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Abstract

We propose a methodology for defining urban markets based on builtup landcover classified

from daytime satellite imagery. Compared to markets defined using minimum thresholds for

nighttime light intensity, daytime imagery identify an order of magnitude more markets, cap-

ture more of India’s urban population, are more realistically jagged in shape, and reveal more

variation in the spatial distribution of economic activity. We conclude that daytime satellite

data are a promising source for the study of urban forms.
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1 Introduction

Core to the study of economic geography is explaining why cities exist and how their dimensions

are determined. It is standard to attribute the existence of cities to the benefits of agglomera-

tion—be they conventional agglomeration economies (e.g., Henderson 1974, Duranton and Puga

2001), or home-market effects derived in new-economic-geography models (e.g., Fujita et al. 2001).

Where cities locate, in turn, is influenced by the availability of key resources, access to transporta-

tion routes, and historical accident (e.g., Bleakley and Lin 2012, Henderson et al. 2018). Within

cities, the clustering of activity creates gradients in land prices and presents workers with a tradeoff

between housing costs and commute times (Duranton and Puga 2015). A rich and vibrant litera-

ture studies how the concentrating forces of agglomeration and the dispersing forces of congestion

combine to create urban systems (e.g., Duranton and Puga 2004, Desmet and Henderson 2015).

Empirical work on economic geography requires measuring the location and scale of urban

activity. A common approach to measurement is to use officially designated administrative units.

These may be as large as a metropolitan area (e.g., Duranton and Turner 2012), as small as a

town or village (e.g., Eeckhout 2004), or an intermediately sized unit such as a county or a district

(e.g., Hanson 2005, Ghani et al. 2014, Donaldson and Hornbeck 2016). Because administrative

boundaries are defined according to pre-existing legal jurisdictions, they may be noisy indicators

of how cities are actually organized. In influential work, Rozenfeld et al. (2011) construct cities by

clustering officially designated towns and villages into larger units based on geographic proximity.

This approach only works, however, if official sources measure activity for fine administrative units

on a frequent basis. In many countries, such data are available only decadally, if at all.

In this paper, we use remotely sensed data to detect urban markets in India for 2013. A market

is a set of contiguous, or near contiguous, pixels that contain economic activity according to daytime

or nighttime satellite imagery. Our practical approach approximates the conceptual definition of

a market in economic geography models: a set of locations that are highly integrated relative to

outside locations because of low internal trade costs (e.g., Redding 2016) and (or) low commuting

costs (e.g., Duranton 2015). We categorize a pixel as having economic activity if its nighttime

light intensity exceeds a given threshold or its spectral properties indicate builtup landcover. Our

maintained assumption is that clusters of proximate pixels are integrated through internal trade

and commuting links, which we attempt to validate in external data.

Our first source of imagery is nighttime lights from the Defense Meteorological Satellite Program

Operational Linescan System, which indicates the presence of economically active agents (Hender-

son et al. 2012). Following Rozenfeld et al. (2011), we explore buffers that combine contiguous

sets of pixels if they lie within a radius of 1km, 2km, 4km or 8km. Defining urban land using

nightlights requires choosing a minimum threshold of light intensity for contiguous pixels. Harari

(2017), for instance, in her analysis of urban sprawl in large Indian cities chooses a digital number

(DN) of 35 (on a scale of 0 to 63) to designate urban areas. Our analysis reveals a tradeoff in

choosing the minimum light threshold for a market: while a strict threshold only captures major

urban agglomerations, lowering the threshold to include smaller cities explodes the size of larger
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cities with proximate satellites. This tradeoff is a consequence of the blooming effect of light, which

produces cities whose boundaries are too expansive and too smooth relative to actual cities.

We contrast the spatial extent of nightlight-based markets with those formed from high-resolution

daytime satellite imagery. These data are available at finer resolutions than nighttime lights data

but require further image classification to detect urban land. We explore data on builtup landcover

from the MODIS layer constructed by Channan et al. (2014). We also examine two additional

daytime imagery layers: the Global Human Settlements Layer (Pesaresi et al. 2015) and a recent

layer produced by Goldblatt et al. (2018). We define landcover-based markets using an analogous

algorithm that clusters contiguous or near contiguous pixels of builtup landcover.

Our approach has three advantages over conventional methods to measure urban areas using

administrative data. First, it is scalable. Because our method is algorithmic and uses publicly

available imagery, it scales to detect markets globally and, in principle, over time. It also circum-

vents the need to reconcile differences across countries and time in how administrative units are

defined. Second, and relatedly, our data do not stop at national borders. Markets that straddle

national boundaries along transportation routes can be tracked. Third, the spatial resolution is

adjustable. By altering the buffer used to aggregate proximate pixels, we can narrow the focus to

the rough equivalent of a town center or widen the focus to a metropolitan area. This versatility is

helpful for detecting within-metro area heterogeneity, a feature we explore.

To preview our results, the patterns of landcover-based markets are starkly different from those

of nightlight-based markets. Using the definition of a market that buffers clusters of contiguous

pixels at 1km, we detect 1,669 and 469 markets using a nightlight threshold of DN33 and DN60,

respectively. The DN60 markets accurately capture India’s largest 470 cities according to official

Census data, which suggests that nightlight-based markets are reliable for tracking activity across

India’s major urban areas. In contrast, we detect an order of magnitude more markets using

MODIS data: 12,953 in total. These markets are smaller, less compact, more closely fit a power

law in area size, and capture activity ranging from distinct areas within large metropolises to small

towns that are distant from India’s major cities. For example, within Delhi’s official administrative

boundary, we detect 579 distinct 1km MODIS markets. More remote, landcover-based markets have

an average DN nightlight intensity of just 5, suggesting that we are able to capture many parts of

India that lack reliable access to electricity. While we could detect these markets with nightlight

data by lowering the light-intensity threshold, this would come at the cost of vastly increasing the

area of above-threshold contiguous pixels around India’s large cities, which is evident from visual

inspection and from statistics on the maximum size of markets at different thresholds. Our results

suggest that landcover-based markets are able to capture small cities and towns in India while

preserving the spatial distribution of activity of the largest cities.

We perform several validation checks to demonstrate that our markets capture real economic

activity. Using shape files for the 2011 India Census, we allocate population across our market

boundaries. Collectively, the DN33 and DN60 1km markets contain 23.4% and 14.8% of India’s

total population and 75.3% and 47.6% of India’s urban population, respectively. The MODIS 1km
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markets capture 29.0% and 93.2% of India’s total and urban populations, respectively. Market

size correlates strongly with population, and the variance in population for smaller sized landcover

markets reflects the fact that these markets include both dense areas within major metro areas and

less populated peripheral towns. We detect strong correlations between market size and proximity

to public infrastructure, such as roads, railway stations and mobile phone towers. Additionally, we

find that larger landcover-based markets have higher nighttime light intensity. These correlations

are important for addressing a limitation of daytime satellite data. While these data are suitable

for measuring the spatial extent of markets, they may not reveal the intensity of economic activity.

However, the positive correlations reveal that the extensive margin—which is measured accurately

through daytime imagery—correlates well with proxies for the intensive margin. For example, a

MODIS market at the 10th percentile of the land-area distribution has a nightlight DN of 9.4

compared to 27.2 for a market at the 90th percentile of land area.1 Combining daytime imagery

to measure the boundary of markets with nighttime data to measure the intensity of activity is a

promising approach to leverage two remotely sensed datasets that are publicly available, have a

long time span, and have global coverage.

Finally, we consider the potential to use landcover-based markets to study polycentric cities

(Duranton and Puga 2015). The literature has long recognized that cities do not expand smoothly

along their margins but through the construction of outlying communities in the form of suburbs,

edge cities, or commercial hubs (e.g., Henderson and Mitra 1996, Anas et al. 1998). For example, the

Hyderabad metro area, which spans 650km2 and contains 6.8 million people, contains Hyderabad

and Secunderabad as major poles and substantial satellites in Ghatkesar and Kukatpally. As one

zooms in further, many more satellites appear and Hyderabad’s full polycentricity is revealed. We

examine polycentricity using the larger buffered markets, which we term “super-markets”. The

average MODIS 8km market spans an area of 63.4 km2, but physical structures cover only 23% of

this area. On average, these super-markets contain 4.2 distinct 1km markets; the elasticity of the

number of 1km buffered markets with respect to super-market area size is 0.36. This within-market

variation may be sufficient to study, for instance, how transportation investments, such as ring roads

or metro rail, impact the distribution of economic activity within large cities. To demonstrate this

possibility, we construct measures of market access based on Donaldson and Hornbeck (2016) and

find that a non-trivial portion of a market’s access is determined by other close-by markets that

are within the same larger buffered super-market.

The availability of satellite imagery and machine-learning techniques for image classification

have led to rapid advances in detecting land use in the remote sensing literature. In efforts to

construct urban layers for the world as a whole, Pesaresi et al. (2015) use Landsat imagery to

detect urban land for grid cells at a 38m resolution, Channan et al. (2014) use MODIS imagery

to detect multiple types of land use for grid cells at a 500m resolution, and Zhou et al. (2015) use

nightlight intensity to detect urban land at a 1km resolution.2 This work typically classifies land

1Using the nightlight-GDP elasticity of 0.3 from Henderson et al. (2012) implies that the larger area would have
a 56.8% higher GDP.

2Alqurashi and Kumar (2013) discuss earlier work in remote sensing to detect land use. Recent papers that detect
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use at the pixel level, where the dimensions of the pixels vary according to the source of the satellite

imagery. Pixel-level classifications, while important building blocks in urban analysis, are not in

and of themselves informative for the study of economic geography. Without aggregating pixels to

form larger markets, one cannot test theories of the size distribution of cities, evaluate the impacts

of expanding national transportation grids, or identify the consequences of severe weather events,

plant closures, or other localized economic shocks.

Our results contribute most directly to the efforts to delineate urban areas that do not rely on

administrative boundaries. In addition to Rozenfeld et al. (2011), our paper has antecedents in

Eeckhout (2004), who uses U.S. Census Designated Places instead of (much larger) Metropolitan

Statistical Areas to re-examine Zipf’s law and Gibrat’s law; Burchfield et al. (2006), who use

contiguous pixels to measure sprawl in the U.S. based on Landsat satellite imagery from 1976-1992;

and Harari (2017), who uses nightlights to track urban sprawl in large Indian metropolitan areas.

Davis et al. (2019) also use clusters of pixels above nightlight thresholds to construct metro areas

in Brazil, China, and India. Recent work by Duranton (2015) proposes an alternative algorithm to

construct markets based on commuting patterns for Colombia. de Bellefon et al. (2019) develop a

statistical approach to detect urban areas using precise locational data covering 34 million buildings

in France. Our contribution to this literature is to develop and compare methods to detect markets

solely from remotely sensed data, and in particular daytime imagery.

More broadly, our paper builds on the increasing use of remotely sensed data for economic

analysis. Economists have used satellite data on the intensity of light emitted at night to study

national and regional economic growth (Henderson et al. 2012, Gennaioli et al. 2013, Pinkovskiy

and Sala-i Martin 2016), the political economy of regional development (Gennaioli et al. 2013,

Michalopoulos and Papaioannou 2013a, Michalopoulos and Papaioannou 2013b), spatial linkages

between cities (Storeygard 2016), and the global distribution of economic activity (Henderson et al.

2018), among a rapidly growing set of topics. Daytime satellite imagery, whose use in economics

was pioneered by Burchfield et al. (2006), is available at even higher spatial resolutions, down to

30m for data going back to the late 1990s and down to less than 1m for imagery from recently

launched proprietary satellites. Michaels et al. (2018) use an ensemble of remotely sensed imagery

to measure urbanization in Tanzania. For a comprehensive survey of recent work, see Donaldson

and Storeygard (2016).

Section 2 presents the method to detect markets from satellite imagery. Section 3 compares

nightlight-based markets and landcover-based markets and provides validation checks. Section 4

uses landcover-based markets to evaluate market access. Section 5 concludes.

2 Algorithmic Approach to Detect Markets

We define markets using two sources of remotely sensed data: (1) the intensity of light as

captured by nighttime lights data; and (2) classifications for builtup landcover based on daytime

urban land for individual countries include Pandey et al. (2013) on India; Bagan and Yamagata (2015) on Japan;
and Zhou et al. (2014), Huang et al. (2015), and Fu et al. (2017) on China. For literature that detects urban land
using daytime satellite imagery, see Trianni et al. (2015), Goldblatt et al. (2016), and Goldblatt et al. (2018).
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satellite imagery. In this section, we describe the data sources and algorithms used to detect the

spatial extent of a market for each data source.

2.1 Detecting Markets from Nightlight Imagery

The US Air Force Defense Meteorological Satellite Program (DMSP) operates satellites that

carry light sensors known as the Operational Linescan System (OLS). Originally used to detect

the global distribution of clouds and cloud-top temperatures, OLS sensors also detect visible and

near-infrared emissions at night from different sources on Earth, such as city lights, auroras, gas

flares, and fires. Pixels have a resolution of 30 arc seconds, or approximately 1km × 1km. For

each pixel, the digital number of calibrated light intensity ranges from 0 to 63, which we refer to

as the nightlight value or intensity. Because persistent light emitted at night is often associated

with man-made structures, we assume that if the intensity of a pixel exceeds a given threshold, this

pixel represents a populated location. Processed DMSP-OLS imagery is publicly available from

1992-2014, and can be analyzed on Google Earth Engine. We process lit pixels using data for 2013.

We use the stable light band of sensor F14, which discards ephemeral events, such as fires, but

remains sensitive to persistent lighting, including from gas flares or volcanoes. Since India has no

active volcanoes or gas flares on land (Elvidge et al. 1999), it is safe to assume that highly lit pixels

in India indicate builtup activity.

There are well-known limitations to DMSP-OLS data. These include saturation effects, in which

the amplification of light detection to capture low levels of light leads to right censoring in detection

in highly-lit areas (e.g., city centers); and blooming effects, in which reflection causes light emitted

in one pixel to be detected in nearby pixels, making highly lit areas appear to be larger than they

are. Blooming occurs due to several idiosyncratic features of the DMSP-OLS sensor: (1) field of

view variation, where the satellite’s round field of view morphs into an elliptical and larger shape as

it scans east and west of nadir; (2) geolocation errors, whereby the satellite miscalculates a pixel’s

location, so on each night not only is there a differently sized ellipse, but its centroid is shocked in a

random compass direction (Abrahams et al. 2018); and (3) on-board data management, where the

1970s technology on board the satellites causes top-censoring of inputs. The highest possible DN

is 63, and because of this saturation, it is often impossible to differentiate between medium-density

cities and high-density cities.3 In our setting, saturation is not an issue because we measure the

extent of markets through lower bounds of light intensity. However, blooming is problematic, as

we demonstrate below.

Nightlight-Based Markets: A nightlight-based market is a cluster of contiguous, or near

contiguous pixels, with a DN that exceeds a specified threshold.

3Blooming and saturation are less pronounced in data from recently launched satellites. The Visible Infrared
Imaging Radiometer Suite (VIIRS), imagery from which is only available since 2012, detects electric light at a higher
spatial resolution and at lower distortion than DMSP-OLS. See Elvidge et al. (2017) for a discussion of VIIRS imagery
and Shi et al. (2014) for an application of these data to detecting urban areas in China. Henderson et al. (2018) use a
radiance-calibrated version of the nightlight data that alleviates the saturation effect (Elvidge et al. 1999) but these
data are also available only for a subset of recent years. We use DMSP-OLS imagery in order to create methods for
measuring markets that can be extended backward in time.
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To operationalize this definition of a market based on nightlight data, three choices are required:

(1) the minimum number of pixels that constitute a market; (2) the parameter values that govern

“near contiguity”; and (3) the minimum DN to be used. As mentioned, the DMSP-OLS sensor has

a 1km resolution. We set the minimum number of pixels to form a market at 1 pixel.4

To determine the minimum DN thresholds for our market definition, we examine the distribu-

tion of DNs across pixels in India for 2013 in Figure A1. Because light is not detected in large

expanses of the country—including bodies of water, farmland, deserts, forests, and villages with

no electricity—the DN is zero (i.e., no detectable light) for the pixel at the 50th percentile of the

distribution. The DN is moderately higher at a value of 5 at the 63rd percentile, and rises sharply

as one moves into the upper tail, reaching 17.4 at the 95th percentile, 49 at the 99th percentile, and

60 at the 99.5th percentile; only a tiny fraction of pixels are right censored at the maximum DN of

63.5 Motivated by these patterns, we set the following alternative DN thresholds for a pixel to be

highly lit: 17.4 (95th percentile), 33 (98th percentile), and 60 (99.5th percentile).

We designate as a market a cluster of contiguous highly lit pixels, which may consist of only a

single pixel. Many clusters of highly lit pixels lie in close proximity to each other, creating chains

of light islands that appear when we map our results. By the strict definition above, we would

treat each island, or polygon of pixels, as a separate market, whereas in truth clusters of proximate

polygons may share dense commercial and commuting ties (as in the case of U.S. counties that

comprise commuting zones; e.g., Tolbert and Sizer 1996). Motivated by the method in Rozenfeld

et al. (2011) for agglomerating neighboring administrative units into larger units, we combine any

pair of highly lit clusters for which the minimum distance between their boundaries is less than

1km, 2km, 4km, or 8km.6 For a given threshold, larger buffers nest smaller buffers: 1km markets

⊆ 2km markets ⊆ 4km markets ⊆ 8km markets.

2.2 Detecting Markets from High-Resolution Daytime Imagery

Daytime imagery offers alternative data to detect human activity from space. The major

challenge in working with daytime imagery is that one needs a classifier to convert the spectral

signature of an image into a categorization of landcover. In recent years, there has been substantial

4The threshold pixel choice of 1 may appear to low. As a point of reference, Rozenfeld et al. (2011) use grid cells
with 200m resolution for Great Britain and FIPS units for the U.S., which range from 100m grid cells in Manhattan
to 100km grid cells in Wyoming. In recent work, de Bellefon et al. (2019) provide a statistical approach to choose
thresholds to define urban areas using detailed geocoded data on the location of buildings in France, and detect
distinct urban areas as small as 0.04km2.

5The bunching at 0 and 5 is an artifact of the stable light band of satellite F14, which removes noise and unstable
light removal. Cauwels et al. (2014) note that the number of pixels with DN greater than 0 and less than 5 is
extremely low; for example, the satellite registers no pixels with a DN equal to 1 in the year 2000. Tuttle et al.
(2014) develop a mapping of DNs to wattage by placing portable high-pressure sodium lamps at uninhabited sites
in Colorado and New Mexico to check the DN recorded by the F16 and F18 sensors. They find that ninety-three
100-watt incandescent lamps could be detected (DN=1) at both fine (0.6km) and coarse (2.7km) resolutions. Eight
times as many bulbs would saturate (DN=63) the sensor at the fine resolution but not at the coarser resolution.

6We view a 0km buffer as extreme as it does not account for commuting or trade linkages and therefore do not
consider this buffer choice for our analysis. We use the Aggregate Polygons function in ArcGis to cluster the pixels.
Online Appendix A explains the procedure to aggregate pixels to markets.
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progress in remote sensing to improve the precision of classification algorithms at scale. Use of

daytime imagery is also facilitated by cloud-based computing engines, such as Google Earth Engine,

which hosts the full library of Landsat, MODIS, Sentinel, and other satellite imagery.

We use the MODIS dataset as our benchmark source of landcover classification from daytime

imagery. MODIS uses a supervised machine learning method, which takes advantage of a global

database of training sites extracted from high-resolution imagery that contain 36 spectral bands.

We use the University of Maryland classification scheme version MCD12Q1 V006, which has a

resolution of 500m (Friedl and Sulla-Menashe 2015). We use data from 2013 and take the take

the Urban and Builtup pixels (classification 13) to indicate builtup landcover. MODIS is publicly

available on Google Earth Engine and widely used in the remote sensing literature (e.g., Huang

et al. 2016, Mertes et al. 2015, Guo et al. 2015).7

We also examine two other landcover datasets as a robustness check against MODIS. The Global

Human Settlements Layer (GHSL, Pesaresi et al. 2015) combines satellite data from Global Land

Surveys datasets (GLS1975, GLS1990, GLS2000), Landsat 8, and other sources—–including Open

Street Maps, WorldPop and MODIS—–to determine builtup pixels at a 38m spatial resolution.8

We use their “Builtup Confidence Grid”, which aggregates builtup data in 2014 and classifies pixels

as builtup if the confidence of being builtup is greater than 50%. GHSL contains landcover maps

from an earlier period but has less frequent temporal variation than MODIS. Although publicly

available, the GHSL is difficult to access, uses data beyond raw satellite bands, and is less widely

used. The third map of builtup landcover for India in 2013 is created using the methodology in

Goldblatt et al. (2018). This layer, to which we refer as MIX, uses DMSP-OLS nightlight data

as quasi-ground truth and daytime satellite imagery as inputs to train a classifier for builtup land

cover in India. Appendix B summarizes their method for producing this layer.

Our motivation for using multiple layers of builtup landcover comes from rapid advances in

remote sensing for classifying land use from satellite imagery. The accuracy with which existing

layers detect changes in urban landcover, rather than just cross-sectional features, is a subject of

on-going research (e.g., see Mertes et al. 2015, Song et al. 2016). We anticipate more advances

will be made in land-use classification in the near future, such that none of the existing layers

may become the standard source for builtup landcover. In light of this uncertainty, we use three

different layers, which allows us to assess the strengths and weaknesses of alternative approaches

to detecting urban activity. Our method would easily extend to new layers of builtup landcover.

Using the three layers that classify builtup landcover—MODIS, GHSL, and MIX—we adopt

7MODIS (MCD12Q1 V006) classifies global land cover types at yearly intervals from 2001 to 2016. There are
six versions of MODIS. The most recent version, Collection 6, improves over previous versions by implementing a
hierarchical classification approach, using a RandomForest classifier instead of a C4.5 decision tree, increasing the
number of sites in the training data by 47% and updating sites that have changed their land use (about 31% of sites),
improving the feature set that now includes phenology metrics, and using Markov chain stabilization. Additionally,
we found that this version was slightly better at capturing urban land cover changes in time than its previous version.
See the MCD12Q1 V006 user manual for details.

8The USGS Landsat 7 satellite, launched in 1999, contains seven spectral bands at a spatial resolution of 30m and
a temporal frequency of 16 days. Landsat 8, launched in 2013, contains nine spectral bands with a spatial resolution
of 30m at a temporal frequency of 16 days.
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the following definition for markets for daytime satellite imagery.

Landcover-Based Markets: A landcover-based market is a cluster of contiguous or near

contiguous pixels whose spectral features in daytime satellite imagery indicate that the majority of

their land area consists of builtup landcover.

For MODIS markets, we impose a minimum number of pixels for a market to be 1 (0.25km2). For

GHSL and MIX, the minimum number of pixels is set to 40 (0.04km2 and 0.03km2, respectively).

Choosing a minimum pixel size of 1 for GHSL and MIX would be extreme given the granularity of

these data (and would be computationally cumbersome); the choice of 40 leverages the granularity

of the data to detect small clusters of pixels while not creating markets so small that they would

rarely display well-defined internal trade or self-contained commuting patterns. Clusters of builtup

pixels are aggregated in a manner analogous to that described above (e.g., if two clusters of MODIS

pixels are separated by, say, 1.5km of non-builtup pixels, they would form two distinct markets

under the 1km buffer and a single market under the 2km buffer).

2.3 Visual Inspection of Market Definitions

To obtain a visual sense of the shape of urban markets identified by daytime versus nightlight

data sources under the four buffers, we plot the markets detected around three cities of different

sizes: Delhi (19 million, 2011 Census population), Ahmedabad (5.5 million), and Ajmer (0.5 million)

in Figures 1 to 3. We overlay road networks from OpenStreetMaps in 2018 to provide a sense of

how transportation networks may influence the shape of markets. Panels (a) to (d), in the first

row, display results for MODIS-based markets, while panels (e) to (t), in the second through fifth

rows, display results for nightlight-based markets. We include nightlight markets formed using a

DN threshold of 10 to understand better the consequences of varying light intensity thresholds but

we do not analyze DN10 markets in subsequent sections.

Consider first nightlight-based markets. Together, we have 16 alternative nightlight-based mar-

ket definitions. The maps illustrate how changing the DN threshold and buffer sizes affects market

shape. At a DN of 10 (fifth row), Delhi is an immense blob that swallows cities across three states

in India, including Meerut (1.3 million, in Uttar Pradesh), Rohtak (0.4 million, in Haryana) and

Bhiwadi (0.1 million, in Rajasthan). The blob itself is 145,336km2, which is close to the size of

the U.S. state of Iowa. At a higher DN of 17.4 (fourth row), Delhi takes the shape of a more

conventional urban market, but again swallows the city of Meerut (1.3 million), which is 75km

northeast of central Delhi. At a DN of 60 (second row), by contrast, Meerut appears as a sepa-

rate market from Delhi. But this threshold fails to detect the small city of Hapur (0.2 million).

Moreover, the satellite cities of Gurgaon (0.9 million) and Noida (0.6 million), two vibrant areas of

economic activity in Delhi, are fused together with central Delhi to form one large market. Figure

2 for Ahmedabad shows a similar pattern: a high threshold separates the main city from its largest

satellite (Nadiad, 0.2 million), but fails to detect many smaller cities; lowering the threshold causes

the size of Ahmedabad to explode. Figure 3 shows the smaller city of Ajmer in the state of Ra-
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jasthan. The road leading out of Ajmer towards the Northeast is part of the Golden Quadrilateral.

At lower DN thresholds, activity appears to coalesce along the artery. This is problematic as these

lights are likely capturing lights along the road rather than stable clusters of economic activity.

To consider landcover-based markets, examine the top rows of Figures 1 to 3, which show

markets using the MODIS layer. In stark contrast to the nightlight-based definition in the bottom

four rows, landcover-based markets are jagged in shape and display large variation in the spatial

density of economic activity. Also, landcover-based markets show that within the outer envelope

of the market area there are substantial numbers of white pixel islands, indicating areas that are

not builtup. Whereas the blooming effect creates the perception that inside market boundaries

all pixels contain light-emitting structures, higher-resolution imagery indicates that cities contain

many clusters of pixels that have not been builtup (e.g., undeveloped land, water, and parks). For

example, the Yamuna river in Northeast Delhi is visible in the landcover-based figures but masked

through the blooming of lights in the nightlight-based markets. The presence of undeveloped pixels

within cities in the top row and absence in the lower rows (which are especially apparent in Figures 1

and 2 for the larger cities of Delhi and Ahmedabad and would appear for the smaller city of Ajmer

were we to zoom in) indicates that nightlight-based markets tend to make urbanization inside

market boundaries appear to be overly smooth. Notice also that within Delhi, we observe many

distinct neighborhoods that are fused together in nightlight-based markets. At higher distance

buffers, the small distinct markets within cities fuse together while remote towns remain visible.

Visual inspection illustrates the tradeoff in varying the DN threshold to detect markets using

nightlights. A strict DN threshold captures the most economically developed urban centers of

India. But this threshold misses smaller cities and towns. In attempting to capture these towns

through a lower DN threshold, the large cities mushroom in size and swallow neighboring satellite

cities. Lower thresholds also start to capture activity along roads which are likely emitted by street

lights and (or) the blooming effects from towns. Landcover-based markets detected through high-

resolution daytime imagery are not subject to this tradeoff. We observe distinct pockets of activity

within cities and detect smaller towns located at the periphery; increasing the buffer fuses together

markets within cities while preserving the shape of the smaller cities. Statistics reported in the

next section reinforce the descriptive results from this visual inspection.

3 Market Characteristics and Validation

This section explores the characteristics of nightlight- and landcover-based markets based solely

on the properties of the satellite data. We then validate that these markets do indeed capture

economic activity, by incorporating data from the Indian Census and open source platforms.

3.1 Market Characteristics

We document the following market characteristics. First, while nightlight-based markets capture

the largest cities in India, daytime imagery detect an order of magnitude more markets that, on
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average, are much smaller in size, are less compact, and have lower nightlight intensities. Second,

landcover-based markets capture remote pockets of economic activity, as well as sub-centers within

larger urban metropolises. Third, the distribution of landcover-based markets follow a power law

that more closely matches Zipf’s law than the distribution of nightlight-based markets.

3.1.1 Market Shape

Harari (2017) finds that the geometry of Indian cities affects economic outcomes. Her analysis

uses a novel geography-based identification strategy that predicts the compactness of cities, where

compactness is measured by how close a city’s shape resembles a perfect circle. She determines the

extent of cities using a procedure analogous to our nightlight-based markets, and finds that less

compact Indian cities have higher commuting costs and lower economic welfare for residents. As

shown above, visual inspection suggests that nightlights will produce boundaries that are overly

smooth relative to the jagged boundaries of landcover-based markets. If shape determines the

welfare of residents, as her study finds, measuring it accurately is important. Her primary measure

of urban shape is the disconnection index, based on Angel et al. (2010), which is the average distance

between all pairs of interior points within a market. In the absence of actual commuting data, the

index serves as a proxy for the average commute length within a market.

Figure 4 plots the disconnection index, measured in kilometers, for DN33, DN60 and MODIS

markets against market size.9 For nightlight markets, the disconnection index does not increase with

area size. This suggests that the shape of nightlight markets does not fundamentally change with

the overall expanse of a market. Increasing market size, by definition, will increase the bilateral

distances between some interior points. But the finding that the overall index does not change

implies that the market is including builtup pixels in close proximity with other builtup pixels.

Thus, the overall compactness appears to be invariant to total market land area. In contrast,

the shape of MODIS markets changes starkly with overall market size. As the market land area

increases, the disconnection index increases linearly, which reveals that larger MODIS markets are

much less compact compared to both smaller MODIS markets and to all nightlight-based markets.

For example, the disconnection index of a 100km2 MODIS market, buffered at 1km, is 6.1km

compared to 3.4km and 0.8km for DN33 and DN60 markets, respectively. The figure also reveals

that disconnectedness increases more sharply for higher buffered markets. These patterns reinforce

the visual perception that landcover markets are more jagged and irregular, and therefore more

disconnected, than nightlight markets.

9The computational burden of computing the disconnection index is very high since it is an average of all bilateral
pixels within a market. We therefore only compute this index for the two nightlight-based markets and for MODIS
markets. For the same reason, we do not compute the index for 8km-buffered markets. Harari (2017) normalizes her
disconnection index by the average distance between points in a circle that has equivalent area of a given market.
We report the disconnection index without normalization, as it is more straightforward to interpret and instead
report how the index changes with market size. Additionally, whereas nightlight-based markets consist largely of
continuous expanses of lit pixels, MODIS markets contain many undeveloped areas within their outer envelope. It
is thus instructive to compare average distances between points within a market without normalizing, since the
normalization factor for, say a 4km buffer, would be vastly different for MODIS and nightlight markets.
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3.1.2 Number of markets

We next explore the number of markets detected through the alternative market definitions.

For context, Table A1 reports the official number of enumerations, at various levels of aggregation,

according to the 2011 Census. The Census recognizes 6,171 “towns”, which are home to India’s 377

million urban residents (31% of India’s total population).10 Of the 6,171 towns, 468 are considered

“Class 1” cities with more than 100,000 inhabitants; these are the largest cities in India, which

collectively contain 22% of India’s population. There are 1,847 Class 1, 2 and 3 towns—localities

with at least 20,000 inhabitants.

The top panel of Table 1 reports the number of markets detected through nighttime lights. By

construction, the number of markets decreases as we raise either the distance buffer for joining pixel

clusters or the DN threshold for designating highly lit pixels. At a buffer of 1km, we observe 3,275

DN17.4 markets, 1,669 DN33 markets, and 469 DN60 markets. The two higher DN thresholds

exhibit little variation in the number of markets across buffers. Comparing Table 1 and Table A1,

we see that DN17.4 markets at a 1km buffer roughly match the number of officially recognized

Indian cities and towns with more than 10,000 residents. The DN60 markets accurately capture

Class 1 towns, which corroborates the finding in Harari (2017) that nighttime satellite imagery are

well-suited for tracking variation in urban form across India’s largest cities.

The bottom panel of Table 1 reports the number of markets detected from daytime imagery.

While the numbers vary across the three daytime satellite layers, the total number of markets

detected is substantially larger than the number of nightlight-based markets. For the MODIS

layer, the number of markets ranges from 12,953 at distance buffer of 1km to 3,073 at a distance

buffer of 8km. For the GHSL layer, the number of urban markets ranges from 26,202 at distance

buffer of 1km to 3,861 at a distance buffer of 8km. The corresponding numbers of markets for

the MIX layer are 17,304 and 3,417, respectively.11 At a distance buffer of 4km or less, the total

numbers of landcover-based markets are much larger than the number of towns in India with a

population of 10,000 inhabitants or greater.

3.1.3 Land area

Column 2 of Table 1 reports the average land area for each market definition. Consider

nightlight-based markets, first. For DN17.4, the average size ranges from 48.6km2 at a 1km buffer

to 97.8km2 for a distance buffer of 8km. These values fall, respectively, to 37.0km2 and 43.7km2

for DN60 markets. These statistics reinforce the tradeoff in choosing a light intensity threshold:

lower thresholds detect more markets but the average market size increases. For landcover-based

10These towns satisfy one of two criteria: (1) a place with a municipality, corporation, cantonment board, or
notified town area committee; or (2) a place that has a minimum of 5,000 inhabitants, at least 75 percent of the male
working population engaged in non-agricultural pursuits, and a population density of at least 400 people per km2.

11The GHSL and MIX layers detect more distinct markets in part because the underlying resolution of these data
are finer than MODIS. We are unsure of the precise explanation for why the number of GHSL-based markets is so
high. Unlike MODIS and MIX, GHSL combines raw daytime spectral bands with MODIS and data from open-sourced
platforms, which makes this layer quite different from the other two.
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markets, the average market sizes are much smaller. At a 1km buffer, MODIS markets are 3.0km2,

while the average size of GHSL and MIX markets are 1.4km2 and 1.9km2, respectively. The smaller

sizes of landcover markets are a result both of the granularity of the daytime imagery and the ex-

clusion of non-builtup land area (e.g., due to blooming), which we explore in more detail in Section

4. At a 4km buffer, the sizes of MODIS, GHSL and MIX landcover-based markets rise to 10.6km2,

10.9km2, and 12.1km2.

To further illustrate the tradeoffs in forming markets with nightlight data, it is useful to compare

maximum market sizes. The maximum area of MODIS markets at a 1km buffer is 1,582km2. By

contrast, the maximum sizes of nightlight-based markets at a 1km buffer changes substantially

across the DN17.4, DN33, and DN60 thresholds: from 9,977km2 for DN17.4 to 4,681km2 for DN30

and to 2,223km2 for DN60. To see this further, consider Figures A3 and A4, which plot the

distribution of market area and average nightlight values within market boundaries, respectively.

Figure A3 reveals that landcover-based markets are able to capture the full range of market sizes.

The mode of each distribution effectively reveals the minimum number of pixels used to define a

market.12 Figure A4 illustrates that nightlight-based markets, by construction, are left censored

at their respective DN thresholds. Note that because of buffering these markets do capture pixels

below their respective thresholds, which is most apparent at the 8km buffer. By contrast, at all

buffers, landcover-based markets capture pixels that span the entire range of DNs. In particular,

these markets capture areas in India with average DNs well below 10.

These comparisons highlight the tradeoff in forming markets from nightlight data. As one lowers

the DN threshold to detect smaller markets, the area of larger markets expands dramatically. This

tradeoff is not present in the construction of landcover-based markets. Landcover-based markets,

because they are not subject to a blooming, span a relatively wide range of land areas and intensities

of economic activity (as captured by nightlight intensity per unit of land in these markets).

3.1.4 Power Law of Market Area

Economists have long been interested in the size distribution of cities. The standard approach

in the literature is to gather population data using census counts for cities in a particular country

and to regress the log of city population on the log city population rank. Zipf’s Law holds if the

slope of the regression is -1. Testing for Zipf’s Law requires confronting the thorny issues of which

data sources to use, how to assess the quality of these sources and the accuracy of their implied

methods for designating administrative boundaries, and whether to truncate the distribution so

as to focus on the properties of the upper tail (Gabaix and Ioannides 2004). The motivation for

the algorithmic approach developed by Rozenfeld et al. (2011) is to construct the extent of urban

markets without having to rely on seemingly arbitrary boundaries, and then to test for the presence

12The right shift of the distribution of land area for nightlight-based markets is most pronounced at a buffer of
1km, because at this buffer only the high-resolution daytime imagery is able to isolate small urban markets. While
the right shift of market-size distributions for the lower-resolution imagery is preserved at higher distance buffers, the
relative “peakiness” of the market-size distribution for landcover-based markets diminishes at higher buffers because
smaller market areas are joined into larger pixel clusters at these buffers.
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of Zipf’s Law using cities whose boundaries are justified based on economic fundamentals (i.e., the

proximity of their internal clusters of activity). In that paper, they show that the distribution of

city land areas approximately obeys Zipf’s Law for the US and the UK, and explain that a Zipf’s

law in area can be rationalized by a model with Cobb-Douglas preferences for goods and housing

along with a proportional random growth process.

To connect our results with the literature, we examine the emergence of a power law in the

distribution of land areas for our market definitions. Our aim is a narrow one, to compare regu-

larities regarding the size distribution of land area across our market definitions and those based

on conventional data sources, rather than to inquire into the origins of power laws more broadly.

Following Gabaix and Ibragimov (2011), Figure 6 plots the log of market rank minus 0.5, based

on land area, against the log of land area. The figure reveals three patterns. First, landcover-

based markets more closely follow the log-linear relationship dictated by a power law. The R2 of

the regressions for landcover-based markets (which range from 0.90 to 0.98) are higher than for

nightlight-based markets (which range from 0.84 to 0.91). For MODIS 1km markets, the R2 is 0.96.

That is, for landcover markets the entire distribution of market size appears to be Pareto, whereas

for nightlight markets the size distribution appears to be Pareto only in the upper tail. Second,

the figure also reveals that for nightlight-based markets the shape of the area-rank plot is roughly

stable across buffers. This suggests that increasing buffers simply increases the size of markets

proportionally, such that the rank-area relationship remains constant. In contrast, the linear slopes

of the area-rank plots for landcover-based markets flatten out as the buffer size increases, indicating

greater dispersion. Finally, Figure 6 also reveals that for nightlight-based markets, the log-linear

relationship breaks down for the largest markets. For landcover-based markets, however, the curve

that fits the upper tail markets is close to linearity (as it is in the remainder of the distribution).

For the MODIS 1km markets, the slope of the line is -0.93.

3.2 Validation

The statistics presented above summarize the extensive margins of urban activity and are based

solely on satellite data. A limitation of satellite-inferred markets is that they convey uncertain in-

formation on the intensive margin of economic activity. This limitation may be less of a concern

with nightlight-based markets, since earlier work demonstrates a strong positive relationship be-

tween nightlight intensity and GDP, both in levels and in changes (e.g., Henderson et al. 2012).

Daytime satellite imagery, in contrast, provide unknown information on the intensity of economic

activity within markets. This is because in the landcover layers the pixels record only whether or

not a man-made impervious structure is present. One would need additional information, such as

the density and height of structures, to improve the prediction of economic activity based on the

underlying spectral signatures of those images.13

This subsection matches external datasets to the boundaries of markets to explore correlations

13See Jean et al. (2016) for a recent application that predicts micro-spatial poverty headcount for five countries in
Africa using nighttime and daytime imagery and Demographic and Health Surveys.
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between market area and different measures of economic activity. Since we are confident in measur-

ing the land area of a market, the strength of these correlations provides an indication of whether

land area is also a reasonable proxy for the intensity of economic activity of cities. We examine cor-

relations between market area, population, nightlight intensity per unit of land, and three granular

measures of infrastructure provision—–roads, railway stations, and mobile phone towers.

3.2.1 Population

Our first approach to measure economic activity within our market boundaries is to overlay

the 2011 India Census to obtain population counts for each market.14 Census shape files are

disaggregated at the town and village level, which have an average area of 16.6km2 and 4.8km2,

respectively (see Table A1). Analogous to Davis et al. (2019), we overlay our markets with the

Census towns and villages shape files to spatially match each town to the market it lies inside or

overlaps. The population of each town is then assigned to the market it overlaps. If a market

overlaps more than one town, the population of all the towns it overlaps is assigned to that market.

If a town overlaps more than one market, we divide the population of the town by the number of

markets it overlaps, and assign this value to each market it overlaps. This ensures that we are not

double counting the population of towns that overlap more than one market.

The third column of Table 1 reports the total population contained in the markets we detect.

According to our estimates, the DN60 markets, which as shown above find the Census’ Class 1

towns, collectively contain 14.8% of India’s population and 47.6% of the urban population. This is

lower than the official Class 1 total since DN60 markets identify the core urban area of cities (the

DN60 markets are smaller, on average, than the average size of Class 1 towns). The DN33 markets

contain 23.4% and 75.3% of India’s total and urban populations, respectively.

Compared to these two DN thresholds, landcover markets capture a larger share of India’s

urban population. The 1km MODIS markets contain 29.0% and 93.2% of the total and urban

population. Total urban population share rises to 93.8%, 96.7%, and 111.1% for 2km, 4km and

8km markets. Thus, we find that landcover markets are able to capture the vast majority of India’s

urban population. The 8km MODIS markets also capture some of India’s population that do not

reside in Census’ towns, which is why the share is above 100%.

The left axis of Figure 7 examines the correlation between population and area for 1km buffered

markets. For each market definition, there is a strong positive correlation between the area of the

market and its total population. This validates that the larger markets we detect are not simply

capturing pixels that appear builtup but contain no population. Instead, larger markets contain

more people, as we would expect. A second message of the graph is that the population variance

across smaller landcover-based markets can be large. This again reflects the fact that distinct

landcover based-markets can be found in both remote areas and large metropolises. (This variance

14An early version of this paper used WorldPop, a publicly available source of gridded population data. These data
contain measurement errors but are nevertheless useful because of their global coverage. These figures are available
in earlier versions of the paper and are available upon request.
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decreases, but the positive correlation remains, at higher buffered 4km markets, as illustrated in

Figure A5). We also examine population density, defined as population divided by land area, as a

measure of economic activity on the right axis. The figure reveals a fairly constant density across

size for each market definition. However, the figure does show higher variation in population density

for smaller landcover markets for reasons just explained.

While the builtup pixels from daytime imagery undoubtedly contain man-made structures that

do not necessarily contain human settlements (e.g., roads, freeway overpasses, dams, and power

grids), the Census data serve as an important validation that the markets we identify do indeed

contain urban populations within their boundaries.

3.2.2 Nightlight Intensity

Previous work by Henderson et al. (2012) and Henderson et al. (2018) demonstrate that night-

light intensity is a good proxy for national or regional GDP. Inspired by this work, we compare

the average DN (nightlight intensity per unit of land) across markets. While the average DN for

nightlight-based markets would be affected by blooming because of its impact on the extent of

market boundaries, blooming is less of an issue for landcover-based markets since those boundaries

are more accurately delineated.

Figure 8 reports the relationship between the average DN and the land area of a market (1km

buffers). For each of the landcover-based markets, larger markets are associated with higher DNs.

Moreover, the change in DNs across market size is quite sharp. For example, a MODIS market at

the 10th percentile of the area distribution has a mean nightlight intensity of 9.4 compared to a

value of 27.2 at the 90th percentile. Henderson et al. (2012) report an elasticity of 0.3 for GDP

with respect to DN, which implies that there is a GDP difference of 56.8% between markets that

span the interdecile range of land area.

The figure also reveals that landcover-based markets exhibit more variance in DN intensity at

smaller market sizes. For instance, for the smallest MODIS markets, we observe the full range of

mean DNs (as seen by examining the range of points spanned along the y-axis for given points just

to the right of the origin along the x-axis). This regularity is again a result of the fact that we

detect small-in-area landcover-based markets both in remote regions of the country, where economic

intensity is low (as indicated by low DNs), and within large urban centers, where DNs are high.

This suggests that when using DN intensity as a proxy for the economic activity of landcover-based

markets, researchers may want to account for the characteristics of the surrounding markets.

The correlations in Figure 8 thus suggest that the pooling of daytime and nightlight imagery

may be a powerful means of characterizing the combined extensive and intensive margins of urban

markets. While researchers interested in the economic geography of specific cities may want to bring

information from external datasets, these correlations are promising for researchers interested in

studying urban market activity at national or global scales.
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3.2.3 Proximity to Infrastructure

A third way to examine whether our markets capture economic activity is to merge them with

open-source data containing the locations of key infrastructure markers. We examine proximity of

markets to paved roads, railway stations, and mobile phone towers. A caveat with this exercise is

that these data reflect the current location of infrastructure. The road and railway station data

are from OpenStreetMaps.15 Because the road data are for a time period roughly five years after

our satellite imagery was collected, there is measurement error in matching markets to roads. Rail

stations are less susceptible to this problem since they are built at much lower frequencies. The

tower locations share the same caveat as the roads data, but have the advantage of being compiled

by a different data source (https://opencellid.org).

We construct the distance between market centroids to the nearest infrastructure type for each

market definition in Table 2. For nightlight-based 1km markets, the fractions of DN17.4, DN33

and DN60 markets that lie within two kilometers of a paved road are 96.7%, 97.0% and 97.4%,

respectively. This fact should not be surprising since these markets are relatively large, although

one caveat is that the nightlight data may capture street lights along the roads.

The more informative statistics are the fractions of landcover-based 1km markets that lie within

two kilometers of a paved road. For MODIS market, this fraction is 88.3% (the corresponding

numbers for GHSL and MIX markets are 89.4% and 90.8%). Since we believe that most urban

markets would be connected to a road of some kind, this regularity provides validation that the

daytime satellite imagery are capturing markets that contain economic activity. The table also

reports proximity to the nearest railway station (second panel) and mobile towers (third panel).

We find that 26.2% of MODIS 1km markets are within 5km of a railway station, which rises

to 81.7% for markets within 25km of a rail station. Proximity to mobile phone towers is also very

high across markets: 86.9% of MODIS 1km markets are within five kilometers of a mobile tower.

We also expect a positive relationship between market size and its proximity to paved roads

(Storeygard 2016). The left axis of Figure 9 plots this relationship, which illustrates the potential

power of daytime imagery over nighttime imagery. Landcover-based markets exhibit a sharp nega-

tive elasticity of market area with respect to distance to the nearest road. For instance, compared

to markets that are bisected by a road, a MODIS market that is 2km away from a road is about

50% smaller in land area. Such a large difference in size is not detectable using nightlight-based

markets: for markets based on DN thresholds, the elasticity of size with respect to distance to a

road is an imprecisely estimated zero.

Figure 9 repeats the plots with average nightlight intensity on the second y-axis. These illus-

trate that for landcover-based markets, light intensity, which as discussed above is a proxy for the

intensity of economic activity, falls sharply with distance to a paved road. For MODIS markets,

the average light value falls from about 20 to 8 when one compares a market that lies on top of a

15We use the OpenStreetMaps road classifications. The major roads (511x) include motorways, freeways, and
trunk, primary, secondary and tertiary roads. We additionally include two minor road classifications: smaller local
roads (5121) and roads in residential areas (5112). For the railway stations, we include large rail stations (5601) and
smaller, local rail stations or subway stations (5602).
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road to a market that is 2km from a road. As with land area, a decline in light intensity is not

detectable for nightlight-based markets between 0km-2km from a road.

As noted earlier, nightlight data have a relatively coarse spatial resolution compared to day-

time images (1km vs 30m). The lights data are also subject to blooming which introduces mea-

surement error in market size. Which of these two differences—spatial resolution or exposure to

blooming—explains why the road-distance elasticities are less sharply negative for nightlight-based

markets when compared to landcover-based markets? We examine this question in the MODIS

data by changing the minimum cluster threshold from 1 pixel to 4 pixels, or roughly 1km grid

cells, in order to match the minimum market area of nightlight-based markets. We then rebuild

the landcover-based markets using a 1km buffer. The procedure creates 5,527 markets (compared

to 12,953 using a minimum of one MODIS pixels at 1km buffer). We then compare the elasticity of

market area and average DN value to distance from the closest road in Appendix Figure A6. The

MODIS markets that impose a 1km minimum area still display a strong negative elasticity with

respect to road distance for both outcomes. With landcover-based markets and nightlight-based

markets now approximately equal in spatial resolution, the more negative road-distance elasticity

for the former relative to the latter would appear to be the result of blooming in nightlights and

the measurement error it introduces when trying to detect market size.

4 Markets within Super-Markets

The literature has long recognized that actual structure of cities does not easily map into

static spatial models with a featureless geography. Instead, urban sprawl occurs unevenly at city

boundaries (Duranton and Puga 2014). As cities expand, there often remains undeveloped land

within city limits. This may be due to physical constraints imposed by geography (Harari 2017),

leapfrogging that occurs from dynamic city growth (Fujita 1982), municipalities wanting to control

how land is utilized, or, particularly relevant to India, disputes over land titles and coordination

failures across government agencies (Roy 2009). These features have led to a large literature on the

polycentric structure of cities (Duranton and Puga 2015). We next explore this polycentricity.

4.1 Properties of Super-Markets

Our market definitions have a recursive property that nests smaller buffered markets within

larger buffered “super-markets”. This feature allows us to study the distribution of markets within

super-markets. Our results suggest a potential use of high-resolution daytime satellite imagery to

evaluate policies that impact the intra-regional distribution of markets within these larger urban

forms. The granularity allows us to observe impacts both within markets (e.g., markets or neighbor-

hoods within a larger super-market), and at high temporal frequencies (important for policymakers

loathe to wait years to evaluate the returns to public infrastructure investments).

To see that landcover-based markets have the potential to uncover local-level responses to

shocks that would otherwise appear hidden by the coarseness and granularity of nightlight-based
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markets, consider Figure 10, which maps MODIS landcover-based markets at different buffers

for New Delhi. The outer ring is the official administrative boundary of New Delhi. The light

gray polygon represents the 60 8km buffered markets that lie within the administrative boundary.

These 8km super-markets further contain smaller 4km, 2km and 1km markets. Within the official

boundary, we detect 205, 435 and 579 markets buffered at 4km, 2km, and 1km.

Turning to the country as a whole, Table 3 reports the average number of i = {1, 2, 4}km
markets that are contained within their larger super-market buffer j = {2, 4, 8}km for all markets

in India. While the megacity of New Delhi unsurprisingly stands out for its large number of

markets, the presence of these markets is a general phenomenon detectable via landcover-based

market definitions. For example, an average of 1.9 buffered MODIS 1km markets lie within super-

markets defined at a 4km buffer, and an average of 4.2 markets lie within 8km super-markets. The

second column within each panel of Table 3 reports the elasticity of the number of markets to the

size of the super-market. The elasticity of the number of 1km MODIS markets with respect to

the size of 2km markets is 0.15 and increases to 0.31 and 0.36 for 4km and 8km super-markets,

respectively. These patterns suggests that there is substantial scope for using landcover-based

markets to evaluate theories of how polycentric cities are organized and grow. Markets defined

according to administrative boundaries would likely be poorly suited for this purpose as official

boundary definitions may substantially lag urban structure.

The size of markets within super-markets is highly unequal. Table 4 reports the distribution

of 1km market size shares within the super-markets for MODIS. For each 1km market, we rank

them within their respective super-market and compute their share of builtup area. The top panel

reports the distribution of shares within 2km super-markets; the middle and bottom panels reports

statistics for 4km and 8km super-markets, respectively. The table reveals that for 4km super-

markets that contain two 1km markets, the larger market accounts for about 72% of the builtup

area. For super-markets that contain 5 markets, the largest market accounts for 51% of the builtup

area of 4km super-markets, and 58% of the builtup area of 8km super-markets.

While super-markets contain many distinct markets, they also contain vast tracts of unbuilt

land. To demonstrate this regularity, we compute the area of builtup pixels that lie within the

boundary. Figure 5 plots a non-parametric relationship for the developed land fraction against the

size of markets, by buffer. For the 1km and 2km buffers, a large fraction of market area is builtup

for both nightlight and MODIS markets. This is intuitive since the clustering algorithm builds

very small land bridges for these buffers. For larger buffers, the fraction of land area increases with

area for nightlight markets. However, for MODIS markets, the builtup area percentage falls with

area size; it levels off at around 50% for 4km markets, and falls continuously in 8km markets. The

fraction of builtup land area in the average 8km buffered DN33 and DN60 market is 78% and 87%,

respectively, compared to just 23% in the average 8km MODIS market.

These patterns reinforce several messages from earlier figures. The blooming of lights implies

that larger buffered nightlight-based markets will suggest that human activity is too expansive

within its boundaries. This is particularly an issue for the largest cities. Landcover-based markets
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instead reveal far more undeveloped land within boundaries. For large cities, daytime imagery

reveal a sizable fraction of undeveloped land within market boundaries. This suggests there may

be substantial within-market variation in builtup land across regions and over time.

4.2 Application to Market Access

How might we deploy data on landcover-based markets and super-markets? One application

is to detect the consequences of infrastructure development. Governments across the developing

world are making large-scale investments in improving internal transport connectivity. A grow-

ing literature studies the economic impacts of transportation (e.g, see Redding and Turner 2015).

Ghani et al. (2014), for instance, use across-district variation in the distance to the India’s Golden

Quadrilateral highways and find positive impacts on allocative efficiency within Indian manufactur-

ing. Asher and Novosad (forthcoming) study India’s $40 billion in expenditures on rural roads and

do not find substantial effects on rural household welfare. Both analyses draw upon administrative

datasets to evaluate impacts of new roads. Satellite imagery offers the potential to complement

these studies by using remotely sensed data and by analyzing impacts on markets that lie within,

for instance, larger buffered peri-urban areas.

In the spirit of such analysis, we examine the average distances to (the centroids of) other

markets within given super-markets, which are reported in third column of each panel in Table 3.

Consider MODIS markets. Within a 8km buffer, the average distance between 1km sub-markets is

52.1 kilometers, indicating that the typical 8km buffered super-market is an economic region unto

itself, which would utilize highways and railways in a manner that we may typically associate with

inter-urban transport. The average distance between 1km sub-markets within a 4km buffer is 6.2

kilometers, which indicates that at a 4km buffer we are dealing with collections of interconnected

neighborhoods. The contrast in market distances between 4km and 8km buffered super-markets

illustrates the different market concepts that these designations represent. One might reasonably

conclude that 4km buffered markets approximately constitute commuting zones, while 8km buffered

markets approximately constitute economic regions that support dense internal trade in goods and

services. Differing urban market definitions may then be useful for evaluating the consequences

of reduced travel time on different aspects of economic integration, for goods markets at higher

distance buffers and for local labor markets at lower distance buffers.

To investigate such potential, we follow Donaldson and Hornbeck (2016) by calculating measures

of market access for the MODIS markets. For each market i, we calculate its market access as

MAi =
∑

j∈Sik,j 6=i

areaj

distanceθij
+

∑
j /∈Sik,j 6=i

areaj

distanceθij
(1)

where areaj is the land area of market j, distanceij is the great circle distance from market i to

market j, and θ is a distance elasticity that we set to 1.4 (Redding and Turner, 2015). We exclude

the own market in the summation, as Donaldson and Hornbeck (2016) do in their analysis. We are

particularly interested in the contribution to market i’s term by the j markets that lie within i’s
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super-market Sik, buffered at k = {2, 4, 8}km. Figure 11 reports the contribution of the within-

super-market component, across buffers and daytime imagery sources. We also report the results

that obtain for other distance elasticities by setting θ = 1 and θ = 1.8.

In the baseline case of θ = 1.4, the results indicate that, on average, 2.3%, 6.8% and 25.4% of

a 1km MODIS market’s access comes from other markets within the same super-market buffer of

2km, 4km, and 8km, respectively. At the higher elasticity of θ = 1.8, the corresponding percentages

increase to 5.2%, 14.4% and 40.1%. Whereas previous literature largely conceives of infrastructure

development as integrating our equivalent of super-markets, examining landcover-based markets

reveals that a substantial share of a location’s market access is intra-urban in nature. With data on

combined infrastructure investments in inter-state highways, such as India’s Golden Quadrilateral,

and in intra-urban investments in access roads, road widening, and related improvements, daytime

satellite imagery have the potential to provide a much higher resolution characterization of how

these changes in trade costs shape the spatial distribution of economic activity.

5 Conclusion

Economists have been utilizing satellite imagery for over a decade. Notable applications have

elucidated the dimensions of urban sprawl and the connection between GDP growth and the in-

tensity of light emitted at night. In the last several years, the landscape, so to speak, has begun to

change rapidly. Dramatic reductions in storage costs have made vast troves of high-resolution day-

time satellite imagery widely available, while advances in machine learning are making it possible

to deploy imagery to detect economic outcomes at previously unimaginable spatial resolutions.

Our results indicate the value of combining different types of satellite imagery in economic anal-

ysis. Daytime imagery is well suited for defining the spatial expanse of markets, the polycentricity

of urban areas, and the gaps in urban development that exist even within densely populated cities.

Nighttime imagery, in turn, is well suited for measuring the intensive margin of economic activity

within urban ares.

The creation of new methods for integrating alternative sources of satellite imagery is a promis-

ing avenue for research.With existing analytical tools, these data will make it possible to evaluate

the potentially highly spatially heterogeneous economic impacts of investments in infrastructure and

other policy interventions. With the continents of Asia and Africa in the midst of a multi-trillion

dollar infrastructure investments, the arrival of such capabilities is well timed.

Although satellite imagery greatly expands the supply of data amenable to economic analysis,

their interpretation is, at this stage, still constrained by the supply of conventionally measured

economic quantities, which serve as ground truth in machine learning. Demand will be particularly

high for methods to validate satellite-based measures of economic activity using additional sources

of micro data. We view this as an important area for future work.
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Figures and Tables

Figure 1: Delhi, Alternative Market Definitions

a. MODIS (1km) b. MODIS (2km) c. MODIS (4km) d. MODIS (8km)

e. DN>60  (1km) f. DN>60  (2km) g. DN>60  (4km) h. DN>60  (8km)

i. DN>33  (1km) j. DN>33 (2km) k. DN>33  (4km) l. DN>33  (8km)

m. DN>17.4  (1km) n. DN>17.4 (2km) o. DN>17.4  (4km) p. DN>17.4  (8km)

q. DN>10  (1km) r. DN>10 (2km) s. DN>10  (4km) t. DN>10  (8Km)

Notes: The figure displays markets around New Delhi for alternative distance buffers. Row 1 dis-
plays landcover-based markets using the MODIS layer. Row 2-5 displays nightlight-based markets.



Figure 2: Ahmedabad, Alternative Market Definitions

a. MODIS (1km) b. MODIS (2km) c. MODIS (4km) d. MODIS (8km)

e. DN>60  (1km) f. DN>60  (2km) g. DN>60  (4km) h. DN>60  (8km)

i. DN>33  (1km) j. DN>33 (2km) k. DN>33  (4km) l. DN>33  (8km)

m. DN>17.4  (1km) n. DN>17.4 (2km) o. DN>17.4  (4km) p. DN>17.4  (8km)

q. DN>10  (1km) r. DN>10 (2km) s. DN>10  (4km) t. DN>10  (8km)
Notes: The figure displays markets around Ahmedabad for alternative distance buffers. Row
1 displays landcover-based markets using the MODIS layer. Row 2-5 displays nightlight-based
markets.



Figure 3: Ajmer, Alternative Market Definitions

a. MODIS (1km) b. MODIS (2km) c. MODIS (4km) d. MODIS (8km)

e. DN>60  (1km) f. DN>60  (2km) g. DN>60  (4km) h. DN>60  (8km)

i. DN>33  (1km) j. DN>33 (2km) k. DN>33  (4km) l. DN>33  (8km)

m. DN>17.4  (1km) n. DN>17.4 (2km) o. DN>17.4  (4km) p. DN>17.4  (8km)

q. DN>10  (1km) r. DN>10 (2km) s. DN>10  (4km) t. DN>10  (8km)
Notes: The figure displays markets around Ajmer for alternative distance buffers. Row 1 displays
landcover-based markets using the MODIS layer. Row 2-5 displays nightlight-based markets.



Figure 4: Disconnection Index

Notes: Figure reports a non-parametric plot between a market’s disconnection index, measured in
kilometers, and its area.



Figure 5: Builtup Land

Notes: Figure reports the fraction of builtup land area by buffer. The nonparametric curve for
MODIS markets displays 5%/95% confidence interval.



Figure 6: Land Area-Rank Relationship

Notes: The {b, N, R-squared} are reported for the regression: log(rank-0.5) = constant +
b*log(area) + error.



Figure 7: Population versus Land Area

Notes: Figures report the relationship between market size, population and population density.
Markets are buffered at 1km. Population from 2011 Census.



Figure 8: Average DN Intensity versus Land Area

Notes: Figures report the relationship between market size and average light intensity. Markets
are buffered at 1km.



Figure 9: Land Area, Average DN and Proximity to Roads

Notes: Distance to road is the shortest distance from market centroid to a primary, secondary or
tertiary road. Road data obtained from OpenStreetMaps. Markets are buffered at 1km. Figure
shows 5% and 95% confidence intervals.



Figure 10: MODIS Landcover-Based Markets within New Delhi Metro Area

MODIS 1km
MODIS 2km
MODIS 4km
MODIS 8km
Delhi Metro

Notes: Map shows MODIS markets in the New Delhi metropolitan area. The black outline is the
official administrative boundary of New Delhi from the 2011 Census. Within the administrative
boundary, there are 579 1km, 435 2km, 205 4km and 60 8km markets.



Figure 11: Share of Market Access within Super-Markets

Notes: Figure reports the average share of market access accounted by markets within super-
markets for different values of θ.



Table 1: Market Statistics

Market Number
Avg Area 

(km2)
Population 

Share

Urban 
Population 

Share

DN17.4
1km 3,275 48.6 32.6% 104.6%
2km 3,275 50.7 32.6% 104.6%
4km 3,146 59.6 32.7% 105.0%
8km 2,752 97.8 33.5% 107.6%

DN33
1km 1,669 39.0 23.4% 75.3%
2km 1,640 39.8 23.4% 75.3%
4km 1,544 42.9 23.5% 75.5%
8km 1,322 55.4 23.8% 76.5%

DN60
1km 469 37.0 14.8% 47.6%
2km 465 37.3 14.8% 47.6%
4km 455 38.3 14.8% 47.6%
8km 421 43.7 14.9% 47.7%

MODIS
1km 12,953 3.0 29.0% 93.2%
2km 10,836 4.2 29.2% 93.8%
4km 6,921 10.6 30.1% 96.7%
8km 3,073 63.4 34.6% 111.1%

GHSL
1km 26,202 1.4 33.3% 106.9%
2km 18,753 2.9 33.5% 107.6%
4km 10,371 10.9 34.8% 111.8%
8km 3,861 77.5 39.4% 126.5%

MIX
1km 17,304 1.9 27.1% 87.1%
2km 11,816 4.3 27.3% 87.7%
4km 7,225 12.1 28.4% 91.1%
8km 3,417 54.5 31.4% 100.7%

Panel A: Nightlight-based Markets

Panel B: Landcover-based Markets

Notes: Table reports the number and average area (in square kilometers) of markets and share
of total India population, by definition. Total 2011 India population is 1,210,854,977. Urban
population (population that resides in Census ”Towns”) is 377,106,125.



Table 2: Market Distances to Nearest Infrastructure

Market 1km 2km 5km 10km 25km 50km
DN17.4 91.9% 96.7% 98.2% 98.6% 98.7% 98.7%
DN33 93.2% 97.0% 98.6% 99.0% 99.0% 99.0%
DN60 94.7% 97.4% 98.7% 98.9% 98.9% 98.9%
MODIS 75.1% 88.3% 97.3% 99.1% 99.3% 99.3%
GHSL 81.3% 89.4% 97.1% 99.0% 99.2% 99.2%
MIX 81.0% 90.8% 97.8% 99.1% 99.3% 99.3%

1km 2km 5km 10km 25km 50km
DN17.4 12.2% 28.5% 43.1% 55.0% 83.4% 97.3%
DN33 19.2% 42.7% 60.8% 70.1% 89.2% 98.6%
DN60 22.0% 52.9% 78.7% 88.1% 97.0% 99.1%
MODIS 4.6% 12.8% 26.2% 46.2% 81.7% 96.8%
GHSL 5.1% 9.1% 22.5% 45.2% 82.1% 96.9%
MIX 6.1% 11.3% 26.7% 50.0% 83.6% 97.3%

1km 2km 5km 10km 25km 50km
DN17.4 59.7% 61.6% 64.4% 67.6% 69.9% 70.0%
DN33 96.6% 97.7% 99.0% 99.7% 100.0% 100.0%
DN60 98.9% 99.4% 99.8% 100.0% 100.0% 100.0%
MODIS 56.1% 68.2% 86.9% 96.8% 99.9% 100.0%
GHSL 55.3% 67.8% 86.8% 97.0% 99.9% 100.0%
MIX 59.6% 72.2% 89.6% 97.8% 99.9% 100.0%

Road

Rail Station

Mobile Phone Towers

Notes: Table reports the fraction of markets in which the centroid lies within a particular distance
of the noted infrastucture type.



Table 3: Markets within Super-Markets

Market Number Elasticity Distance Number Elasticity Distance Number Elasticity Distance
MODIS

1km 1.2 0.15% 1.9 1.9 0.31% 6.2 4.2 0.36% 52.1
2km 1.6 0.23% 5.0 3.5 0.32% 50.4
4km 2.3 0.24% 38.1

GHSL
1km 1.4 0.19% 5.1 2.5 0.28% 20.8 6.8 0.32% 75.4
2km 1.8 0.20% 13.5 4.9 0.28% 66.3
4km 2.7 0.22% 45.0

MIX
1km 1.5 0.17% 3.9 2.4 0.25% 11.1 5.1 0.30% 31.6
2km 1.6 0.17% 7.2 3.5 0.25% 27.9
4km 2.1 0.18% 20.0

2km Super-Market 4km Super-Market 8km Super-Market

Notes: Table reports statistics for the 2km, 4km and 8km super-markets. Columns 1, 4 and 7 are
the average number of sub-markets within the super-market. Column 2, 5 and 8 is the average
distance between sub-markets. Column 3, 6 and 9 is the elasticity of the number of sub-markets to
the size of the super-market (e.g., a one percent increase in the size of the super-market increases the
number of markets by the number reported in the cell). Blank cells indicate that the statistic is not
relevant (e.g., a blank cell for the number of 2km markets within the 2km or 4km super-market).



Table 4: Distribution of Market Size within Super-Markets

Rank 1 2 3 4 5 6+
1 100% 73% 66% 64% 61% 58%
2 27% 22% 19% 16% 12%
3 12% 11% 11% 7%
4 6% 7% 5%
5 4% 4%

6+ 14%

Rank 1 2 3 4 5 6+
1 100% 72% 62% 56% 51% 44%
2 28% 24% 22% 20% 11%
3 14% 13% 14% 6%
4 9% 10% 5%
5 6% 4%

6+ 30%

Rank 1 2 3 4 5 6+
1 100% 74% 64% 58% 58% 38%
2 26% 23% 20% 18% 11%
3 13% 13% 11% 6%
4 9% 8% 5%
5 5% 4%

6+ 37%

Number of Markets

Number of Markets
 2km Super-Market

4km Super-Market
Number of Markets

8km Super-Market

Notes: Table reports the distribution of area share of MODIS 1km markets within 2km, 4km and
8km super-markets. For example, in the first panel, for 2km super-markets that contain three
MODIS 1km markets, the largest market accounts for 67% of the markets’ area, the second largest
market for 22%, and the smallest market accounts for 12% of area. Numbers may not sum to one
because of rounding.



Online Appendix Tables and Figures

Table A1: Administrative Areas in India, 2011 Census

Number
Total 

Population
Population 

Share
Mean 

Population
Mean Area 

(km2)
Villages 640,932 833,748,852 68.9% 1,301 4.8
Towns 6,171 377,106,125 31.1% 61,109 16.6

Class 1 (>100k) 468 264,745,519 21.9% 565,696 97.6
Class 2 (50k-100k) 474 32,179,677 2.7% 67,890 20.4
Class 3 (20k-50k) 1,373 41,833,295 3.5% 30,469 14.4
Class 4 (10k-20k) 1,683 24,012,860 2.0% 14,268 9.3
Class 5 (5k-10k) 1,749 12,656,749 1.0% 7,237 5.5
Class 6 (<5k) 424 1,678,025 0.1% 3,958 4.1

Notes: Table reports official tabulations from 2011 Census of India.
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Figure A1: Density of Nighttime Lights for 1km Pixels, All India

Notes: Vertical lines denote the 90th, 95th, 99th, 99.5th percentiles of DNs. Histogram formed
using a 3% random sample of pixels.
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Figure A2: Combining Polygons to Form Markets
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Notes: Panel (a) illustrates DN10 threshold markets. Panels (b-d) shows 2km, 4km and 8km
buffers, respectively. The last panel shows the aggregated 8km buffered markets.



Figure A3: Distribution of Land Area

Notes: Figure reports the distribution of market land area, by market definition.



Figure A4: Distribution of Minimum Nightlight DN Values

Notes: Figure reports the distribution of minimum DN values, by market definition.



Figure A5: Population versus Land Area, 4km Buffer

Notes: Figures reports relationship between market size, population and population density. Mar-
kets are buffered at 4km. Population from 2011 Census.



Figure A6: Proximity to Roads, Coarser MODIS Markets (1km2 minimum area)

Notes: Distance to road is the shortest distance from market centroid to a primary, secondary or
tertiary road. Road data obtained from OpenStreetMaps. Figure uses MODIS markets formed
using a minimum threshold of 1km and buffered at 1km. Figure shows 5% and 95% confidence
intervals.



Figure A7: MODIS Landcover-Based Markets within Ahmedabad Metro Area
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Notes: Map shows MODIS markets in the Ahmedabad metropolitan area. The black outline is
the official administrative boundary of Ahmedabad from 2011 Census. Within the administrative
boundary, there are 15 1km, 11 2km, 7 4km and 2 8km markets.



Figure A8: MODIS Landcover-Based Markets within Ajmer Metro Area
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Notes: Map shows MODIS markets in the Ajmer metropolitan area. The black outline is the official
administrative boundary of Ajmer from 2011 Census. Within the administrative boundary, there
are 1 1km, 1 2km, 1 4km and 1 8km markets.



A Aggregating Pixels to Markets

To combine clusters of highly lit pixels, we use the Aggregate Polygons function in ArcGis. This

function combines polygons within a specified buffer to form larger polygons. Appendix Figure A2

illustrates the tool with lit pixels, focusing the border between Rajasthan and Haryana, two states in

India. The gray areas illustrate polygons that are contiguous sets of pixels with a DN that exceeds

10. Notice that there are many unconnected polygons. Merging two polygons forms a larger

polygon that contains the land area of the original two polygons plus a land bridge that connects

them, whose dimension is determined by the algorithm. The larger is the distance buffer, the larger

will be the land bridges that connect polygons. Figure A2a illustrates the results of implementing

a 1km buffer; Figures A2b through A2d implement 2km, 4km, and 8km buffers, respectively. For

a sub-area within the sample geographic region, Figure A2e illustrates the resulting markets when

we impose the 8km buffer. Notice that moving from the smallest to the largest buffer collapses the

number of markets in this area from more than 20 to just 3.

B Construction of the MIX Layer

This online appendix provides an overview of the builtup classification methodology developed

by Goldblatt et al. (2018) for India, Mexico, and the U.S. The methodology uses DMSP-OLS

nightlight data as quasi-ground truth to train a classifier for builtup land cover using Landsat

8 imagery. The basic idea is that since lights indicate the presence of human activity, we can

train a classifier that uses the spectral signature of daytime images to predict the presence of

humans, as indicated by lights. The challenge of using nightlights as a source of ground truth is

the blooming of lights. Goldblatt et al. (2018) correct for this blooming as follows. Using their

approach and imagery for 2013, we calculate the per-band median values from a standard top-

of-atmosphere calibration of raw Landsat 8 scenes. These per-pixel band values are then used to

construct commonly used indices to detect vegetation (the normalized difference vegetation index,

NDVI), water (the normalized difference water index, NDWI), physical structures (the normalized

difference built index, NDBI), and other relevant features. We use these indexes to mask out pixels

that appear with high DN from the DMSP-OLS data; the assumption is that these pixels, because

they are composed mostly or entirely of water or vegetation, do not contain builtup activity and

appear unlit only because of blooming. We then proceed with the classification.

The steps of the methodology are as follows:

1. Designate a pixel as builtup if its DN exceeds a threshold. This threshold is set at the 95th

percentile of pixels in the training set, which is 17.4 across all India but ranges is allowed to

vary across hex-cells (discussed below).

2. Re-classify a builtup pixel as not builtup if the Landsat index bands (NDVI, NDWI, NDBI)

indicate presence of water, dense vegetation or not builtup activity (as noted above, this

corrects for the blooming).
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3. Use supervised machine learning to train a classifier (a random forest with 20 trees) with the

adjusted builtup/not builtup binary pixels from steps 1 and 2, and the Landsat 8 median-band

values and index values as inputs.

4. Use the classifier to construct the posterior probability that a pixel is builtup, and then create

binary values of builtup/not builtup status based on this probability (discussed below).

5. Evaluate the accuracy of the classifier by comparing the predicted builtup status of a pixel to

a ground-truth dataset that has 85,000 human-labeled pixels that were classified as builtup

or not builtup.

In (3), we allow for variation in how the reflectance of India’s heterogeneous land cover is associated

with urbanization by partitioning the country into an equal-area hexagonal grid with hex-cells that

have center-to-center distances of 1-decimal degree, and then treat each hex-cell as an indepen-

dent unit of analysis. (We also train classifiers for hex-cells that have distances of 4- or 8-decimal

degrees, but find that the 1-decimal degree hex-cell is most accurate.) After training the classi-

fier separately within each hex-cell, we mosaic the resulting local classifications to map predicted

builtup land cover for the entire country. In (4), we designate a pixel as builtup if its posterior

probability exceeds a given threshold that is determined by the Otsu algorithm (Otsu 1979), which

is a nonparametric and unsupervised method for automatic threshold selection originally developed

for picture segmentation. The method uses a discriminant criterion to identify an optimal thresh-

old that maximizes the between-class variance. We choose the threshold to maximize the variance

between builtup and not-builtup classes. In (5), which compares our predicted values of builtup

status with human-labeled examples, we achieve an overall accuracy rate is 84%. The accuracy

rate is defined as the sum of true positives and true negatives divided by the total sample. Note

that this accuracy rate exceeds the MODIS classification accuracy by 2.5% in India; see Table 6 of

Goldblatt et al. (2018).
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