the approach scalable across space and time.
Importantly, the methodology is time-invariant and can be applied
whenever Landsat and DMSP-OLS data are coincident. The robustness
of the methodology lies in our approach to sample training examples
(i.e., according to the relative intensity of the emitted light at night and
the distribution of vegetation land cover) and on the per-hex-cell
classification, which allows us to account for regional variations in the
land cover. Finally, we assess the accuracy of the methodology using an
extensive dataset of 84,564 hand-labeled polygons characterizing built-
up (BU) and not built-up (NBU) pixels for each of the three study areas,
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which are described below.

1.3. Study areas

To illustrate our methodology and its applicability in heterogeneous
and diverse geographic conditions, we map built-up land cover in three
countries that are characterized by distinct geographic conditions (e.g.,
land cover, topography, climate, soil, landform, and fauna): India,
Mexico, and the United States (US).

1.3.1. India
The share of India's population living in urban areas in 2015 was

33%, which is much lower than the corresponding values of 79% and
82% for Mexico and the US, respectively. India is, however, urbanizing
at a relatively rapid rate (Fig. 1). For example, between 2010 and 2015,
India's average annual rate of change of the urban population was
1.14%, compared to 0.36% and 0.21% in Mexico and in the US, re-
spectively. By 2050, half of India's population is likely to be urban.

1.3.2. Mexico
Mexico has gone through three major phases of urbanization. In the

first phase, 1900–1940, urban growth slowly incorporated 10% to 20%
of the population. In the second phase, 1940–1980, rapid urban ex-
pansion, particularly in Mexico City, increased the share of urban po-
pulation to 55%. Since the 1980s, more dispersed moderate urban
growth increased the urban share of the population to over 70%
(Consejo Nacional de Población, 2012). The current phase of urbaniza-
tion is characterized by informal urbanization on the city periphery,
representing 65% of all new housing construction in Mexico City, and is
even higher for small to mid-sized cities (Connolly, 2014). Informal
settlements tend to be marginalized in terms of lower socio-economic
development, access to services like water and electricity, and are more
vulnerable to risks like water scarcity and flooding (Aguilar, 2008;
Aguilar and Guerrero, 2013; Consejo Nacional de Población, 2012;
Eakin et al., 2016).

1.3.3. US
In the context of the US, the initial urban growth occurred from

1790 to 1890 and the country has become increasingly urban since (US
Census Bureau, 2012). In 1910, the Census Bureau defined an urban
area as one with a population above 2500, and the 1920 census marked
the first time that 50% of the US population lived in an urban area (US
Census Bureau, 2016).

2. Conceptual framework: Infused DMSP-OLS/Landsat
methodology

Our methodology combines Earth-observation datasets from two
domains: DMSP-OLS and Landsat. Using a subset of the data, we
identify the optimal parameters to the classifiers and then classify the
built-up land cover in the entire area of each country. The classification
procedure involves five steps (Fig. 2): (1) Divide each country into a
uniform hexagonal grid; (2) Pre-process Landsat 8 images; (3) Extract
labeled examples from DMSP-OLS; (4) Perform supervised image clas-
sification; and (5) Validate and test. We next describe these steps in
detail.

2.1. Divide each country into a uniform hexagonal grid (“mapping zones”)

Mapping heterogeneous land cover at a large geographic scale re-
quires partitioning the region of interest into a finite number of rela-
tively homogenous sub-regions that are characterized by similar land-
form, soil, vegetation, spectral reflectance, and image footprints
(Homer et al., 2004). This practice is often referred to as ‘zone mapping’
(Homer and Gallant, 2001). The partition can be according to different
criteria, such as land cover and land use, socio-political definition, or
size (Hunsaker et al., 1994; O'Neill et al., 1996; Turner, 1989), or by
means of an artificial grid system where each element in the grid is
treated as an independent region of interest. Examples of such grids in
practice include the Global Grid (GG) system (Theobald, 2016) and the
ISEA DGGs of Gong et al. (2013) for global land cover mapping. There
are many advantages for using an artificial grid system over adminis-
trative division (e.g., census areas or political boundaries) or any other
thematic division (e.g., ecological or climatic regions). First, adminis-
trative divisions are often delineated according to criteria that are un-
related to physical characteristics (e.g., the boundary between Wa-
shington, D.C., and Maryland). Second, the geographic scale and the
size of the administrative division varies within and between countries
(e.g., the division into census tracts and blocks). Unlike a uniform
global artificial grid system, an administrative division does not allow
for a multi-geographic-scale classification approach using recursively-
divided units of analysis.

Here we partition each of our three countries of interest into an
equal-area hexagonal grid (or a hexagonal tessellation). Hex-cells in a
hexagonal tessellation are arranged in a contiguous global lattice,
which is the most compact arrangement of many equal circles (Birch
et al., 2007). Hexagonal grids are advantageous because they are
characterized by elements that do not have gaps or overlaps and the
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Fig. 1. Annual changes in share of urban population
in India, US and Mexico compared to world average
(UN, 2014).
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center-to-center distances between adjacent grid cells are approxi-
mately equal. Moreover, hex-cells have a topology that is symmetrical,
invariant, and of equal area, and can be recursively partitioned into
smaller divisions of grids (Richards et al., 2000) (Fig. 3, right). Since the
size of each hex-cell in the grid may affect the accuracy of the classi-
fication, we use a hexagonal tessellation that in successive classifica-
tions treats each pixel as belonging to a hex-cell of a different size. We
examine the following sizes of hex-cells (different center-to-center
distances): a distance of 1 decimal degree (1-degree), 4 decimal degrees
(4-degrees) and 8 decimal degrees (8-degrees) from center to center
(see Fig. 3 for illustration).

2.2. Pre-process Landsat 8 images (the classifier's inputs)

We use Landsat 8 data as classifier inputs (predictors). We apply a
standard Top-of-Atmosphere (TOA) calibration on all USGS Landsat 8
Raw Scenes in one year. Since processed DMSP-OLS is only available up
through 2013, our analysis begins that year. We assign a “cloud score”
to each pixel and select the lowest possible range of cloud scores. The
cloud score is a simple cloud-likelihood score, intended to compare
multiple looks at the same point for ‘relative’ cloud likelihood (across
time). The score, ranging between 0 and 100, is determined according
to the brightness of a pixel, its temperature, and a computed per-pixel
Normalized Difference Snow Index (NDSI). Similar to Trianni et al.
(2015), we retrieve only those scenes with less than 10% cloud

Fig. 2. Schematic illustration of the methodology.
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coverage.
We compute per-band median values from the accepted pixels. Per-

pixel median values are insensitive to extreme values, such as very
bright or dark pixels, in a stack of scenes (Flood, 2013). The decimal
value of each pixel is scaled to an 8-bit range (0–255) for display
purposes. We also calculate six additional per-pixel spectral indices and
add them as additional inputs to the classifier. These indices are com-
monly used to identify bodies of water (Normalized Difference Water
Index, NDWI), built-up areas (Normalized Difference Built-up Index,
NDBI; Urban Index, UI, NDSV), and vegetation (Normalized Difference
Vegetation Index, NDVI; Enhanced Vegetation Index, EVI). NDWI
(McFeeters, 1996) is commonly used to identify open water or to
measure vegetation water content. This index and subsequent versions
of it (e.g., the Modification of Normalized Difference Water Index
(NDWI)) (Xu, 2006) have been shown to correlate negatively with
urban areas and impervious surface (Chen et al., 2006; Xu, 2008). NDVI
(Tucker, 1979) and its variant, EVI (Huete et al., 2002), produce
spectral indices that tend to negatively correlate with urban areas.
Previous studies have used these indices to identify urban areas and to
measure urban characteristics such as heat islands, changes in net pri-
mary productivity, and urban form (Chen et al., 2006; Clinton and
Gong, 2013; Estoque and Murayama, 2015; Li et al., 2013; Myint et al.,
2011; Xu, 2008; Yuan and Bauer, 2007; Zhao et al., 2016). UI
(Kawamura et al., 1996) and NDBI (Zha et al., 2003) are both used to
identify built up areas and correlate positively with urban land cover
and impervious surface (Chen et al., 2006; Estoque and Murayama,
2015; Li et al., 2013). NDSV (Normalized Difference Spectral Vector)
(Angiuli and Trianni, 2014; Trianni et al., 2015) is used to identify
consistent human settlement and artificial materials. This index, which
is composed out of all possible normalized indexes combining two
bands with the same spatial resolution, has been shown to produce
robust and globally consistent measures of urban land cover (Angiuli
and Trianni, 2014). We describe these indices in detail in Appendix A.

2.3. Extract “built-up” and “not built-up” labeled examples from DMSP-
OLS

DMSP-OLS sensors detect visible and near-infrared (VNIR) emis-
sions at night. Because highly lit pixels are associated with man-made
structures that emit light, we assume that pixels with DN values that
exceed a threshold represent areas with built-up land cover and man-
made structures. In this study we use DMSP-OLS (the “stable light”
band of the ‘F182013’ satellite) to identify highly lit pixels. The “stable
light” band discards ephemeral events, such as fires, but DMSP-OLS
sensors are sensitive to persistent lighting, including from other
sources, such as gas flares or volcanoes. Elvidge et al. (2009)'s Global
Gas Flaring Estimates showed that while in India and Mexico there are
no gas flares on land, the US has several gas flares on land, primarily in
remote locations in Texas and Wyoming. We use their data to remove
pixels that were classified as “built-up” from these locations during
post-processing.

We sample “built-up” examples from highly lit DMSP-OLS pixels.
We characterize a pixel as highly lit if its DN value exceeds a given
threshold. We define this threshold as a percentile value (the 50th,
75th, 90th, 95th or the 99th percentile) of all DMSP-OLS pixels within a
hex-cell. Additionally, we sample “not-built-up” examples from low-lit
pixels. We characterize a DMSP-OLS pixel as low-lit if its DN value is
lower than a given threshold (which we define as the 10th, 25th, 50th
or the 75th percentile of all DMSP-OLS pixels within a hex-cell). We do
not sample examples from DMSP-OLS pixels that are located in the
intermediate buffer between highly-lit and low-lit pixels(Fig. 4).

Due to the spatial resolution of DMSP-OLS and the blooming effect,
areas identified as highly lit may potentially include non-built-up land
cover. We therefore exclude these types of land cover from lit pixels
based on Landsat's per-pixel NDVI and NDWI values. We characterize a
pixel as vegetation if its NDVI value is higher than a given threshold.
Due to the heterogeneity of the land cover, we determine this threshold
separately for each hex-cell. We calculate the 50th, 75th, 90th, 95th
and the 99th percentile NDVI value of all pixels within the hex-cell and
remove from the DMSP-OLS highly-lit pixels all Landsat pixels whose

Fig. 3. The three examined hexagon levels: 1, 4, and 8° from center to center, for (a) Mexico, (b) India, and (c) the US (left); The cells in the grid can be recursively partitioned into smaller
divisions creating a hierarchical grid; (d) each pixel is classified multiple times, each time as part of a different hexagonal scale.
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NDVI value exceeds this threshold. Additionally, we remove bodies of
water from DMSP-OLS highly-lit pixels. We characterize a pixel as body
of water if its NDWI value is positive (see Gao, 1996).

Finally, we randomly sample 100,000 pixels in each hex-cell. We
create a point at the center of each Landsat pixel and associate each
point with the spectral values of the Landsat composite and derived
spectral indices. Each example includes a label (i.e., highly-lit or not)
and the spectral values from Landsat. These training examples are used
to build a classification model for each hex-cell, independently.

2.4. Perform supervised image classification

We train and classify each hex-cell using a Random Forest classifier.
Random Forests are tree-based classifiers that include k decision trees
and p randomly chosen predictors for each recursion. When classifying
an example, its variables are run through each of the k tree predictors,
and the k predictions are merged by voting on the most popular class.
The learning process of the forest involves some level of randomness.
Each tree is trained over a random sample of examples from the training
set and each node's binary question in a tree is selected from a random
subset of p input variables. We use Random Forest because previous
studies find that its performance is superior to other classifiers
(Goldblatt et al., 2016), especially when applied to large geographic

scales and when the data are noisy and high dimensional (Gislason
et al., 2006; Guan et al., 2013). Random Forests are computationally
less intensive than other tree ensemble methods (Jean et al., 2016;
Rodriguez-Galiano et al., 2012) and can effectively incorporate many
covariates with minimum tuning and supervision (Stevens et al., 2015).
We set the number of trees in the Random Forest classifier to 20. Pre-
vious studies show mixed results as for the optimal number of trees in
the decision tree. The number ranges between 10 trees (Zhang et al.,
2012) and 100 trees (Rodriguez-Galiano et al., 2012). Goldblatt et al.
(2016) show that although the performance of Random Forest improves
as the number of trees increases, this pattern holds only up to 10 trees;
the performance remains stable with up to 50 or even 100 decision
trees.

We map each hex-cell as an independent unit of analysis. We only
sample and classify hex-cells that include at least one DMSP-OLS lit
pixel (i.e., DN value above 0). These hex-cells, however, (i.e., the 1-
degree and 4-degrees hexagonal grids) may also include isolated rural
and suburban settlements that do not emit much light, which we still
wish to capture. To ensure that they are not omitted, pixels in the ex-
cluded hex-cells are mapped according to the classifier trained with
larger hex-cells (i.e., the 8-degree hexagonal grid). We clip the classi-
fication at the 8-degrees hex-cells to the extent of the smaller hex-cells
that were excluded from the analysis.

Fig. 4. The method to identify highly-lit and low-lit pixels for our classification training data. A pixel is characterized as highly-lit and as lowly-lit if its DN value exceeds and is below a
given threshold, respectively. The threshold is defined as a percentile value of all DMSP-OLS pixels in the hex-cell. This example presents three 1-degree hex-cells in India. The thresholds
to characterize highly-lit pixels are (a) 27, (b) 30 and (c) 17; The threshold to characterize low-lit pixels is 9. Note, that we do not sample examples from the intermediate buffer between
highly-lit and low-lit pixels (marked in light blue). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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The output of the classification is a per-pixel posterior probability
value (i.e., the probability that a pixel is built-up). We characterize a
pixel as “built-up” if the probability it is “built-up” is higher than a
given threshold. Previous studies determine this threshold based on
visual assessment (Schneider et al., 2010) or according to the natural
breaks in the data values (Mertes et al., 2015). Here, we determine this
threshold for each hex-cell using the Otsu algorithm, a clustering-based
image thresholding method (Otsu, 1979). Otsu is a nonparametric and
unsupervised method for automatic threshold selection that was ori-
ginally developed for picture segmentation. The method uses a dis-
criminant criterion to identify an optimal threshold that maximizes the
between-class variance. Specifically here, the threshold is chosen to
maximize the variance between “built-up” and “not-built-up” classes:

∑ −
=

p p( )
k

k
1

2
2

(1)

where the threshold partitions the pixels into classes k = 1 (built-up)
and k = 2 (not built-up). In the remote-sensing domain, Otsu has been
used for classification of mangrove forests (Chen et al., 2013) and urban
areas (Sirmacek and Unsalan, 2010).

Finally, we tile the classifications of the hex-cells to the extent of
each country and post process the classification maps. We clip them to
the extent of the countries' borders and remove misclassified built-up
pixels from gas flaring areas using the Elvidge et al. (2009) database.

2.5. Validate and test

In each country, we assess the accuracy of the classification using
hand-labeled examples. We manually label these examples (polygons,
30 m by 30 m in size) as “built-up” or as “not built-up”. We define a
polygon (30 m by 30 m in size) as “built-up” if the majority of its area
(50% or greater) is paved or covered by human-made surfaces and used
for residential, industrial, commercial, institutional, transportation, or
other non-agricultural purposes. Otherwise, it is defined as “not built-
up”. Fig. 5 presents examples of “built-up” and “not built-up” labeled
polygons. Previous studies, including Goldblatt et al. (2016), Potere

et al. (2009) and Schneider et al. (2010), propose a similar definition
for urban. For India, we use Goldblatt et al.'s (2016) ground-reference
dataset, which includes 21,030 examples (30 m by 30 m in size) labeled
as “built-up” or as “not built-up” that span the entire country (4682
polygons labeled as built-up and 16,348 labeled as not built-up). The
polygons are manually labeled by two graduate students (each polygon
is labeled by one student) who were provided with extensive training
and supervised by the researchers. Each student was provided with an
equal proportion of samples. The students labeled each polygon either
as “built-up” or as “not built-up” based on a visual interpretation of the
most recent available high-resolution satellite image in Google Earth
(typically from 2014 to 2015).

For the US and Mexico, we construct a manually labeled ground-
reference dataset of 20,000 examples (polygons, 30 m by 30 m in size)
for each country. To ensure representative “built-up” and “not built-up”
examples, we construct examples using a random stratified sampling
procedure based on the intensity of nighttime light (the stable light
band of DMSP-OLS). In each country, we identify the DMSP-OLS pixels
whose value is 63 (the highest possible value). Then, we calculate a 5-
pixel radius circular kernel (a buffer of approximately 5 km). In each
country, we select a random sample of points: 15,000 from the DMSP-
OLS pixels with a DN value 63 and 5000 from the 5 km buffer zone. A
30 × 30 m polygon is drawn around each sample point. We overlay
these polygons onto high-resolution imagery in Google Earth. The US
and Mexico examples are labeled by six undergraduate students (three
students per country), each polygon is labeled either by one (in Mexico)
or by three students (in the US). The students were provided with ex-
tensive training and were supervised by the researchers. The students
were instructed to flag ambiguous polygons where the definition of the
polygon as built-up or not built up is not absolutely clear; we exclude
these polygons from the dataset. We randomly assign half of the dataset
in each country as the test set (to determine optimal parameters to the
classifier) and half as the validation set (to validate the final classified
map). Between 22% and 27% of the polygons are labeled as built-up
(Table 1).

Previous studies (Liu and Zhou, 2004; Rwanga and Ndambuki,
2017; Schneider et al., 2009; Zhang and Seto, 2011) rely on hand-

a b c d

e f g h
Fig. 5. Ground-reference labeled examples. Each example (a polygon 30 m× 30 m in size) is labeled as “not built-up” (top) and as “built-up” (bottom). To illustrate, the examples in
Fig. 5a, b and d are labeled as “not built-up” (the majority of the polygon in Fig. 5a is an agriculture field, the majority of the polygon in Fig. 5b is a backyard covered with grass, and the
majority of the polygon in Fig. 5d is covered with grass). The examples in Fig. 5e and g are labeled as “built-up” (the majority of the polygon in Fig. 5e is a residential building and a paved
road; the majority of the polygon in Fig. 5g is a paved parking lot).
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labeled examples for accuracy assessment of classification maps.
However, a key challenge in any machine learning task is “class noise”
which may be caused by a subjective interpretation of the target label
(Foody, 2002). To assure the validity of our hand-labeled examples, we
add an additional source of reference data to the final accuracy of our
classification. We utilize DigitalGlobe's Tomnod platform to label
23,250 examples (referred to as Tomnod examples). The examples are
labeled as “built-up” or as “not built-up” according to Tomnod's
CrowdRank algorithm (Wood and Har-Noy, 2013), a measure designed
to estimate crowd consensus and to assure that a sufficient number of
labeling individuals reach a consensus for each labeled examples. The
rank is also used to verify the accuracy and reliability of individual
contributors. Together with the hand-labeled examples, the dataset we
use for test and for validation consists of 84,564 labeled examples in
total (Table 1).

We use half of the hand-labeled dataset (the test set) to assess al-
ternative parameters for the classifiers, and the other half (the valida-
tion set), in addition to the Tomnod examples, to evaluate and report its
performance and the accuracy of the final classification map. We esti-
mate the performance of the classifiers with several performance esti-
mators. We refer to the class “built-up” (BU) as positive and to the class
“not built-up” (NBU) as negative: (1) Producer's accuracy, referred to as
True-Positive Rate (TPR), the percentage of actual BU examples clas-
sified correctly as BU; (2) True-Negative Rate (TNR), the percentage of
actual NBU examples classified correctly as NBU; (3) Balanced
Accuracy, the average of TPR and TNR; and (4) User's accuracy, the
percentage of correctly classified BU examples of all examples predicted
as BU.

′ = +Producer s accuracy (TPR) TP/(TP FN) (2)

= +TNR TN/(TN FP) (3)

= +Balanced Accuracy (TPR TNR)/2 (4)

′ = +User s accuracy TP/(TP FP) (5)

where TP is the number of the actual BU examples predicted to be BU;
TN is the NBU examples predicted as NBU; FN is the actual BU examples
predicted as NBU and FP is the actual NBU examples predicted as BU.

2.5.1. Optimal parameters to the classifier
We use half of the hand-labeled dataset (the test set) to classify 50 1-

degree hex-cells per country and to assess alternative parameters for the
classifiers. We select hex-cells for which we have the largest number of
hand labeled examples (at least 35 examples). This accuracy assessment
procedure is designed to identify (1) the optimal percentile values to
characterize a DMSP-OLS pixel as highly-lit and as lowly-lit; (2) the
optimal percentile value to characterize a Landsat pixel as containing
vegetation (according to NDVI); and (3) the optimal input features to
the classifier. We proceed in the following steps, also show in Fig. 6:

a. Define a Landsat pixel as vegetation: First, we define highly-lit
and low-lit DMSP-OLS pixels as pixels whose DN values are above

and below a constant percentile value (the 99th percentile) of all
DMSP-OLS pixels in a hexagon, respectively. We remove from
highly-lit pixels bodies of water (i.e. Landsat pixels with a positive
NDWI value) and vegetation. We define a Landsat pixel as vegeta-
tion if its NDVI value exceeds either the 50th, 75th, 90th, 95th or the
99th percentile of the NDVI value of all Landsat pixels in a hex-cell.
We perform classification with Landsat spectral bands, together with
five spectral indices (NDVI, NDWI, NDBI, EVI, UI) as inputs to the
classifier. Based on these results, we determine the optimal per-
centile value to characterize a Landsat pixel as vegetation.

b. Classify highly-lit pixels: We define a DMSP-OLS pixel as highly-lit
if its DN value exceeds either the 50th, 75th, 90th, 95th or the 99th
percentile value of all DMSP-OLS pixels within a hex-cell (below this
value, the pixel is defined as low-lit). We remove bodies of water
(i.e., a positive NDWI value) and vegetation (according to the op-
timal NDVI percentile value found in step (a)) and perform classi-
fication with Landsat's band values together with five spectral in-
dices (NDVI, NDWI, NDBI, EVI, UI) as input (we do not include
NDSV here). These results indicate the optimal percentile threshold
to characterize a DMSP-OLS pixel as highly lit. Pixels below the
threshold are classified as lowly lit.

c. Determine inputs to the classifier: We define a DMSP-OLS pixel as
highly-lit according to procedure in (b) and remove bodies of water
(i.e., a positive NDWI value) and vegetation (according to the de-
finition of a Landsat's vegetation pixel from step (a)). We assess the
performance of the classifiers with five combinations of inputs: (1)
only Landsat band values (without additional spectral indices);
Landsat bands together with (2) NDVI; (3) NDBI; (4) NDVI, NDWI,
NDBI, EVI, UI; and (5) NDSV. The result of this step indicate the
optimal inputs to the classifier.

d. Classify lowly-lit pixels: In the procedure above, we define a pixel
as lowly lit if it is not highly lit. However, this definition may result
in mislabeled pixels as “not built-up”, especially in proximity to
highly-lit pixels in the core of settlements. In the final step of the
parameter evaluation, we sample “not built-up” examples only from
DMSP-OLS pixels whose DN value is below either the 10th, 25th,
50th and 75th percentile value of all DMSP-OLS pixels in a hex-cell.
We perform classification using the optimal parameters found in
steps (a) through (c). Based on these results, we determine the
threshold to identify a DMSP-OLS pixel as lowly-lit.

3. Results

3.1. Optimal parameters to classifier

As explained above, we first select in each country 50 1-degree hex-
cells in order to identify the optimal parameters to the classifier. We
classify these hex-cells and assess the accuracy of the classification with
the test set (the results of the accuracy assessment with each of the
examined parameter are presented in Appendix B).

The results show variations between countries in the optimal
parameters to the classifiers. First, we find that the countries differ in
the threshold to characterize a DMSP-OLS pixel as highly lit. In the US
and in Mexico the optimal threshold is the 90th percentile value of all
DMSP-OLS pixels in a hex-cell, while in India it is the 95th percentile.
We find that the optimal threshold to define a pixel as lowly lit is the
75th percentile value in the three countries. Additionally, the countries
differ in the optimal threshold to define a Landsat pixel as vegetation. In
India and the US, the best performance is achieved when Landsat pixels
are defined as vegetation if their NDVI value exceeds the 90th per-
centile of all pixels in a hex-cell, while in Mexico this threshold is lower
(the 75th percentile). We remove vegetation Landsat pixels from
highly-lit DMSP-OLS pixels. Moreover, the results show variations be-
tween countries in the optimal inputs to the classifiers. Classification
with NDVI, NDWI, NDBI, EVI, UI as inputs to the classifier results in the
best performance (determined by the highest balanced accuracy) for the

Table 1
the distribution of the built-up and not built-up points for each country.

BU points NBU points Total

Hand-labeled polygons
India 4682 (22.26%) 16,348 (77.74%) 21,030
US 4386 (21.6%) 15,898 (78.4%) 20,284
Mexico 5477 (27.4%) 14,523 (72.6%) 20,000

Tomnod-labeled polygons
India 2276 (23%) 7602 (77%) 9878
US 3305 (30.7%) 7456 (69.3%) 10,761
Mexico 829 (31.8%) 1782 (68.2%) 2611

84,564

R. Goldblatt et al. Remote Sensing of Environment 205 (2018) 253–275

260



US and Mexico, while classification with NDSV as input to the classifier
results in the best performance of the classifiers for India. With these
parameters (Table 2), classification of the 50 hex-cells yields an accu-
rate classification of built-up land cover, indicated by a high balanced
accuracy of 79%, 81% and 84% for classification in the US, India and
Mexico, respectively (Table 3). User's accuracy ranges between 60% in
India to 67% and 68% in the US and Mexico, and the TNR and TPR
measures are above 75% in all countries.

3.2. The Otsu method

Random forests predict for each new example the probability it is a
positive example (in this case, a built-up pixel). This is a posterior
probability that ranges between 0 and 1. A pixel is defined as built-up if
the probability it is built-up exceeds a given threshold, which we
identify for each hex-cell using the Otsu method. The Otsu method has
shown to provide satisfactory results for thresholding an image when
the histogram of the pixels values is characterized by a non-normal
distribution, especially bimodal (Ng, 2006).

As clearly illustrated in Fig. 7 (the distribution of the posterior
probability values of all pixels within 12 hexagons), the distribution of
the posterior probability values is symmetric (U shaped), with two high
peaks in each histogram (hex-cell) that are separated by deep valleys.
These conditions allow for an effective performance of the Otsu
threshold methods in separating the left side of the histogram (low
posterior probability values) from the right side of the histogram (high
posterior provability values).

To summarize, classification of 50 hex-cells in each country shows
variations in the optimal parameters to the classifier. The countries
differ in the optimal definition of DMSP-OLS pixels as highly-lit, as well
as in the definition of a Landsat pixel as vegetation and in the optimal
inputs to the classifiers. Based on these results, we next map the built-
up land cover in the entire area of each country.

3.3. Classification of the entire area of each country

In the experiments described above, we treated each hex-cell (1-
degree distance from center to center) as the unit of analysis for training
and for classification. To determine the optimal scale of the hex-cells in
the hexagonal grid division, we next classify the entire area of each
country using three sizes of hexagonal grid divisions: 1, 4, and 8 dec-
imal degrees from center to center. We calculate the thresholds to
characterize highly-lit and lowly-lit DMSP-OLS pixels within each (1, 4
or 8°) hex-cell. As shown in Fig. 8 (the spatial distribution of the DN
threshold to determine a highly-lit pixel, per hex-cell scale and per

a

b

c

d

Fig. 6. The procedure to identify the optimal parameters to the
classifier. We select in each country 50 hexagon (1-decimal-degree
from center to center) and identify (1) the optimal percentile value
to characterize a DMSP-OLS pixel as highly-lit and as lowly-lit; (2)
the optimal percentile value to characterize a Landsat pixel as
containing vegetation (according to NDVI); and (3) the optimal
input features to the classifier. Each experiment (B-D) relies on the
optimal parameters found in the previous experiments. (* The five
indices are NDVI, NDBI, UI, NDWI, EVI).

Table 2
The optimal parameters to the classifiers, per country (India, US and Mexico): percentile
NDVI value to characterize a Landsat pixel as vegetation, percentile DN value to char-
acterize a DMSP-OLS pixel as highly-lit or low-lit and inputs to the classifier.

NDVI threshold
(percentiles)

Highly-lit pixels
(percentiles)

Inputs to
classifier

Low-lit pixels
(percentiles)

India 90th 95th NDSV 75th
US 90th 90th NDVI, NDWI,

NDBI, EVI,
UI

75th

Mexico 75th 90th NDVI, NDWI,
NDBI, EVI,
UI

75th

Table 3
Performance measures for classification of 50 1-degree hex-cells (classification with the
optimal parameters to the classifier): True positive rate (TPR), True negative rate (TNR),
balanced accuracy and User's accuracy.

TPR (producer's
accuracy)

TNR Balanced
accuracy

User's accuracy

India 77.5% 84.1% 80.8% 60.1%
US 82.5% 75.1% 78.8% 67.3%
Mexico 88.7% 78.9% 83.8% 67.6%
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country), there is large variation across and within countries. This
variation is also clearly illustrated in Fig. 9, the distribution histogram
of the DN threshold to determine highly-lit and low-lit pixels.

Next, we mask out vegetation and bodies of water from highly-lit
pixels, select built-up and not built-up examples, and perform su-
pervised image classification with NDVI, NDWI, NDBI, EVI, UI (in the
US and Mexico) and NDSV (in India) as additional inputs to the clas-
sifier. We classify each hex-cell as an independent unit of analysis and
predict, for each pixel, the probability (posterior probability) it is built-
up. The mean value of the posterior probability ranges between 0.29
and 0.43 and the distribution of the posterior probability threshold
within each country is skewed left. Fig. 10 presents the distribution of
the per hex-cell posterior probability threshold in each country, for
each hex-cell scale.

As shown in Table 4, there are also variations between countries in
the optimal hex-cell scale. Classification with the smallest level of hex-
cell (1-degree) yields the best performance in India and Mexico, while
classification with 4-degrees hex-cell scale yields the best performance
in the US (though in Mexico, classification with 1-degree hex-cell only
marginally exceeds classification with 4-degree hex-cells, by 0.4%). Of
the three countries, we find the highest accuracy performance for
classification in the US, indicated by a balanced accuracy of 82% and
Producer's accuracy of 73% (for classification with 4-degree hex-cells).
The balanced accuracy in India and in Mexico is a bit lower (around
77%) and the Producer's accuracy ranges between 61% to 63% (in India
and Mexico, respectively, for classification with 1-degree hex-cells).

When classification is performed with 8-degree hex-cells, the balanced
accuracy falls by up to 4.6% and the Producer's accuracy drops more
significantly by up to 13.4% (for example, from 63.2% to 49.8% in
India). The countries also differ in the level of hex-cell that results in the
highest User's accuracy rate. For example, we find the highest User's
accuracy in India for classification with hex-cell level of 4-degree while
in Mexico for classification with hex-cell level of 1-degree (70.4% and
76.7%, respectively).

3.4. Assessment of DMSP-OLS characterization of highly- and low-lit pixels

To evaluate the accuracy of our characterization of highly-lit and
low-lit DMSP-OLS pixels, we perform an additional per-hex-cell accu-
racy assessment. In each country, we adopt the optimal parameters to
the classifier (i.e., hex-cell scale, threshold to characterize a Landsat
pixel as vegetation and threshold to characterize a DMSP-OLS pixel as
highly-lit or as lowly-lit) to identify highly-lit DMSP-OLS pixels (i.e.,
locations of built-up examples) and lowly-lit pixels (i.e., locations of not
built-up examples). We compare this characterization with our valida-
tion set. This analysis is intended to assess our definition of highly-lit
and low-lit regions from which we sample built-up and not built-up
examples (we relate to the characterization of DMSP-OLS pixels as the
predicted class). We find that the balanced accuracy ranges between
67.2% in Mexico to 77% and 79.3% in India and the US, respectively.
Furthermore, when vegetation and bodies of water are not excluded
from highly-lit pixels the balanced accuracy drops in all countries, by
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Fig. 7. The histograms of the posterior probability values of all pixels in 12 1-degree hex-cell in India (a–d), US (e–h) and Mexico (i–l). The dashed line indicates the posterior probability
threshold according to Otsu method.
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up to 7.5%. By their nature, DMSP-OLS data are relatively “noisy” and
suffer from many limitations (e.g., coarse spatial resolution, blooming
effect), yet by relying on local thresholds to characterize highly-lit and
lowly-lit pixels as well as by removing vegetation land cover and bodies
of water, we improve the identification of built-up and not built-up
locations.

3.5. Accuracy assessment with validation set

The results indicate that the smallest level of hex-cells (1-degree)
results in the best performance of the classifiers in India and in Mexico,
while classification with 4-degrees hex-cells results in the best perfor-
mance in the US. Before evaluating these classification maps with the
validation set and with the Tomnod examples, we post-process these

Fig. 8. The threshold to identify a pixel as highly-lit, per level of hex-cells (1, 4, and 8°) and per country (India, Mexico and the US).
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maps. We clip them at the extent of each country's border, and remove
misclassified built-up pixels from areas with gas flares using the Elvidge
et al. (2009) database. The final post-processed classification maps span
the full area of the three countries (Fig. 11).

The confusion matrix for the accuracy assessment with the valida-
tion set is presented in Table 5. The results show a high balanced ac-
curacy rate of around 75% in India and Mexico and around 81% in the
US (Table 5). The accuracy measures for assessment with our validation
set and Tomnod examples are very close (Table 5). User's accuracy
ranges between 66% and 77% and the overall accuracy measure is
above 80% in all countries, (Table 5).

4. Discussion

We present a machine learning approach to map built-up areas at a
large geographic scale. Our methodology utilizes nighttime-light data
(derived from DMSP-OLS) as a source for training examples of built-up
and non-built-up areas. These examples are used for supervised image
classification in Landsat 8 imagery. To our knowledge, this is the first
study to develop a practical and simple pixel-based image classification
of built-up areas that utilizes nighttime light data as a source of training
examples and high-resolution daytime imagery as the input source for
the classifier. This methodology can be applied to map built-up areas
across space. Although many classification products map urban land,
they are typically limited in their temporal and/or spatial resolution

a b c

d e f

0%

10%

20%

30%

40%

50%

60%

70%

5 10 15 20 25 30 35 40 45 50 55 60 63

0%

10%

20%

30%

40%

50%

60%

70%

5 10 15 20 25 30 35 40 45 50 55 60 63

0%

10%

20%

30%

40%

50%

60%

70%

5 10 15 20 25 30 35 40 45 50 55 60 63

0%

10%

20%

30%

40%

50%

60%

70%

5 10 15 20 25 30 35 40 45 50 55 60 63

0%

10%

20%

30%

40%

50%

60%

70%

5 10 15 20 25 30 35 40 45 50 55 60 63

0%

10%

20%

30%

40%

50%

60%

70%

5 10 15 20 25 30 35 40 45 50 55 60 63

Fig. 9. The distribution of the threshold to identify a pixel as highly-lit ((a)India; (b)US; (c) Mexico), and low-lit ((d) India; (e) US; (f) Mexico) per level of hex-cells (1, 4, and 8°).
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Fig. 10. The distribution of the posterior probability threshold to determine a pixel as “built-up” in India, the US and Mexico.
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which limits their use to track urbanization processes over time.
Mapping built-up areas at a global scale is challenging because of

the scarcity of extensive ground-reference data for supervised classifi-
cation and validation. Crowd-sourced datasets, such as OpenStreetMap

(OSM) can also be used to map urban areas (Belgiu and Drǎguţ, 2014;
Estima and Painho, 2015). OSM is a valuable source for ground-re-
ference data because of its geographic extent and availability, but OSM
is subject to concerns about completeness and reliability (Schlesinger,
2015). The use of OSM for supervised image classification remains
challenging due to the risk of imbalanced distribution of class labels
(including spatial coverage), the presence of errors or missing class
assignments (“class-noise”), and inaccurate polygon boundary deli-
neations (Johnson and Iizuka, 2016). Our methodology overcomes the
lack of such data by utilizing low-resolution DMSP-OLS data for clas-
sification of built-up areas in Landsat imagery. By partitioning countries
into smaller regions, we allow the parameters of the classification
model to vary across space. The results indicate that the three examined
countries differ in the optimal hex-cell scale, or the size of the hex-cell
that is used as the unit of analysis (for training and for classification).
Classification at a local scale (a hex-cell) allows one to account for
heterogeneity in environmental conditions. Although many studies
address the effect of the classifiers' hyper-parameters on their perfor-
mance, here we show that classifiers also have an optimal spatial scale
that can be and should be discovered through techniques similar to
those we employ here. We leave the choice of the classifier scale for
each pixel for future research.

Table 4
Performance measures as a factor of the hex-cell level for India, the US, and Mexico.
Accuracy assessment with test set (classification of all hexagons in each country).

Overall
accuracy

TPR (producer's
accuracy)

TNR Balanced User's
accuracy

India
8° 84.2% 49.8% 94.0% 71.9% 70.3%
4° 84.7% 53.9% 93.5% 73.7% 70.4%
1° 83.8% 63.2% 89.7% 76.5% 63.9%

US
8° 87.2% 68.8% 92.7% 80.8% 73.6%
4° 86.8% 72.8% 91.0% 81.9% 70.6%
1° 85.9% 71.1% 90.4% 80.7% 68.7%

Mexico
8° 80.5% 64.1% 87.7% 75.9% 69.6%
4° 80.9% 64.1% 88.3% 76.2% 70.6%
1° 82.4% 61.4% 91.7% 76.6% 76.7%

Fig. 11. Classified built-up land cover (in red) across the full countries: (a) Mexico, (b) India and (c) the US. Post-processed classification maps, using 1-degree hex-cells. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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We assess the validity of our approach using an external validation
that uses a total of around 84,500 hand-labeled examples. The results
demonstrate the robustness of our approach and its applicability in
heterogeneous regions. Yet, the degree to which the “localization” of
our classifiers affects their performance varies between regions and
depends on the characteristics and heterogeneity of the mapped land-
scape. For example, because of the relatively similar spectral char-
acteristics of built-up areas and bare land, it is often hard to differ-
entiate between these land cover types through remote sensing,
especially in regions characterized by heterogenous land cover (e.g.
complex pattern of built-up areas, bare land and vegetation) (He et al.,
2010). Thus, differences in the complexity of the land cover within and
between countries, as well as between different hexagonal scales, may
affect the accuracy of the classification as we observe in this study.
Applying this method at a global scale will require automatic methods
for selecting, in any pixel, the scale of classification that maximizes
accuracy. Of course, the accuracy of the classification also depends on
the quality of the ground-reference data. Our methodology performs
well especially when built-up and not built-up examples can be suffi-
ciently differentiated in highly-lit areas. Because we rely on NDVI and
NDWI indices to separate between built-up and not built-up examples in
highly-lit DMSP-OLS pixels, our methodology may work best in regions
that are characterized by vegetation land cover. Future research could
rely on our method to improve accuracy in settings that are char-
acterized by bare land or bare soil, for example, by utilizing the En-
hanced Built-Up and Bareness Index (EBBI) (As-Syakur et al., 2012). In
addition, due to the lack of on-board calibration and unstable radio-
metric performance of the DMSP-OLS sensors, the absolute radiance of
light cannot directly represent temporal changes in the intensity of the
light, and thus, inter-sensor calibration is required to make our ap-
proach operational in time.

Our methodology overcomes the need for expensive hand-labeled
data for supervised classification as well as many of the limitations
associated with DMSP-OLS data. First, by identifying local per-hex-cell
thresholds to characterize DMSP-OLS pixels as highly-lit, we account
for the blooming effect and identify the boundaries of highly-lit set-
tlements. As illustrated in Fig. 12, due to the blooming effect, lit areas
are consistently larger than the built-up land cover they are associated
with. Second, by identifying vegetation land cover and bodies of water
according to NDVI and NDWI indices, we minimize the effect of the
over saturation of DMSP-OLS in city centers, which allows us to capture

the fine boundaries of built-up areas with high precision (Fig. 13). We
note that although the ground-reference data are not free of measure-
ment error, this methodology allows us to collect millions of labeled
examples. This large sample is valuable for training a classifier to map
built-up land cover.

We used 60,000 labeled examples (polygons) to assess the accuracy
of our classification compared to the definition of urban and built-up
land cover according to MCD12Q1 UMD MODIS classification scheme.
The results show that the accuracy of our classification exceeds
MCD12Q1 UMD MODIS classification scheme, indicated by a higher
balanced accuracy of between 2.5%–5.6% (Table 6). As illustrated in
Fig. 14, the extent of the built-up land cover that we detect with our
methodology is larger than the extent of the land cover that is classified
as urban and built-up by the MCD12Q1 classification.

Our classification also exceeds other national high-resolution land-
cover and land-use maps. To illustrate, a comparison between our ex-
amples and the US National Land Cover Database (NLCD) classification
map showed a lower balanced accuracy rate in the NLCD product
(72.3%) (because we define a polygon as “built-up” if 50% or greater of
its area is built, we compare our classification to the NLCD classes
“Developed, Medium Intensity” and “Developed High Intensity” as
“built-up”). Fig. 15 presents a comparison between our classification
and NLCD's classification of medium and high- intensity in three case
studies in the US.

Finally, classification of urban land cover can be performed using
Soft Classification (SC) techniques. This technique is the creation of a
continuous surface where each pixel is characterized by the fraction of
urban land, or impervious surface that is incorporated within it (Huang
et al., 2016; MacLachlan et al., 2017; Song et al., 2016; Van de Voorde
et al., 2011). Alternatively, one can use Hard Classification (HC) tech-
niques, where the extent of urban land is characterized as discrete per-
pixel binary class (presence/absence of urban land). Many of the ex-
isting global urban maps (e.g., the Global Rural-Urban Mapping Project
(GRUMP), MODIS Urban Land cover and GLC00) represent the surface
on Earth according to a discrete thematic classification (Potere et al.,
2009). In part, this is because many of the common classifiers, such as
Random Forests, predict for each pixel the probability (posterior
probability) it belongs to a given class (e.g., a pixel is characterized as
urban if the probability it is urban exceeds a given threshold). However,
a discrete map can further be translated into percentage of urban land,
for example, by aggregating high-resolution binary classification to a

Table 5
Performance measures as a factor of the hex-cell level for India, the US, and Mexico after post processing. Accuracy assessment with validation set and with Tomnod examples.

Overall accuracy TPR (producer's accuracy) TNR Balanced User's accuracy

Post processed maps – validation with validation set
India (1-dgree) 84.0% 59.6% 91.0% 75.3% 65.6%
US (4-degree) 86.2% 70.7% 90.8% 80.7% 69.0%
Mexico (1-degree) 82.0% 58.6% 92.3% 75.4% 77.1%

Post processed maps – validation with Tomnod set
India (1-dgree) 83.6% 56.5% 91.7% 74.1% 67.2%
US (4-degree) 85.9% 72.1% 92.1% 82.1% 80.3%
Mexico (1-degree) 80.2% 55.0% 91.9% 73.5% 76.0%

Confusion matrix for Post processed maps (validation with validation set)⁎

India US Mexico

Predicted

BU NBU SUM BU NBU SUM BU NBU SUM

Actual BU 1521 1031 2552 1734 719 2453 1961 1385 3346
NBU 799 8110 8909 778 7648 8426 584 6993 7577
Sum 2320 9141 11,461 2512 8367 10,879 2545 8378 10,923

⁎ Confusion matrices for classification with examples in the validation set. Comparison between predicted and actual built-up (BU) and not-built-up (NBU) examples.
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continuous coarser resolution surface representing per pixel percentage
urban land (Schneider et al., 2009, 2010; Zhou et al., 2015). To illus-
trate how our classification maps can be translated into a continuous
characterization of built-up land cover, we create an artificial grid of
500 m ∗ 500 m cells and calculate the fraction of built-up land cover

(according to our classification) in each cell. Fig. 16 presents, as an
example, per-pixel fractions of built-up land cover in nine cities in our
investigated countries. The figure demonstrates variations in built-up
density, both within and between cities. Some cities are characterized
by a clear gradient from the center of the city towards the periphery

a b c

d e f

g h i

Fig. 12. A comparison between our classification of built-up areas and lit pixels according to DMSP-OLS in (a) Ahmedabad, Gujarat, India; (b) New Delhi, Delhi, India; (c) Kolkata, West
Bengal, India; (d) Phoenix, Arizona, US; (e) Washington DC, US; (f) Denver, Colorado, US; (g) Mexico City, Mexico; (h) Guadalajara, Mexico; (i) Puebla, Mexico. The top figure in each city
presents our classification; the bottom figure presents the DN values of DMSP-OLS stable lights band: 30–55 (blue), 56–61 (green), 63 (red). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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(e.g., Hyderabad, India and Culiacán, Mexico) while other cities (e.g.,
Atlanta, Georgia, US), are less dense and the built-up density is more
evenly distributed throughout the city. Future research could also build
on our methodology to estimate sub-pixel fraction of built up land
cover, for example, by adopting the FCM and PCM algorithms to derive
relative and absolute measures of class membership within a pixel
(Foody, 2002) or by applying Spectral Unmixing methods (e.g., Mitraka
et al., 2016) that are especially useful for classification in complex
urban/peri-urban settings (Poursanidis et al., 2015).

To summarize, we have developed a framework for pixel-based
image classification of built-up areas that uses hexagonal tessellation to
combine nighttime and daytime light data. The methodology yields
high-resolution, high quality depictions of built-up areas across three
highly diverse countries.

The study contributes to the existing literature in several aspects.
First, previous studies that combine nighttime and daytime data have
been limited either in their spatial generalization or in their spatial

a b

c d

Fig. 13. Classification of built-up areas (in orange) in (a) Nagpur, India; (b) Hyderabad, India; (c) Houston US; (d) Mexico City, Mexico.

Table 6
Accuracy assessment (balanced accuracy) of our methodology for classification, MODIS-
MCD12Q1 (MODIS), DMSP-OLS highly-lit areas (defined as pixels with a DN value above
the 95th or 90th percentile), Accuracy assessment with 60,000 labeled examples.

Our BU classification MODIS UMD

India
TPR (producer's accuracy) 59.9% 61.7%
TNR 91.2% 84.3%
Balanced accuracy 75.5% 73.0%

US
TPR (producer's accuracy) 71.8% 64.4%
TNR 90.9% 87.3%
Balanced accuracy 81.4% 75.8%

Mexico
TPR (producer's accuracy) 62.7% 53.4%
TNR 92.6% 94.1%
Balanced accuracy 77.6% 73.7%

a b c d

Fig. 14. A comparison between areas classified as built-up using our methodology (top) and areas classified as built up and urban by MCD12Q1 UMD MODIS classification scheme
(bottom), in (a) Ahmedabad, Gujarat, India; (b) New Delhi, Delhi, India; (c) Phoenix, Arizona, US; (d) Mexico City, Mexico.
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resolution. To cope with regional variations, we adopt a hexagonal
tessellation mapping approach to handle heterogeneous land cover with
complex spectral characteristics. Second, despite significant progress in
applying machine-learning techniques to process satellite data, there is
a paucity of reference datasets to detect urban areas. The approach we
present uses DMSP-OLS and Landsat data to collect training examples
and Landstat data for the input to the classifier. Third, to determine the
binary-class of a pixel (i.e., “built-up” or “not built-up”) we use the Otsu
algorithm to determine the threshold of the posterior probability for
each hex-cell. Finally, our approach requires minimal manual input for
training and for classification and does not rely on local adjustable
parameters to the classifiers, making it scalable across space and time,
which is the subject of ongoing work.

In today's era of big data, a globally consistent and data-driven
method of defining and classifying urban areas has extensive applica-
tions. Economics, urban planning, climate modeling, water-resource
management, hazard-response efforts, and urban-ecosystem assess-
ments all use geographic data on urban areas. Having information on
urban extent that is spatially and temporally consistent and defined at
high resolution is both essential to a wide range of disciplines and ne-
cessary for helping society better understand the drivers of urbaniza-
tion, therefore promoting sustainable urban development.
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Appendix A. Indices used as inputs to the classifiers

Table A1presents the bands and the indices used as inputs to the classifiers. We now turn to describe the indices in details.

I. NDVI (Normalized Difference Vegetation Index)

Fig. 16. percentage of built-up land cover in: India (a) New Delhi, (b) Ahmedabad, (c) Hyderabad; US (d) Atlanta, (e) Phoenix, (f) Kansas City; and Mexico (g) Culiacán, (h) Monterrey, (i)
Gómez Palacio. The value of each 500 m*500 m pixel represent the percentage of built-up land cover (according to Landsat) that is incorporated in it.
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NDVI expresses the relation between red visible light (which is typically absorbed by a plant's chlorophyll) and near-infrared wavelength (which
is scattered by the leaf's mesophyll structure) (Pettorelli et al., 2005). It is computed as:

− +(NIR RED)/(NIR RED) (A1)

where NIR is the near infra-red wavelength and RED is the red wavelength. The values of NDVI range between (−1) and (+1). An average NDVI
value was calculated for each pixel.

II. NDBI (Normalized Difference Built-up Index)

NDBI expresses the relation between the medium infra-red and the near infra-red wavelengths (Zha et al., 2003). It is computed as:

− +(MIR NIR)/(MIR NIR) (A2)

where MIR is the medium infra-red and NIR is the near infra-red wavelength. The index assumes a higher reflectance of built-up areas in the medium
infra-red wavelength range than in the near infra-red.

III. NDWI (Normalized Difference Water Index)

NDWI expresses the relation between the green (G) and the NIR (near infra-red) wavelength, with a scaling of −1 to +1 (McFeeters, 1996). It is
computed as:

− +(G NIR)/(G NIR) (A3)

The positive values typically represent open water areas, while negative values represent non-water features, like soil and vegetation.

IV. UI (Urban Index)

UI is the difference between the short infra-red (SWIR) and the near-infrared wavelengths (Kawamura et al., 1996). It is computed as:

− +(SWIR NIR)/(SWIR NIR) (A4)

Like NDBI, UI assumes high brightness in SWIR in urban areas as opposed to the NIR.

V. EVI (Enhanced Vegetation Index)

EVI is an improved vegetation index with higher sensitivity in high biomass regions where NDVI tends to saturate, reduces atmospheric in-
fluences, and removes the canopy background signal (Huete et al., 2002). It is computed as:

∗ − + − +(2.5 ((NIR R)/(NIR 6R 7. 5B 1)) (A5)

This is a similar formula to the NDVI, which takes advantage of high reflectance of vegetation in the NIR band as opposed to the R band. The blue
band (B) is used (with a coefficient of 7.5) to correct for aerosol influences in the red band (R). There is an integer of 1 added to the denominator to
adjustment for nonlinear NIR and R radiant transfer through canopies. 2.5 is applied as a gain to the index.

VI. NDSV (Normalized Difference Spectral Vector)

NDSV (Normalized Difference Spectral Vector) (Trianni et al., 2015) is used to identify consistent human settlement and artificial materials. The
index is composed out of all possible normalized indexes combining two bands with the same spatial resolution. Each pixel is characterized by a
spectral vector of normalized indexes, which maps the original multispectral pixel into a higher dimensional space (Trianni et al., 2015). The index is
calculated with each of Landsat's 30 m resolution bands as follows (Trianni et al., 2015):

=
−

+
NDSV

B B
B Bij

i j

i j

where Bi and Bj are two generic bands.

Table A1
Bands in Landsat and indices used.

Spectral band Wavelength (micrometers) Resolution (meters)

Landsat 8
B1 Band 1 – Ultra blue 0.43–0.45 30
B2 Band 2 - Blue 0.45–0.51 30
B3 Band 3 - Green 0.53–0.59 30
B4 Band 4 – Red 0.64–0.67 30
B5 Band 5 - Near Infrared (NIR) 0.85–0.88 30
B6 Band 6 - SWIR 1 1.57–1.65 30
B7 Band 7 - SWIR 2 2.11–2.29 30
B8 Band 8 - Panchromatic 0.50–0.68 15
B10 Band 10 - Thermal Infrared (TIRS) 1 10.60–11.19 100 (resampled to 30)
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B11 Band 11 - Thermal Infrared (TIRS) 2 11.50–12.51 100 (resampled to 30)
NDVI (B5 − B4) / (B5 + B4) 30
NDWI (B3 − B5) / (B3 + B5) 30
NDBI (B6 − B5) / (B6 + B5) 30
EVI 2.5 ∗ ((B5 / B4) / (B5 + 6 ∗ B4− 7.5 ∗ B2 + 1)) 30
UI (B7 − B5) / (B7 + B5) 30

Appendix B. Performance measures with fifty hex-cells

Table B1
Performance measures with fifty-hex-cells per country.

NDVI percentile Highly lit pixels Inputs to classifier Low-lit pixels TPR TNR Balanced User's accuracy

Optimal NDVI threshold
India 50 99 All* 99 56.16% 93.23% 74.69% 71.89%

75 99 All* 99 58.24% 92.25% 75.25% 69.86%
90 99 All* 99 61.27% 91.18% 76.23% 67.33%
95 99 All* 99 58.75% 91.27% 75.01% 67.49%
99 99 All* 99 59.04% 90.67% 74.85% 66.13%

US 50 99 All* 99 65.84% 84.51% 75.18% 72.53%
75 99 All* 99 72.42% 80.71% 76.57% 69.99%
90 99 All* 99 76.14% 79.85% 77.99% 70.11%
95 99 All* 99 76.76% 78.79% 77.78% 69.20%
99 99 All* 99 76.22% 77.06% 76.64% 67.35%

Mexico 50 99 All* 99 69.94% 94.63% 82.28% 86.59%
75 99 All* 99 72.96% 93.55% 83.26% 84.87%
90 99 All* 99 72.40% 92.90% 82.65% 83.50%
95 99 All* 99 72.22% 92.87% 82.55% 83.39%
99 99 All* 99 72.61% 92.61% 82.61% 82.97%

Highly-lit pixels
India 90 99 All* 99 58.89% 91.18% 75.04% 67.33%

90 95 All* 99 72.71% 85.57% 79.14% 60.84%
90 90 All* 99 78.98% 77.75% 78.36% 52.26%
90 75 All* 99 87.62% 60.56% 74.09% 40.66%
90 50 All* 99 91.00% 58.23% 74.61% 40.19%

US 90 99 All* 99 76.14% 79.85% 77.99% 70.11%
90 95 All* 99 77.15% 78.55% 77.85% 69.07%
90 90 All* 99 80.64% 76.43% 78.53% 67.99%
90 75 All* 99 87.45% 64.26% 75.86% 60.31%
90 50 All* 99 94.72% 37.42% 66.07% 49.81%

Mexico 75 99 All* 99 72.96% 93.55% 83.26% 84.87%
75 95 All* 99 72.71% 92.66% 82.69% 83.09%
75 90 All* 99 86.01% 82.58% 84.29% 71.00%
75 75 All* 99 92.90% 58.65% 75.77% 52.69%
75 50 All* 99 95.25% 39.42% 67.34% 43.81%

Inputs to classifier
India 90 95 No Indices 99 71.13% 86.52% 78.83% 61.94%

90 95 NDVI 99 71.85% 86.28% 79.06% 61.76%
90 95 NDBI 99 70.34% 86.41% 78.37% 61.49%
90 95 All* 99 72.71% 85.57% 79.14% 60.84%
90 95 NDSVI 99 73.87% 86.05% 79.96% 62.03%

US 90 90 No Indices 99 80.25% 74.51% 77.38% 66.16%
90 90 NDVI 99 78.93% 75.32% 77.13% 66.51%
90 90 NDBI 99 80.09% 75.61% 77.85% 67.10%
90 90 All* 99 80.64% 76.43% 78.53% 67.99%
90 90 NDSVI 99 80.17% 76.48% 78.32% 67.91%

Mexico 90 90 No Indices 99 86.11% 82.44% 84.28% 70.86%
90 90 NDVI 99 84.81% 82.72% 83.77% 70.88%
90 90 NDBI 99 85.48% 82.48% 83.98% 70.75%
90 90 All* 99 86.01% 82.58% 84.29% 71.00%
90 90 NDSVI 99 85.41% 82.69% 84.05% 70.98%

Low-lit pixels
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India 90 95 NDSV 10 84.16% 69.04% 76.60% 45.61%
90 95 NDSV 25 82.72% 74.82% 78.77% 50.33%
90 95 NDSV 50 79.91% 80.70% 80.31% 56.09%
90 95 NDSV 75 77.54% 84.12% 80.83% 60.10%

US 90 90 All* 10 93.57% 44.49% 69.03% 51.14%
90 90 All* 25 91.87% 56.18% 74.02% 56.56%
90 90 All* 50 88.30% 67.48% 77.89% 62.78%
90 90 All* 75 82.49% 75.08% 78.79% 67.28%

Mexico 90 90 All* 10 93.28% 59.50% 76.39% 53.32%
90 90 All* 25 92.65% 64.07% 78.36% 56.11%
90 90 All* 50 91.42% 71.64% 81.53% 61.51%
90 90 All* 75 88.75% 78.87% 83.81% 67.56%
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