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1 Introduction

The pharmaceutical firm Novartis made use of decades of publicly-funded research in the

development of Gleevec, a remarkably effective treatment for chronic myelogenous leukemia (CML).

Between the 1960s and 1980s, numerous studies elucidated the causes of CML, documenting the role

of a specific gene mutation that leads tyrosine kinase, a common cell signaling molecule, to become

overactive. This understanding pointed to an approach for treating CML—develop compounds to

inhibit tyrosine kinase—which Novartis scientists then pursued (Pray 2008).

Annual public-sector expenditures in biomedical research total more than $30 billion in the

United States alone. While the example of Gleevec is frequently invoked to support the claim that

these investments spur private-sector innovation (e.g., Relman [2003]), its history also illustrates the

pitfalls that accompany attempts to test this claim empirically. The synthesis of imatinib mesylate,

the chemical compound eventually marketed as Gleevec, was the culmination of both public and

private research investments not only in cancer, but also in the areas of gene mutation, cell signaling,

and vascular disease (Hunter 2007). This complicated genealogy means that attempts to isolate the

causal role of public funding in developing this—or any other—medical treatment must (i) track

the unpredictable and often convoluted path between initial R&D investments and final commercial

products; (ii) account for the possibility that public investments may crowd out industry efforts; and

(iii) isolate variation in public investment that is uncorrelated with the factors that drive private

investments. This paper makes progress on each of these issues.

We analyze the impact of biomedical research funding by the National Institutes of Health

(NIH) on patenting by private sector firms, from 1980 through 2005. Our first contribution is to

construct improved measures of the commercial output associated with publicly funded research.

The most recent work in this area, Blume-Kohout (2012), Toole (2012), and Manton et al. (2009),

examines the effects of funding for a disease on outcomes relevant for that same disease, using a

pre-specified lag structure. This strategy, however, misses any potential impact on other diseases

or with other time lags. Our paper takes a different approach. We construct a new dataset that

uses bibliometric information to explicitly link NIH grants with the publications that they support

and the patents that cite those publications. By letting the data reveal the relevant linkages, we

are able to identify patents that build on NIH-funded research without making a priori assumptions
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about the diffusion of scientific knowledge over time and across disease areas. This strategy allows

us to trace the often circuitous path from NIH funding to patented innovations.

In addition to uncovering direct linkages between public funding and private-sector patenting,

we develop a novel method that combines citation information with a measure of research similarity

to identify the set of private-sector patents intellectually related to a given NIH research area—even

if these patents do not build explicitly on NIH-funded work. This is important because NIH funding

may crowd out private investments. By identifying private-sector patents in areas potentially influ-

enced by NIH funding, we are able to measure the overall impact of public-research investments on

private-sector innovation, accounting for the possibility of crowd-out.

Our final contribution relates to identification. Public investments may target research areas

with the most potential for follow-on innovation, for example those where disease burden is rising

(Acemoglu and Linn 2004) or scientific opportunities are increasing (Lichtenberg 2001). If this were

the case, we could observe a correlation between public funding and private patenting even if public

investments were unproductive. To address concerns about the endogeneity of public investments,

our paper begins with the observation that scientists do not simply propose research on “cancer.”

Instead, they typically propose research on specific scientific questions that may, at some later

date, become useful in the search for cancer therapies. This means that NIH funding for an entire

disease may not necessarily coincide with the actual set of resources available for private-sector

researchers to build upon. For example, funding for a cancer researcher using a mouse model to

study the physiology of tumors is unlikely to be useful for a cancer researcher using high-throughput

sequencing techniques to study gene expression. By recognizing that biomedical research has both a

science and disease component, we are able to construct a finer-grained measure of public investment

at the “disease/science” level.

This level of granularity helps our analysis in two ways. First, we use fixed effects to control

for time-varying unobservables related to disease burden or scientific potential. Second, we take

advantage of idiosyncrasies in NIH funding at the disease/science level. Consider a grant application

related to a specific disease/science area, say cancer/cell signaling. One might decide whether to

fund this application by comparing it with other cell-signaling applications (i.e., science rank) or

by comparing it with other cancer applications (disease rank). The NIH does neither. Instead, it
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decides whether to fund an application based on how its science rank compares with the science

ranks of other applications in the same disease area. By requiring that applications be funded on

the basis of this “rank of ranks,” NIH funding rules often lead to cases in which disease/science areas

with similar innovative potential receive different amounts of funding. We develop an instrument

to take advantage of funding variation determined by procedural rigidities rather than by conscious

efforts to direct resources to areas with more unobserved potential (see Section 3.4 for more details

and an example). To the best of our knowledge, with the exception of Moretti, Steinwender, and

Van Reenen (2014), no papers in this area have attempted to take advantage of plausibly exogenous

variation in public investments.

Our results show that NIH funding increases total private-sector patenting. Our preferred

empirical specification suggests that an additional $10 million in NIH funding for a research area

generates 2.3 additional private-sector patents in that area, or roughly 1 patent for every 2 to 3 NIH

grants. Of course, not all patents are equally valuable; the distribution of patent value is in fact

highly skewed (Harhoff, Scherer, and Vopel 2003). In a series of back-of-the envelope calculations

(Section 5.3 and Table 8) we report a range of estimates for the private value of these patents using

different approaches.

Our results also help in understanding the path through which NIH investments influence

private sector innovation by developing estimates of the cross-disease spillover effects of NIH funding.

We show that fully half of the patents resulting from NIH funding are for disease applications distinct

from the one that funded the initial research. The size of this effect underscores the importance of

our approach to linking patents with funding: by looking only within the same disease area when

measuring impact, the prior literature in this area would miss almost half of the total impact of

basic research funding.

Finally, we consider the possibility that changes in NIH funding can lead firms to reallocate

resources to or from other projects. We show that firms which work in an area of increased NIH

funding produce more patents in that area, with no commensurate decreases in patenting in other

areas of their portfolio. This suggests that NIH funding spurs private patenting by either increasing

total firm R&D expenditure or increasing the efficiency of these expenditures.
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We proceed as follows. In Section 2, we discuss institutional background and the various effects

that NIH funding may have on private patenting. We describe our empirical strategy in Section 3;

Sections 4 and 5 present our data and main results, respectively. We discuss the impact of NIH

funding on reallocation of firm R&D investments in Section 6, and Section 7 concludes. Robustness

checks and alternative specifications can be found in Appendices E, G, H, I, and J.

2 Institutional Background

The NIH is the largest single supporter of biomedical research in the United States, responsible

for funding 28 percent of U.S. medical research in 2008. This compares to the 37 percent of research

funded by pharmaceutical firms, 15 percent by biotechnology firms, and 7 percent by medical device

firms (Dorsey et al. 2013).1

The bulk of NIH funding is for “basic” research that aims to extend the frontiers of medical

understanding. About one-third of NIH funding is for clinical research (including patient-oriented

research, clinical trials, epidemiological and behavioral studies, as well as outcomes and health

services research) that is more applied in nature. The agency also supports a range of training

grants that help develop the U.S. scientific and medical workforce.

2.1 Possible Effects of NIH Funding

Though many new therapies have intellectual roots in publicly-funded, academic laboratories

(Sampat and Lichtenberg 2011, Cockburn and Henderson 1998), most NIH grants yield neither

patented innovations nor novel treatment modalities. Yet, NIH funding may have the effect of

encouraging firms to make complementary investments in R&D. This may occur if firms underin-

vest in foundational research because of scientific uncertainty, the high fixed costs of R&D, or the

difficulty of appropriating basic scientific knowledge. In this case, NIH investments may increase

the expected returns to private investment by generating knowledge that clarifies opportunities for

developing new therapies, as in the case of Gleevec. We refer to this possibility as NIH investments

“crowding-in” private sector investments.

1Other funders include foundations, accounting for 4 percent, other federal funders, about 5 percent, and state
and local governments, also about 5 percent.
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It is also possible that NIH investments “crowd-out” private-sector efforts. This could happen

for a variety of reasons. Public funds could simply be subsidizing the cost of a firm’s existing

research. Alternatively, they could lower the costs of entry for competitors, reducing the firm’s

ability to reap market rewards from its R&D investments. This concern is especially salient in the

life sciences, since the organization of drug discovery research in the biopharmaceutical industry

has been greatly transformed to mimic that of academic labs in terms of size, intellectual autonomy

granted to researchers, and rewards linked to the production of high-impact publications (Henderson

1994). Many biomedical scientists also search for positions in academe and industry simultaneously

(Stern 2004), and the patterns of mobility between the private and the public sector have been

extensively documented (Zucker, Darby, and Torero 2002).

We develop outcome measures that directly test whether NIH funding is useful for firms. In

addition, we examine the impact of NIH funding on total private-sector innovation in a given research

area, taking into account the possibility that NIH investments may simultaneously encourage some

private investments in a research area while crowding out others.

2.2 A Primer on NIH Peer Review and Funding Decisions

The NIH comprises 27 Institutes or Centers (ICs) that are typically organized around body

systems (e.g., the National Heart, Lung, and Blood Institute), or disease areas (e.g., the National

Cancer Institute). Each Institute receives its own Congressional appropriation and is responsible for

funding research that is potentially relevant to its mission. Scientific evaluation of grant applications,

by contrast, occurs primarily in approximately 200 standing review committees known as study

sections. Each study section is organized around a scientific topic (for example, “Behavioral Genetics

and Epidemiology” or “Cellular Signaling and Regulatory Systems”) and is responsible for evaluating

the quality of applications in its area. Study sections review grant applications from multiple disease

areas with similar scientific underpinnings. In turn, ICs fund applications evaluated by multiple

study sections.

Study sections assign each application a raw score. During the timespan covered by our data,

these ranged from 5.0 (worst) to 1.0 (best). This raw score is meant to be a summary statistic for the

study section’s assessment of the quality of that application. Raw scores are then normalized within a
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study section and converted into a percentile. We call this normalized score the application’s “science

rank.” Once a study section has evaluated an application, the NIH’s funding rule is mechanical: an

IC must fund the applications it is assigned in order of their science rank until its budget has been

exhausted. The worst score that is still funded is known as that IC’s “payline.” In summary, the

peer review process at NIH generates three separate scores for each application: (i) the “raw score”

given by the study section; (ii) the within-study section “science rank” immediately derived from

the raw score; and (iii) the within-IC ranking of science ranks. It is this final “rank of rank” that

determines whether an application is funded. As alluded to in the introduction, the structure of the

NIH and its funding rules will play an important role in our empirical work. Section 3.4 details how

we exploit these features to isolate exogenous variation in NIH investments across research areas.

Appendix A provides more details about the NIH and NIH funding rules.

2.3 Measuring Biomedical Innovation Using Patents

Our main outcome variable is patenting by private sector biopharmaceutical firms (see Ap-

pendix B for more details on these patents). Patents may appear a surprising choice; researchers

studying medical innovation have typically focused on outcomes that are more immediately welfare-

relevant, such as reductions in mortality and morbidity (Manton et al. 2009), drugs entering clinical

trials (Blume-Kohout 2012), or new drug approvals (Toole 2012). However, these outcomes cannot

be readily linked to variation in public research expenditures without restrictive assumptions. By

contrast, biomedical patents can be linked to specific grant expenditures using the bibliographic

references they contain. Moreover, securing patents is the principal way that biopharmaceutical

firms appropriate the returns from their R&D investments (Cohen, Nelson, and Walsh 2000).

Since our analyses focus on the patented outcomes stemming from NIH-funded research—

thereby excluding effects on clinical practice, health behaviors, and unpatented surgical innovations—

they cannot provide the foundation for a complete welfare calculation.2 Another issue is that it

is difficult to know the private or social value of individual patents. For the very small subset of

2Note that clinical or epidemiological findings may subsequently inspire drug development strategies followed by
private firms, possibly resulting in patents that our analysis will capture. In a celebrated case, the patents granted to
Eli Lilly concerning recombinant activated Protein C for the treatment of sepsis all refer to a clinical study correlating
mortality in a small sample of severely septic patients with depressed levels of Protein C in these patient’s bloodstream
(Fourrier et al. 1992). This correlation provided the impetus for Lilly’s attempt to synthesize a recombinant version of
this protein. This product was ultimately withdrawn from the market in 2011 after new evidence emerged regarding
the bleeding risks associated with the use of this drug.
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patents pertaining to FDA-approved biopharmaceuticals (1,999 of the 315,982 patents in our sam-

ple), we can use estimates from the literature to calculate implied drug sales for the impacts of NIH

funding in dollar terms—a rough estimate of the private value of these patents.

3 Empirical Strategy

We examine the impact of public R&D investments on private-sector patenting by estimating

a regression of the form:

Patents
d̃st

= α0 + α1Fundingdst + Controlsdst + εdst (1)

The unit of analysis is a disease/science/time (DST) combination. Biomedical research typi-

cally involves a set of scientific questions applied toward a particular disease area. Scientists may

study, for instance, the role of cell signaling in cancer or gene expression in diabetes. A dis-

ease/science classification can be thought of as a “research area” whose projects share a similar

disease target and benefit from an understanding of similar scientific methods and mechanisms. We

follow these research areas over time.

Our outcome variable, Patents
d̃st

, describes the set of private-sector patents that we can

associate with NIH funding for disease d, science area s at time t. As further detailed below, these

patents need not be confined to the same disease area d or science area s as the original funding

source, nor do they need to be issued in the same year t.

The first step in our analysis is to assign NIH funded research projects to specific DSTs.

Ordinarily, this task would not be straightforward because grant proposals often have titles—such

as “Impact of Type II Glucocorticoid Receptor Impaired Function in Transgenic Mice”—that would

not enable an outsider to the field to identify either a disease or a science area. In our setting,

however, we are able to infer a grant’s DST because the NIH requires all grant applicants to specify

a funding institute and a study section that will evaluate the application.3 Therefore, we assign

NIH funding to DSTs using the NIH’s own categorization: the Institute that funds a grant tells us

3A maintained assumption for the empirical exercise is that grant applicants cannot game NIH peer review by
choosing to submit their applications to a committee which they expect will be more richly funded. Appendix A
provides qualitative and quantitative evidence consistent with this assumption.
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its disease area and the study section that evaluates a grant tells us its science area. Fundingdst

is thus the total amount of NIH support for grants assigned to a particular Institute and evaluated

by a particular study section in a particular year.

3.1 Why use DSTs as our Unit of Analysis?

We focus on DSTs as our unit of analysis for two reasons. First, DSTs represent coherent

research areas and therefore capture a unit of funding variation that is policy-relevant. A more

disaggregated level of analysis, such as the individual grant, has a different interpretation. To see

this, consider an analogous regression at the grant level:

Patentsg̃ = α0 + α1Fundingg + Controlsg + εg (2)

In Equation (2), α1 captures the impact of changes in funding for grant g on patenting outputs

related to g (the comparison is implicitly to a grant g′ that receives less funding). Since we typically

only observe outcomes for funded grants, α1 captures the intensive margin effect of budget increases

for already funded grants, but would not incorporate any extensive margin impacts of funding

additional grants.4

To capture the impact of NIH funding at the extensive margin, one would need to examine

patenting outcomes related to all grant applications, both funded and unfunded. This is challenging

because unfunded applications do not generate acknowledgement data, making it difficult to track

downstream outcomes using bibliometric linkages (we describe how we use these linkages at the

DST level in Section 3.3). Jacob and Lefgren (2011) circumvent this issue by studying the impact

of NIH funding on the publication output of individual scientists. By focusing on the individual,

they are able to link publications to scientists using authorship information rather than grant

acknowledgements.

In our setting, however, estimating the impact of funding on individual scientists is of less policy

interest. Fundamentally, policy makers care about overall innovation in a research area, not about

4This is problematic because the NIH has a stated policy of funding the anticipated cost of an accepted research
proposal, regardless of its peer review score. As as result, there is relatively less scope for increases in a grant’s
budget, conditional on being funded, to affect its innovative potential. More likely, when the NIH provides more
funding for a research area, this funding is used to support additional grant applications that would not have been
funded otherwise. These grants go on to produce publications that, in turn, later inspire commercial applications.
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whether a given applicant is funded. If an individual applicant is able to produce more research

as a result of being funded, it does not necessarily generate more innovation in a research area

because funding for one applicant may simply come at the expense of funding for other applicants

with similar ideas: α1 may therefore misstate the impact of NIH funding on overall innovation in a

research area.

By aggregating to the level of a research area, we eliminate the concern that we simply identify

the advantage that funded individuals have over unfunded ones. While it is still the case that funding

for one DST could come at the expense of funding for other DSTs, this variation is more likely to

impact the substantive content of innovation, relative to funding variation at the investigator level.

This is because different D-S combinations correspond to different intellectual areas and are therefore

less likely to support overlapping research ideas.5

Policy makers are perhaps more interested in the impact of funding at the disease level, rather

than the disease/science level. Our second reason for examining DSTs is that it is important for

our identification strategy. As will be discussed in more detail in Section 3.4, funding for a DST

is a byproduct of funding decisions for diseases—made at the Congressional level—and scientific

evaluations for individual grant applications—made by peer reviewers. Because no one explicitly

allocates funding to a DST, we are able to exploit funding rules that generate incidental variation

in funding across research areas. Before delving into the role that rigidities in funding rules play in

our analysis, we first detail the construction of patenting outcomes at the DST level.

3.2 Measuring Outcomes Associated with NIH Funding: Traditional Challenges

It is difficult to predict whether and how funding for a given DST will spur private-sector

patenting: funding for one research area can have impact on other research areas, with varying time

lags. The most direct way of assessing the impact of public funds, then, is to examine its impact

on patenting in all research areas, in all subsequent years. With sufficient data and variation, one

would be able to estimate all the cross-elasticities—across research areas and over time—associated

with changes in public R&D investments.

5This does not address the concern that public funds may crowd out private investment. We discussed this form
of crowd out in Section 2.1. Section 3.3 discusses how we address this issue empirically.
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In practice, however, the literature has traditionally assumed that public investments may

only impact private innovation in the same research area, within a well-defined time horizon. Toole

(2012), for instance, regresses patenting in a given disease-year on 12 years of lagged funding for

that same disease. A generic concern with this type of approach is that it fails to capture any

benefits of medical research that cannot be anticipated in advance. These benefits may accrue both

to seemingly unrelated research areas and with unexpected time lags; for example, much of the

research underlying the development of anti-retrovirals used in the treatment of HIV infection in

the 1990s was originally funded by the National Cancer Institute in the 1950s and 1960s, at a time

when research on the causes of cancer centered on viruses.6 In Appendix G, we compare estimates

using our approach, described below, to the traditional ex ante approach applied to our data.

3.3 Linking Patents to NIH Funding: Novel Solutions

Our approach does not make ex ante assumptions about where and when public R&D in-

vestments may impact patenting. Instead, we develop new data and metrics to explicitly track this

process using bibliometric data. Using this approach, we construct Patents
d̃st

in two different ways.

Figure 1 provides an overview of this process and Appendix F provides a detailed description.

Patents citing NIH-funded research. NIH funding may spur private-sector patenting by pro-

ducing research that firms subsequently build on. The belief that such knowledge spillovers is an

important mechanism for productivity growth has been a feature of policy debates since the end

of World War II (e.g., Bush 1945), and has also figured prominently in economic scholarship on

technological change (Nelson 1982; Cockburn and Henderson 1998). We assess this claim directly

by identifying the number of private-sector patents that explicitly cite NIH-funded research.

6Gleevec provides another example: Varmus (2009) recounts that that Ciba-Geigy was working with scientists of
the Dana Farber Cancer Institute to find drugs that would block the action of a tyrosine kinase that contributes to
atherosclerosis in blood vessels, a disorder that is very different from CML. The development of Gleevec also relied
heavily on knowledge about the genetic causes of CML that was established in the 1960s and 70s (e.g., Nowell and
Hungerford 1960). In this case, the availability of treatment lagged behind basic research by over forty years. In other
settings, basic research percolates almost immediately into applied work, such as when publications and patents are
released in tandem (Murray 2002).
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To do this, we first link NIH grants to the publications they support using grant acknowledge-

ment data.7 Second, we link those publications to patents that build on their findings (Figure 1,

second column). To accomplish this second task, we find and standardize all the publication cita-

tions in patents granted by the USPTO. Because publications, rather than patents, are the main

output of scientific researchers, this approach represents an advance over the more commonly used

patent-to-patent citation data because it allows us to more reliably document how firms draw on sci-

entific findings (Cohen and Roach 2013). Further, the vast majority (over 90%) of patent-to-article

citations come from applicants rather than examiners and are thus more plausibly indicators of

real knowledge flows than patent-to-patent citations, for which only 60% of citations are applicant

generated (Lemley and Sampat 2012).8

In previous work, Sampat and Lichtenberg (2011) looked at marketed drugs citing NIH publica-

tions, finding that over 40 percent of the drugs approved between 1988 and 2005 cite an NIH-funded

publication. This paper builds on the strategy of linking drugs to patents to publications to grants,

but extends it in several ways. Most importantly, rather than a retrospective approach examining

what share of drug development can be linked back to NIH funding, our analysis is prospective,

examining how variation in NIH funding relates to subsequent innovation. This approach allows for

“failure” (grants that don’t generate any innovation), and is the relevant question for policy makers

considering changes to NIH funding.

Taking the acknowledgment and citation data together, we define Patents
d̃st

as the set of

patents that cite publications that in turn acknowledge funding from that DST. These patents need

not target the same disease as the original source of NIH funding which with they are linked. For

example, if a patent related to cardiovascular stents cites research funded with money allocated to

diabetes, we would associate this cardiovascular patent with diabetes funding.

This approach has two important drawbacks. First, relying on direct publication-to-patent

citations limits the type of intellectual influences we can account for. We would not, for instance,

credit NIH funding if it lead to patenting through more complicated citation patterns (e.g., a patent

7This is relatively straightforward because PubMed started capturing this information systematically starting in
1980. Appendix C1 provides more detail, and discusses the issues that may arise in our design if researchers inflate
their publication accomplishments to improve their odds of getting a grant renewed.

8We acknowledge that even citations to non-patent prior art can be made for legal and strategic reasons, and are
therefore noisy indicators of intellectual influence. We briefly return to this issue in the conclusion. Details of the
matching process are discussed in Section 4 and Appendix C2.
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that cites a publication that cites a publication that acknowledges the NIH), informal interactions

(e.g., two researchers meet and exchange ideas at a conference supported by NIH funding), or the

hiring of NIH-funded trainees by private-sector firms. Omitting these channels may lead us to

underestimate the impact of NIH funding.

Second, by accounting only for patents that explicitly cite NIH-funded research, this measure

treats patents that do not exist and patents that do exist but which cite only privately-funded

research in the same way—neither are linked to a DST. As a result, if increased DST funding led to

an additional linked patent, we could not tell whether this patent would otherwise have existed or

not, i.e., whether private firms would have funded the necessary research instead. In other words,

this first outcome measure asks whether NIH-funded research is useful to private firms. While

informative, this is not the same as asking whether NIH funding increases total private-sector

innovation in a research area.

Patents related to NIH-funded research. Our second outcome identifies all patents in the

intellectual vicinity of an NIH funding area, whether or not these patents actually cite NIH-funded

research. This allows us to account for a richer set of channels through which NIH funding may

impact private-sector patenting. These patents, hereafter referred to as simply “related patents,”

may be linked to NIH funding via a longer citation chain or belong to NIH-trained scientists who

join a private-sector firm. Crucially, these related patents may also be the result of private sector

investments in related research areas; they need not be financially dependent on NIH at all. Captur-

ing the total number of private sector patents in an intellectual area is important because it allows

us to take into account the possibility that NIH funding may crowd out private investments. If this

were the case, then we would not expect NIH funds to increase the total number of patents in a

given research area: it would simply change the funding source for those patents. If, instead, NIH

funding lead to the development of patents that would not have otherwise been developed, then we

should see an increase in the total amount of innovation in a research area. The impact of NIH

funding on total innovation in a research area thus captures the net effect of potential crowd-in and

crowd-out.

To construct this measure, we define a patent to be related to an NIH funding area if it cites

research similar to research that is actually funded by that area. In particular, we match each NIH
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grant in our sample to publications that acknowledge its support and then link these publications

to a set of intellectually similar publications using a keyword-based similarity measure developed

by the National Library of Medicine.9 The final step in our matching process is to identify the set

of patents that cite this broader set of publications (see column 3 of Figure 1). The set of patents

linked to a DST in this way can be thought of as “related,” in the sense that they are part of the

same intellectual area as that DST.

3.4 Identification

We address the potential endogeneity of public investments in R&D in two ways.

Fixed Effects Estimation. Our main OLS specification is

Patents
d̃st

= α0 + α1Fundingdst + β′Xdst + δds + γdt + νst + εdst (3)

Equation (3) includes pairwise disease/science, disease/year, and science/year fixed effects that

account for many common sources of endogeneity. Diseases that affect more people may receive more

public and private interest. Some research topics may be more tractable than others; the genetics

of breast cancer, for instance, can be studied using a variety of animal models, whereas the same is

not true for the genetics of schizophrenia (Nestler and Hyman 2010). We control for time-invariant

differences in innovative potential among disease/science areas (δds). We also account for changes

in the innovative or commercial potential of disease and science areas over time. Disease/year fixed

effects γdt control for potential confounders such as shifting disease burden or public perceptions

of disease salience. NIH funding may also respond to scientific advances. The introduction of

new DNA-sequencing technologies in the late 1990s, for instance, may have increased both public

and private research funding for diseases with a genetic component. We include science/year fixed

effects, νst, to control for this type of variation. Finally, in our most detailed specification, we also

include fixed effects for the number of applications that a DST receives. These indicator variables

proxy for time-varying interest in a particular research area that may not be captured by our other

controls. In our main specifications, this regression is weighted by the average size of a DST, that

9The PubMed Related Article (PMRA) algorithm analyzes keywords and keyword combinations that are assigned
to all life-science publications by the National Library of Medicine and defines similarity on the basis of how many
of these keywords overlap. This is discussed in detail in Appendix D.
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is, the average yearly number of grants in a disease/science area.10 To account for serial correlation,

standard errors are clustered at the disease/science level.

The remaining funding variation in equation (3) comes from within-disease/year or within-

science/year changes. Why is it, for instance, that cancer/cell signaling may receive more funding

in 1995 than cancer/tumor physiology? After saturating our specifications with fixed effects, our

identifying assumption is that NIH funding for a specific DST is not correlated with changes in the

innovative or commercial potential for specific disease/science combinations.

This assumption would be violated if either Congress or NIH administrators allocated funding

to DSTs on the basis of their potential. In response to the success of Gleevec, for example, the

National Cancer Institute may have decided to devote a greater proportion of its budget toward the

study of cell signaling or gene expression, scientific topics that are particularly relevant for targeted

cancer therapies. If private firms were behaving similarly, then equation (3) would not be able to

identify the impact of public funding, because we would expect changes in patenting for this area

even in the absence of additional funds.

In practice it is difficult for the NIH to direct funding to DSTs on the basis of their evolving

potential. As discussed in Section 2.2, applications are funded in order of their science ranks. This

means that if cell signaling was a particularly “hot topic” in a given year, the NCI could not decide

to fund the top 20 cancer-related cell-signaling applications without first funding the top 19 cancer-

related applications in all other science areas. Most likely, it would not have the budget to do so.11

The rigidity of this system was cited in an NIH-commissioned report from 2000, urging reform:

“...Researchers perceive that...applications describing some of the most productive, highest impact

work may be assigned to too few study sections, causing too much of the ‘best science’ to compete

with itself; that the scope of some study sections is restricted to research with relatively low

impact, resulting in undeserved ‘entitlements’. . . ”12

Instrumental Variables Estimation. Even if the NIH cannot direct funding to specific DSTs,

Fundingdst would still be endogenous if study section reviewers assign higher science ranks to

applications from DSTs with more potential. If, for instance, the cell-signaling study section decides

10Unweighted results are presented in Appendix I, Table I1.
11The main way that ICs get around these rules is to either fund an application out of scoring order or to issue a

request for proposals (RFPs) or applications (RFAs) on a specific topic. RFPs and RFAs account for only a small
portion of NIH grant spending. Grants responding to these are evaluated in specially empaneled study sections,
which we exclude from our analysis. See Appendix H for a discussion of out-of-order grant funding.

12“Recommendations for Change at The NIH Center For Scientific Review,” Final Phase 1 Report, Jan 14, 2000.
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to give higher science ranks to cancer-related applications after the discovery of Gleevec, then

funding for the cancer/cell signaling DST would reflect this unobserved enthusiasm.

We construct an instrument for DST funding that is not correlated with a DST’s potential.

Our instrument works by isolating variation in DST funding coming from differences in the within-

disease ranking of science ranks (“rank of rank”) assigned to otherwise equally meritorious grant

applications. Figure 2 illustrates how grant applications with the same quality may have different

funding outcomes. Differences in grant-level funding then translate into differences in DST level

funding.

In this example, there are two ICs: the National Cancer Institute (NCI) and the National

Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). They are responsible for fund-

ing grant applications from two study sections: Cell Signaling and Tumor Physiology. Each row

corresponds to a grant application.

The top two panels display the raw scores that each study section assigns to the applications

that they review, as well as the normalized “science rank” that these raw scores imply.13 The bottom

two panels of Figure 2 display how science ranks translate into rank of ranks within an IC, using raw

scores as tie breakers. The solid line is the payline: applications with rank of rank above the payline

are funded; those with rank of rank below are not. In Figure 2, Grant ID G6 is associated with the

cancer-tumor physiology DST and receives a raw score of 7.6, while Grant ID G7 is associated with

the cancer/cell signaling DST and also receives a raw score of 7.6. Despite receiving the same raw

scores, these grants have different funding outcomes. The cancer/cell signaling application, G7, is

not funded because diabetes/tumor physiology grants are relatively weak; this gives cancer/tumor

physiology applications a high science rank, which in turn leaves less NCI funding for cancer/cell

signaling. The additional funding that cancer/tumor physiology receives from this grant can be

thought of as “windfall” funding because it is not related to the innovative or commercial potential

of that DST.

Our IV strategy compares DSTs that have the same number and quality of grant applications

near an IC’s payline, but which receive different amounts of windfall funding. Specifically, we

estimate:

13To aid intuition, in Figure 7 lower scores correspond to grants with poor prognosis for funding, even though, in
practice, the NIH scoring system assigns lower scores to the “better” grants.
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Patents
d̃st

= α0 + α1Fundingdst +Υ(#Applicationsdst) (4)

+Φ(RawScoresdst) + Ψ(ScienceRanksdst) + δds + γdt + νst + εdst

instrumenting Fundingdst with

WindfallFundingdst =
∑

g∈Gdt

Fgdst (5)

WindfallFundingdst is the amount of funding for a DST that comes from the set of grants, Gdt,

that are within a window around its IC’s payline. In our main specifications, we define Gdt to be

the set of 25 grant applications on either side of the funding threshold for disease area d in year t;

we construct the windfall funding amount to be the sum of funding for grants within this set that

are actually funded. On average, windfall funding accounts for 5.6% of a DST’s total funding in

that year. The median IC receives 750 applications in a given year (the mean is 1,100), making this

a relatively tight window. Our results are robust to a variety of other bandwidths.

In general, WindfallFundingdst, as currently defined, may still be endogenous. This is because

what we call windfall funding is simply the marginal funding that a DST barely gets. Better

DSTs may have more applications that are highly scored and those DSTs would have a greater

representation of grants in the set Gdt of applications near an IC’s payline; if this were the case,

these better DSTs would also be likely to have more funded grants within this set. Similarly, even

if two DSTs have the same number of grant applications near an IC’s payline, applications from

better DSTs may justifiably receive higher scores and, as a result, better DSTs may have a greater

number of grants that are actually funded.

To address these concerns, we use WindfallFundingdst as an instrument for Fundingdst only

after including additional variables controlling for the quality of a DST’s applications. Specifically,

Equation (4) includes a full set of indicator variables for the number of grant applications any given

DST has near the threshold set Gdt (i.e., the function Υ in equation (4)), as well as separate cubics

in the average raw score and average science ranks of all DST applications within the threshold set

G (i.e., the functions Φ and Ψ in equation (4)). Controlling for both the raw score and science rank
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accounts for any differences in quality among applications, meaning that the remaining variation

comes only from how science ranks translate into rank of ranks.14

In our IV specification, our identifying assumption is that there are no systematic differences

in innovative potential among DSTs with (i) the same number of marginal applications, (ii) the

same average raw scores, and (iii) the same average science ranks. In Appendix H, we show that a

DST’s windfall funding, controlling for these variables, is uncorrelated with non-windfall funding,

previous and future windfall funding, and other measures of DST output.

4 Data Construction and Descriptive Statistics

Our analysis combines data from several primary sources: (i) Administrative data on NIH

funded grants from the IMPAC II database; (ii) publication data from PubMed including informa-

tion on grant acknowledgements; (iii) patent data from the USPTO; and (iv) information on patents

related to FDA-approved drugs from the FDA’s “Orange Book” and IMS-Health. Our final analytic

sample captures linkages between the universe of NIH-funded grants from 1980-2005 at both the

individual grant and DST levels, and the universe of biomedical patents granted between 1985 and

2012.15

4.1 Grant-level Patent Match

We begin with data on all 153,076 NIH grants from 1980-2005 that were evaluated in chartered

study sections (those that are associated with a specific science area, rather than convened on an ad

hoc basis). These grants were evaluated by 624 such study sections and funded by 17 Institutes.16

14Jacob and Lefgren (2011) investigate the impact of receiving NIH funding on the publication output of individual
scientists using a regression discontinuity design and compare outcomes for grant applications just above and just
below an Institute’s payline. We cannot use the same design because the running variable—rank of rank—applies
to individual grants but not to DSTs. There is no DST-level discontinuity. Instead, we compare DSTs with similar
quality applications as judged by their raw and science rank scores, but which receive different levels of windfall
funding.

15A patent is part of our universe if (i) it is in a relevant patent class and (ii) cites at least one article indexed
by PubMed. The relevant patent classes are the 92 classes belonging to categories 1 and 3 in the NBER USPTO
database (see Appendix B for a complete list). Note that in practice, the second requirement is almost always satisfied
for patents in these classes.

16The list of the included Institutes is described in Appendix A, Table A1. Briefly, we exclude three small ICs
(the National Institute on Minority Health and Health Disparities, the National Institute of Nursing Research, and
the National Library of Medicine), as well as six NIH centers which serve mainly administrative functions. Our
primary analyses do include three ICs that are not oriented towards a particular disease: the National Institute
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The characteristics of these grants are described in Table 1. In total, we have grant-level data that

aggregate up to the activities of 14,085 DSTs. This is a only a small fraction of the 624× 17× 25 =

265, 200 potential DSTs. Appendix E provides extensive detail on the unbalanced structure of our

panel dataset. The overwhelming majority of the “missing DSTs” are not missing, but rather do

not exist because the corresponding D-S combination is intellectually incoherent.17

The average award size for grants in our sample is approximately $1.6 million. Seventy four

percent of grants are R01s—the R01 is a renewable, project-based grant that constitutes the majority

of NIH’s grant spending—and most (60%) are for new research projects (as opposed to renewals of

existing projects).

Table 2 describes the life-sciences patents in our sample and show how they are linked to NIH

funding. We begin with the universe of 315,982 life-science patents granted by the USPTO between

1980 and 2012. Of these, 232,276 (74%) are private-sector patents and 83,394 (26%) are what

we call public-sector patents, meaning those assigned to governments, universities, hospitals, and

other institutions (see Appendix B for a description of patent types and definitions). Despite the

large number of patents we examine, Table 2 shows that only 4,718 private-sector patents (2%) are

associated with advanced drug candidates—drugs and biologics in Phase III trials and beyond—and

even fewer, 1,999 (<1%) are associated with FDA-approved new chemical entities and new biological

entities.

We find overwhelming evidence that NIH funding is relevant for organizations seeking life-

science patents. Forty-four percent of life-science patents in our sample directly cite NIH-funded

research. Among the subset of private-sector patents, this figure is 39%. For public-sector patents,

this figure is 57%. We further document a greater role of NIH-funded research in the development

of high value patents; 50% of patents associated with advanced drug candidates—those that have

entered clinical trials—cite NIH-funded research (Sampat and Lichtenberg 2011).

of General Medical Sciences (NIGMS), the National Institute of Biomedical Imaging and Bioengineering (NIBIB),
and the National Human Genome Research Institute (NHGRI). Note, however, that these Institutes review grant
applications from several study sections, which is all that our identification strategy requires. In a robustness test,
show that our results are robust to including only disease or body-system specific ICs.

17For instance, the National Institute of General Medical Sciences (NIGMS)—an institute which supports research
devoted to understanding fundamental biological processes—unsurprisingly never funds applications evaluated in a
committee such as the “Community Influences on Health Behavior” (CIHB) study section. As a result, there are
no observations in our data set for the intellectually incongruous NIGMS/CIHB pairing, as well as many others.
Appendix E provides an exhaustive taxonomy of existing and “missing” DST types, and presents evidence that our
analysis account for all DST combinations at risk of receiving research funding.
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Table 2 also shows that the vast majority of life-science patents—265,741 patents or about

84% of the universe—cite research that is similar to research funded by an NIH DST. This is true,

moreover, for private- and public-sector patents, as well as high value patents, and those from both

large and small firms.

According to Table 1, 66,085 or 43% of the NIH grants in our sample produce a publication

that is directly cited by a patent. This figure is a lower bound because our publication and patent

data are truncated in 2012. Figures 3, 4, 5 and 6 describe the lag times between NIH funding and

follow-on patenting. Each figure displays a cumulative hazard curve where the risk being modeled

is that of a grant supporting a publication that is cited by a patent. This provides a graphical way

to examine the diffusion of knowledge stemming from NIH expenditures, and how this diffusion

process varies over time and across diseases.

Figure 3 documents substantial variation in the relevance of NIH funding for patenting across

diseases. Approximately 15 years after funding, almost 60% of grants funded by the National

Institutes for Allergy and Infectious Diseases have produced research that has been cited by a

patent. By contrast, this is true of only 20% of grants funded by the National Institutes of Mental

Health. These differences should not be interpreted as comparisons of the efficacy of NIH funds, as

they also reflect differences in the ease of biomedical innovation across disease areas and the types

of research funded by different Institutes.

Figure 4, meanwhile, shows that time-to-patent has been decreasing over time. Only 20%

of grants awarded between 1980 and 1985 produced research that is relevant for a patent in the

ten years following. For grants awarded between 1991 and 1995, this figure was almost 40%. One

interpretation of this finding is that NIH administrators’ efforts to encourage “translational research”

have been successful. An alternative view is that patentability has steadily moved upstream along

the biopharmaceutical R&D value chain, consistent with other evidence (Eisenberg and Nelson 2002;

Jensen and Murray 2005).

Figure 5 underscores the fact that although 43% of grants are associated with patents, “impor-

tant” patents—those pertaining to advanced drug candidates, or to FDA-approved treatments—are

still relatively rare. Even twenty years after approval, only 5% of NIH grants produce research cited
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by a patent associated with an FDA-approved drug; this figure is only slightly higher for highly

cited patents, 10%.

Finally, Figure 6 shows that a grant is just as likely to produce research relevant for patents

primarily associated with other disease areas as it is for patents associated with its own disease area.

Our matching process allows a patent to be associated with more than one Institute (conditional on

being linked to a DST, the average patent is linked to 7 different ICs). For each patent, we define

its primary disease area as the IC responsible for funding the plurality of the publications that it

cites. Then we categorize each patent-to-grant linkage as being for the same disease or for a different

disease, where the reference disease is simply given by the funding IC for the focal grant. Figure 6

also shows that both private- and public-sector entities take advantage of NIH-funded research.

From here on, we focus on the impact of NIH funding on private-sector patents. This designa-

tion would exclude patents to universities, governments, hospitals, and other non-profit institutions.

Appendix Table I5 reports our main results with public-sector patents instead.

4.2 DST-level Patent Match

Recall that our analysis it as the DST level: each observation is an institute-study section

pairing at a point in time, and we are interested in how funding for this DST relates to later

patenting. Table 3 describes the characteristics of the DSTs in our sample. The average DST

supports 11 grants totaling $47 million in funding (weighted by DST size). Table 3 also indicates

that 13,027 or over 80% of DSTs produce research that is potentially relevant for patenting. Before

describing the number of patents we associate to each DST, it is worth describing how we attribute

credit when a patent is associated with more than one DST.

In general, the correct attribution of patents to DSTs depends on the innovation production

function and the degree to which any particular piece of knowledge is instrumental in generating

the patent. If DSTs are pure substitutes in the production of patents and if a patent is linked

to N DSTs, then each DST should receive credit for 1/N th of that patent. Table 3 shows that the

average DST in our sample produces research that is directly cited by 12.8 private-sector patents and

is intellectually related to a total of 24.8 patents, using this “fractional” patent count. If, instead,

the contributions of various DSTs are complements, then a patent should count for more than 1

N
; in
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the extreme, support from each DST is critical such that production is Leontief. In this case, DSTs

should receive full credit for each patent it is linked to, which we designate as a “unit” patent count.

Applying this assumption to our data, we find that the average DST is directly cited by 102 unit

patents. The distribution of patent counts at the DST level exhibits skewness, as can be observed

in the histograms displayed in Figure 7.

5 Main Results

Tables 4 and 5 present the fixed effects estimates of the impact of NIH funding on our two

measures of patent outcomes. The top panel of Table 4 describes the impact of NIH funding on

the number of patents that cite NIH-funded work, using fractional patent counts. Without any

controls, we find that a $10 million increase in funding for a research area (DST) is associated with

2.6 more patents. Adding fixed effects for research areas (disease/science groupings) reduces this

coefficient to 2.3. We add increasingly detailed fixed effects in each successive column; interestingly,

our estimates remain relatively stable. One explanation for this is consistency is that, at the time

it makes funding decisions, the NIH may not be able to anticipate which DSTs have greater future

innovative potential. In this case, the amount of funding that a DST receives may be relatively

uncorrelated with its future patent output. With our full set of controls, we estimate that a $10

million increase in funding leads to 2.5 additional patents. With an average grant size of $1.6

million, this is equivalent to about one patent for every 2 to 3 NIH grants.

The bottom panel presents our results under the assumption that every publication a patent

cites is necessary for that patent’s creation and cannot be substituted with a non-NIH-funded

publication. With unit patent counts, we estimate that $10 million leads to 18.4 more patents, or

about 2 to 3 patents for every additional NIH grant.

The estimates in Table 4 would not reflect the true value of NIH funding if public support

for science either crowds out private investment or if it spurs patenting in ways that cannot be

captured by a direct grant-publication-patent link. The top panel of Table 5 reports the impact

of NIH expenditures on the total amount of private-sector patenting in areas related to a DST,

whether or not these patents directly cite NIH-funded research. This specification is designed to

assess the net impact of NIH funding on private-sector innovation in an area, accounting for both
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the possibility of crowd-out and the possibility that not all patents spurred by NIH funding can be

linked via direct citations. Column 5 of Table 5 finds that a $10 million increase in DST funding

results in a 3.2 net increase in the number of related private-sector patents, or about one patent for

every two NIH grants.

If NIH funding fully crowded out industry investments, we would expect the coefficients re-

ported in Table 5 to be zero. In fact, the magnitude of the impact of NIH funding on total patenting

is slightly larger than its effect on patenting that can be directly linked to NIH funds (cf. Table 4).

This is consistent with the absence of crowd out. Alternatively, even if NIH funding crowds out

some private investment, it is offset by increases in the number of patents related to NIH funding

through indirect citation channels, or by increases in the productivity of private R&D investments.18

The bottom panel of Table 5 reports these results with fractional patent counts, yielding

effect sizes that are an order of magnitude larger. These results, however, are unlikely to reflect

the true effect of NIH funding. Recall that this final outcome measure is designed to capture the

influence that NIH funding may have on patenting that does not require a direct citation linkage

between funding and patents. In this measure, patents are linked to study sections through shared

intellectual foci, reflecting the notion that public funding in a particular area produces knowledge

that enhances productivity of others working in that area. Each DST is associated with many more

patents in this way, thus driving a large wedge between fractional and unit impacts. Unlike the

direct method which connect patents to a small number of study sections, our indirect method often

yields connections to hundreds of study sections in related intellectual realms. While all linkages

may be important, it is harder to imagine that each unit of knowledge is instrumental, and thus

we favor the more conservative fractional approach in this case. Going forward, we will discuss

estimates of the effect of funding on overall patent production using only the more conservative

fractional counts (we continue to report the results corresponding to unit counts in the tables).

Table 6 displays 2SLS estimates using our instrumental variable for funding. Column 1 reports

the first stage estimate of the relationship between total DST funding and windfall DST funding,

controlling flexibly for raw scores and science ranks, as well as the number of applications that

18This may occur, inter alia, because researchers trained with NIH funds find jobs in the private sector where they
go on to patent in the same area, or because NIH investments clarify the scientific potential of different research areas,
allowing biopharmaceutical firms to target their investments more efficiently. In both cases, total private patenting
in an area may still increase even if overall private investment decreases.
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a disease/science paring has in a 25-grant window surrounding that disease’s (e.g., IC’s) funding

threshold for that year. Table 6 also reports tests of the strength of our windfall funding instrument.

We obtain a Cragg-Donald Wald F -statistic of 478 and a Kleibergen-Paap Wald F -statistic of 37.5;

both reject the null hypothesis that our instrument is weak. Because our IV strategy requires that

we control for these additional variables, which we do not use in Tables 4 and 5, we report both

our IV estimates as well as OLS estimates using the same set of first stage controls. Using our

instrument, we find similar effects of NIH funding on the number of directly cited patents (2.5

vs. 2.0) and a slightly smaller effect for the total number of patents related to an NIH research

area (3.6 vs. 2.3). We take the 2.3 figure in Column 5 as our preferred estimate of the impact of

NIH funding on private-sector patenting. Appendix Table H1 reports reduced-form estimates using

windfall funding as the explanatory variable; we find similar, if not slightly larger results.

5.1 Robustness Checks

We probe the robustness of our results using a variety of approaches, described in more detail

in Appendices E, H, I, and J.

Appendix E discusses the idea of “missing” DSTs, i.e., those DST observations that are absent

in our sample of 14,085 DSTs. Appendix Table E1 repeats our analysis on a balanced panel of 7,966

contiguous DSTs—those DS combinations that receive funding in all years between the first and

last year in which the DS is observed. Our estimates are almost numerically identical.

Appendix H investigates the robustness of our identifying assumptions. For example, the NIH

occasionally funds grant applications out of the order in which they are scored. If DSTs that receive

more out-of-order funding also have unobservably higher innovative potential, then this may bias our

estimates. We discuss a variety of specification checks that together demonstrate that this threat

to identification is not a concern empirically. Appendix H also provides evidence for the plausibility

of the exclusion restriction for the instrument. We show that WindfallFundingdst is not correlated

with windfall funding in previous or future years; we also show that it is not correlated with the

non-windfall funding that a DST receives. Finally, we also show that WindfallFundingdst is not

correlated with the quality of previous applicants to a DS (same area, different time), or to past

patent output in a DS.
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Appendix I considers alternative specifications and samples. We show that our results are

robust to not using weights in our regressions, so that each DST contributes the same to our

estimation, regardless of how many grants it supports. We estimate non-linear specifications using

logs of funding and patenting, as well as a Poisson parametrization. Our main results also hold

when restricting our sample to NIH Institutes that are the most directly identified with disease and

body system areas.

Finally, Appendix J shows that our results are robust to alternative linking strategies. In

particular, a potential concern with our approach is that our definition of a DST’s “intellectual

area” can vary over time. If funding allows a disease/science area to expand the set of topics that it

supports, then we may associate increased funding with more patents simply because higher levels of

grant expenditures leads us to credit DSTs with patents over a wider slice of technological space. To

ensure that our results are not driven by this phenomenon, we repeat the matching exercise using a

definition of “intellectual area” that is fixed for a given disease/science (DS) combination over time.

Various implementations of this alternative linking strategy produce a battery of estimates that are

similar or slightly larger to those presented in Section 5.

5.2 Heterogeneity

In addition to quantifying the impact of NIH funding on overall patenting, we also examine

which type of patents are most responsive to NIH expenditures. The impact of NIH funding on

the development of high-value patents need not be similar to its impact on overall patenting; if

firms direct their resources to the most promising projects, then the marginal patent that is created

because of NIH funding may be relatively low quality. Conversely, if it is unprofitable for firms

to invest in risky or early-stage research, then the marginal patent supported by the NIH may be

of high quality. Column 1 of Table 7 reproduces the estimates of the impact of funding on total

private-sector patenting from Table 6. Column 2 focuses on “important” patents, those that either

pertain to advanced drug candidates or to FDA-approved biopharmaceuticals (traditional “small

molecule” drugs as well as vaccines and biologics).

The OLS and IV estimates reported in Column 2 of Table 7 show that a $10 million increase

in DST funding leads to a net increase of 0.05 to 0.08 patents associated with advanced drug
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candidates (those that have entered clinical trials) and FDA-approved drugs. While this figure is

small in magnitude, it translates into an elasticity of patenting with respect to funding of between

0.4 to 0.6, comparable to the elasticity we estimate for private-sector patents in general. We will

discuss alternative measures of patent value in the next section, when we discuss the economic

magnitude of our results.

Many studies document cases in which existing medical treatments have been successfully

used to treat new conditions (Gelijns et al. 1998; Wurtman and Bettiker 1994). Similarly, drug

development efforts often build on research originally intended for other diseases, reflecting the

importance of knowledge spillovers across diseases (Henderson and Cockburn 1996). Our results

provide evidence on the magnitude of these cross-disease knowledge spillovers. To measure spillovers,

we assign a primary disease affiliation to each patent in our data by finding the NIH Institute that is

responsible for funding the plurality of publications cited by that patent. We find that NIH funding

directed toward one disease area is as likely—if not more likely—to translate into patents that are

primarily affiliated with other disease areas as it is to translate into patents affiliated with its own.

The IV estimate in Column 3 of Table 7 indicates that a $10 million increase in funding for a DST

generates 1.20 additional patents with the same primary disease affiliation. This is likely the effect

that Congress is interested in when allocating funds for particular diseases. Column 4, however,

shows that this same funding also generates 1.89 additional patents with a different primary disease

affiliation. Part of the reason for such large cross-disease funding spillovers may be due to the fact

that much of the research that the NIH supports centers on scientific questions that are relevant to

many disease areas. The National Cancer Institute may, for instance, fund a study of cell division

in frog embryos; this research may also be relevant for the study of tissue regeneration and aging-

related disorders. These findings highlight the importance of using a patent-linking strategy that

does not assume that funding only impacts innovation in its intended area. Had we made this

assumption, we would have failed to account for over half of the relevant innovative outputs.

Finally, Table 7 also shows that NIH investments increase patenting for both large and small

assignees. While larger assignees produce a larger number of patents in response to increases in

NIH funding, the response of small assignees is equally elastic. This finding is consistent with our

summary statistics in Table 2, which show that a greater proportion of patents assigned to small

firms cite NIH-funded research.
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5.3 Valuing the Impacts of NIH Investments

Our results suggest that a $10 million increase in NIH funding leads to a net increase of 2.3

weighted private-sector patents. Putting a dollar value on these patents is difficult, for several

reasons. It is well known that patent value distributions are highly skewed (Harhoff, Scherer, and

Vopel 2003). Moreover, typically only the private value of patents is calculated, and the social value

can be much larger.

One approach to valuing the returns to NIH funding in dollars, rather than patents, is to rely

on estimates for the market value of patents taken from the literature. Bessen (2009) quantifies

the effect of patent stocks on Tobin’s q, and uses these estimates to derive the market value of a

patent across sectors of the economy. In the biopharmaceutical sector, his estimates imply that an

additional patent is valued by the stock market at about $11.2 million (2010 dollars). Combined

with our estimate in Table 6, Column 5, a back-of-the-envelope calculation indicate that a $10

million dollar in NIH funding would yield $34.7 million in firm market value. As Bessen (2009)

notes, a problem with this approach is that patents may be picking up the effects of other factors

correlated with market value; accordingly this figure probably represents an upper bound.

A different approach is to focus on patents associated with marketed drugs. Very few of the

patents in our sample are for drugs, let alone marketed drugs. However, for this set we have another

measure of private value, drug sales. DiMasi, Grabowski, and Vernon (2004) report that the mean

present discounted value (PDV) of lifetime sales for new drugs approved by the FDA between 1990

and 1994 was approximately $3.47 billion (2010 dollars). More recent research (Berndt et al. 2015)

shows similar orders of magnitude, although the returns appear to have been declining over time.

Table 8 presents implied drug valuation estimates of our results based on the DiMasi et al.

figure reported above. Column 1 reproduces our findings from Table 7 with respect to all advanced

drug candidates. Another variation is to restrict the outcome to patents associated with FDA-

approved drugs. Column 2 reports OLS and IV estimates using only these patents to construct the

outcome variables at the DST level and finds that a $10 million dollar increase in funding results

in approximately 0.034 more such patents. In this definition, we include all patents we can link to

a drug (including those listed in the Orange Book, as well as additional patents from IMS Patent

Focus); there are approximately eight patents associated with every FDA-approved drug on average
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(cf. Appendix B). If the inventions associated which each of these eight patents are essential to

the development of the corresponding drug, then we should fully credit each with the value of that

drug. In this case, we would expect $10 million dollar increase in funding to generate an expected

PDV of 0.034× $3.47 billion = $149.2 million dollars in sales.

If we instead assumed that the invention underlying each patent contributes equally to the

drug, we would expect this funding amount to translate into 0.034/8 = 0.004 drugs, with an expected

PDV of 0.004× $3.47 billion = $14.7 million.

However, even within drug, there may be heterogeneity in patent importance.19 Many “sec-

ondary” Orange Book patents are not even filed until well after the product is launched (Kapcynski

et al. 2012; Hemphill and Sampat 2013); IMS patents may be even more peripheral.20 Attributing

the same share of product sales to these patents as to the “main patent” associated with that drug

may lead to overstating the effect of NIH funding. To explore this heterogeneity, we ran several

additional models. The first looks only at “pre-approval” patents (from the Orange Book and/or

IMS), those filed before drug approval (on average, there are five such patents per drug). In Col-

umn 4, we are more conservative, limiting the outcome variable to the first patent associated with a

marketed drug, on the assumption that this is the main patent. (No scaling is required in this case

since we are only looking at one patent per drug.) Finally, Column 5 examines drug level outcomes:

in this case, we match the number of discrete drugs associated with a DST, rather than the number

of patents. In all three of these columns, the OLS estimates are statically significant and similar

in magnitude to those reported for FDA approved drugs, from Column 2, but the IV estimates are

smaller and statistically insignificant.21

Assigning value to individual patents is notoriously difficult, and the different approaches above

yield different magnitudes for the effects of NIH funding. Accordingly, beyond presenting a range

19The active ingredient patent is typically thought to be more important than other Orange Book-listed patents (on
average there is a single active ingredient patent per drug, and three total Orange Book patents). As an illustration
of this, generics typically are able to enter after the expiration of the active ingredient patent: later Orange Book
patents are often found to be irrelevant or invalid (Hemphill and Sampat 2012).

20On average, 5 of the 8 patents for each drug were in IMS only. These were patents that did not meet the FDA’s
standards for being relevant to the marketed drugs. Nevertheless, as discussed in Appendix B, we include IMS patents
since the Orange Book has very limited coverage for biologic drugs, even though it does introduce many peripheral
patents for traditional, “small molecule” drugs.

21In our data, there are only 332 drugs and 270 “main” patents that can be matched to NIH grants over the course
of our 25 year sample. Because the IV estimates rely on limited variation around an IC’s funding payline, there may
not be enough data to obtain reliable IV estimates when these extremely rare patents are used to construct outcome
variables at the DST level.
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of implied drug valuations, we are not in a position to report a specific rate of return. Any such

estimate would only capture the private value of the patented technologies; for biopharmaceuticals,

the social value of an innovation can exceed its private value by a factor ranging from 4 to 20

(Lakdawalla et al. 2010; Philipson and Jena 2006, Goldman et al. 2010). Finally, as we will

emphasize in the conclusion, there are many effects of NIH funding that do not result in patentable

research at all.

6 Assessing Firm Reallocation of R&D Expenditures

So far, our results have examined the impact of NIH funding on firm patenting in related

research areas. Yet in the cases of both crowd-in and crowd-out, the additional resources that

a firm devotes to—or diverts from—a DST must come from somewhere else in its budget. One

possibility is that these resources come from either an expansion in the firm’s total R&D budget

(in the case of crowd-in) or a contraction in the firm’s R&D budget (in the case of crowd-out). In

this case, the impact of NIH expenditures estimated in Tables 5 through 8 is the same as its impact

on overall firm R&D. Another possibility, however, is that firms respond to public investments by

reallocating resources to and from other parts of their R&D portfolio. In this case, one needs to

know the consequences of NIH investments on firm investments in other areas in order to assess its

full impact on private innovation.

If firms respond to increased NIH funding for a DST by adjusting their portfolio of investments,

then the effect of NIH funding for a DST would be two-fold: the direct effect on private innovation

in the area of that same DST, and the countervailing reallocation effect on private innovation in

the other research areas that a firm reallocates to or from. If firms divert funds from other areas in

order to invest in the DST with increased NIH funding, we think of this as “reallocated crowd-in.”

Conversely, firms may divert resources away from a DST with increased NIH funding toward other

research areas; we refer to this as “reallocated crowd-out.”

We attempt to directly measure the extent of firm reallocation in response to NIH funding.

First, we note that our second outcome measure—the total number of patents that draw on research

related to a DST—is already likely to take into account some of the impact of reallocation. This is

because our patent linking approach defines the area of a DST quite broadly. If the NIH increases
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spending on, for instance, cancer (D) cell signaling (S) research in 1990 (T), we measure net impact

of this change on total innovation in all parts of the firm’s R&D portfolio that are related to

cancer/cell signaling research from 1990. This may include patents related to cell signaling in other

disease areas, cancer patents unrelated to cell signaling, or any other set of projects similar to

research that is supported by the DST. Reallocation within this set would already be captured in

the results displayed in Table 5.

Firms, however, may also choose to reallocate funds to or from projects that are completely

unrelated to a DST’s research. If NIH funding in one DST leads firms to reallocate funds away from

that DST, then we should observe an increase in non-DST patenting within that firm. If, instead,

NIH investments in a DST lead firms to reallocate funding away from other projects toward the

area of NIH investment, then we should observe a decrease in non-DST patenting within that firm.

To measure the extent of reallocation, we would ideally like to focus on the set of firms

that actually faced a decision about whether to invest more or less in a DST as a result of NIH

funding. In the absence of these data, we focus on firms that actively patent in a DST area and

construct a measure of the number of non-D, non-S patents that they produce in the same year.

We have two final variables of interest. TotalPatents−d,−s,t measures the total number of non-D,

non-S patents that are produced by firms that also produce a DST-linked patent in the same year.

AveragePatents−d,−s,t measures the average number of non-D, non-S patents a firm produces for

every DST-linked patent it produces, averaged over all firms in that DST.

The advantage of this approach is that we restrict our analysis to firms that are indeed affected

by changes in funding for a particular DST. If these firms spend more resources in another area,

it is likely that these funds could have also been spent on DST research. The downside of this

approach, however, is that it limits the kinds of reallocation we can study. If DST funding leads a

firm to reallocate toward other areas entirely, then we would no longer be able to associate it to the

original DST. Our results, then, document the impact of DST funding on the reallocation of firm

investments on the intensive margin, conditional on firms not switching away entirely.

Table 9 shows that, in general, an increase in NIH funding for one area of a firm’s R&D portfolio

does not decrease the number of patents that those firms develop in other areas. Our estimates in

Columns 1 and 2 indicate that a $10 million increase in DST funding leads to an additional four
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to five patents, although these estimates are noisy. NIH funding does not appear to increase the

average number of non-DST patents assigned to firms.

These findings, when combined with our previous results, indicate that overall firm patenting

appears to increase in response to NIH funding. This finding suggests that NIH investments lead

firms to weakly increase their overall patenting. Another interpretation for this finding is that there

is a larger direct impact of NIH funding for a DST than we capture through our main outcome

measures. If, for instance, firms respond to increased NIH funding by expanding their scientific

labor force, and these scientists work on a variety of projects, then an increase in NIH funding for

one DST can impact other patenting areas in ways our main outcome measures cannot capture;

some of those effects may be reflected in Table 9.

The elasticities we estimate under all of these specifications are smaller than the ones we esti-

mate for the direct effect of DST funding on patenting in the same area. These smaller magnitudes

are to be expected. In the case of reallocated crowd-in, the patents that are lost in the area from

which the firm diverts funds should be fewer than the number that are gained, as long as the firm is

reallocating optimally. Similarly, in the case of reallocated crowd-out, the patents that are gained

in the area to which firms divert funds should be fewer than the number that are lost in the original

area, as long as firms had initially allocated their investments optimally.

7 Conclusion

Public investments in science are motivated by the belief that these investments carry high

social returns. This rationale is most famously expressed Vannevar Bush’s 1945 report on postwar

science policy, which characterizes basic research as “the pacemaker of technological progress” and

the source of new economically valuable technologies. Yet despite this high-level policy consensus,

there is little credible evidence on the returns to science funding (Garber and Romer 1996; Cockburn

and Henderson 1996; Murphy and Topel 2003). And there has been periodic questioning of the

benefits from science by policy makers as well, especially when discretionary budgets have been

tight (Brooks 1995).
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In this paper, we examine the effects of public science on private sector innovation in the

life sciences. Our results show that NIH investments in an area increase subsequent private-sector

patenting in that area; a $10 million increase in funding for an area leads to 2.3 additional patents

or, equivalently, we expect one private-sector patent generated for every two NIH-funded grants.

This result holds across a variety of OLS and IV specifications. This positive impact, moreover,

does not appear to be associated with lower private investments in other research areas. We cannot

perform a formal rate of return calculation since our analysis focuses on only one aspect of the effect

of NIH funding, that of sales associated with patented drugs. One rough calculation (based on all

patents associated with marketed drugs) suggests that $1 dollar in NIH funding generates around

$1.40 in drug sales.

We find that over half of the patents that result from NIH funding flow across disease areas.

This has implications for measurement: had we looked only at patents in the same disease area,

we would have missed half the output. This finding speaks to a long-standing question in postwar

medical research policy: the feasibility and desirability of targeting research to diseases. Claims

that scientific research often flows across disease areas have been common from NIH Directors since

the agency’s founding, especially during Congressional debates about whether particular diseases

are over/underfunded or in response to advocates lobbying for a new Institute for “their” disease

(Sampat 2012). Our results support the view that there are strong cross-disease spillovers. The

organization of the agency around disease-specific Institutes, though useful for mobilizing funding,

may not reflect the importance of the interplay of ideas from different disease areas and fields in

shaping biomedical research progress.

Throughout the text, we emphasized numerous caveats. We highlight several here. First,

we are examining only one type of return to NIH funding, those that flow through patented in-

novations. This neglects a number of other socially important benefits of publicly-funded medical

research, including applied epidemiological and clinical research that changes medical practice or

health behaviors. Previous research (Cutler and Kadiyala 2003; Heidenreich and McClellan 2003)

suggests this research has high value. Ignoring these outcomes could lead to large underestimates

of the value of NIH funding.
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Second, we rely on patent-to-publication citations, and assume these citations capture knowl-

edge flows from researchers to inventors. This may not always be the case: for example, articles

may be cited for strategic legal reasons, or as background knowledge, even if the results contained

therein were not crucial for the development of the citing patent. This would lead to overestimates

of the effects of NIH funding.

Third, our implied drug valuations were based on publicly available estimates on the distri-

bution of drug sales, and assumptions about how to divide a drug’s value across its many patents.

There is likely considerable heterogeneity in the private and social value of drugs (Garthwaite and

Duggan 2012), and individual patents (Hemphill and Sampat 2011), which our back-of-the-envelope

calculations could not fully incorporate.

Finally, our analysis implicitly assumes a “linear” flow from science to technology, and does

not account for the complementary investments made by other actors (e.g., the NSF, or venture

capital firms) in the path from laboratory to marketplace, or the feedbacks from technology to the

progress of science. This “linear model” of research is well known to be an oversimplification, but

even its detractors acknowledge that it is more reasonable in the life sciences than in other fields,

and that alternative models would be far less empirically tractable (Balconi et al. 2010).

Despite these limitations, our analysis provides new estimates on a question of longstanding

importance to economists and policy makers, using novel data and a new source of identification.

In future work, we plan to extend the analyses and framework to examine a range of other science

policy questions, including heterogeneity in types of research (whether more or less targeted research

has higher impact) and how the presence or absence of intellectual property rights affects returns

to public research investments.
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Overview of Data and Construction of Patent Outcome Measures
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Figure 2

Example of Variation in Funding Unrelated to Quality

Grant ID Science Rank Disease Raw Score Grant ID Science Rank Disease Raw Score

G1 1 Cancer 10 G9 1 Cancer 8.2

G2 2 Diabetes 9.8 G10 2 Cancer 8.1

G3 3 Cancer 9.2 G11 3 Cancer 7.6

G4 4 Cancer 9.1 G12 4 Cancer 6.4

G5 5 Cancer 8.2 G13 5 Cancer 5.4

G6 6 Diabetes 7.6 G14 6 Diabetes 5.2

G7 7 Cancer 7.6 G15 7 Diabetes 4.8

G8 8 Diabetes 7.4 G16 8 Diabetes 4.4

Grant ID
Rank of    Science 

Ranks       Rank
Study Section Raw Score Grant ID

Rank of    Science 

Ranks       Rank
Study Section Raw Score

G1 1              1 Cell 10 G2 1             2 Cell 9.8

G9 2              1 Tumor 8.2 G6 2             6 Cell 7.6

G10 3              2 Tumor 8.1 G14 3             6 Tumor 5.2

G3 4              3 Cell 9.2 G15 4             7 Tumor 4.8

G11 5           3 Tumor 7.6 G8 5             8 Cell 7.4

G4 6              4 Cell 9.1 G16 6             8 Tumor 4.4

G12 7              4 Tumor 6.4

G5 8              5 Cell 8.2  

G13 9              5 Tumor 5.4

G7 10          7  Cell 7.6

Cell Signaling Study Section Tumor Physiology Study Section

Cancer Institute (NCI) Diabetes Institute (NIDDK)

Note: This is an example of how raw scores and science ranks can result in idiosyncracies in funding. There are two disease areas, cancer and

diabetes, and two science areas, cell signaling and tumor physiology. Each row represents a grant application. The darkened cells are grants that are

not funded and the dark line represents the funding threshold in each disease area. Cell signaling receives, on average, applications with higher

quality, as reflected by their raw scores. NIH funding, however, requires that Institutes (disease areas) fund applications in order of their science rank.

In this example, we assume that cancer can fund five applications and diabetes can fund four. The top two panels list the science rankings of each

study section/science area, along with the disease area of each application and its raw score. The bottom two panels show the funding decision at the

cancer and diabetes institutes, which is based on the “Rank of Rank.” We see that, within a science area in the same year, applications from two

different disease areas with the same score may have different funding outcomes. In particular, the fact that cancer applications in tumor physiology

have high science rankings means that cancer applications in cell signaling are less likely to be funded. Similarly, it is also possible for two

applications with the same raw score within the same disease area to have different funding outcomes. In this case, tumor-physiology applications are

less competitive than cell-signaling applications.
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Figure 3

Grant-Patent Lags by Disease Area — Top 10 ICs
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Figure 4

Grant-Patent Lags by Grant Cohort
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Figure 5

Grant-Patent Lags by Patent Quality
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Figure 6

Grant-Patent Lags by Patent Type
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Figure 7

Outcome Measures by DST

 

0

5

10

15

20

25

30

35

P
e
rc

e
n
ta

g
e
 o

f 
D

S
T

s

0 100 200 300 400 500 600 700 800

Nb. of Patents
 
N=14,085 DSTs (39 observations with more than 800 linked patents excluded)

Unit Counts

 

0

5

10

15

20

25

30

35

P
e
rc

e
n
ta

g
e
 o

f 
D

S
T

s

0 20 40 60 80 100

Nb. of Patents
 
N=14,085 DSTs (31 observations with more than 100 linked patents excluded)

Fractional Counts

Citation-linked Private-sector Patents

 

0

5

10

15

20

P
e
rc

e
n
ta

g
e
 o

f 
D

S
T

s

0 2,500 5,000 7,500 10,000 12,500 15,000

Nb. of Patents
 
N=14,085 DSTs (53 observations with more than 15,000 linked patents excluded)

Unit Counts

 

0

5

10

15

20

P
e
rc

e
n
ta

g
e
 o

f 
D

S
T

s

0 25 50 75 100 125 150

Nb. of Patents
 
N=14,085 DSTs (16 observations with more than 15,000 linked patents excluded)

Fractional Counts

Total Related Private-sector Patents

40



Table 1: Grant Characteristics, 1980-2005

Full Sample Cited by Patents Related to Patents

Sample Coverage

# Grants 153,076 66,085 123,872

# Disease Areas (Institutes) 17 17 17

# Science Areas (Study Sections) 624 548 598

# DSTs 14,085 8,886 13,037

Grant Characteristics

% R01 equivalent Grants 73.72 77.46 74.30

% Center Grants 3.26 4.79 3.20

% Teaching or Fellowship Grants 11.43 10.12 11.27

% New 59.50 51.08 58.55

$1,556,572 $1,875,779 $1,568,894

($2,197,603) ($2,783,272) ($2,215,366)

Grants Linked to

Private-sector Patents

Note: Sample is the set of all NIH-funded grants from 1980-2005, excluding NINR, NLM, and NIMHD grants (see Appendix A for

a full list of ICs in the sample) and evaluated by chartered study sections. The sample is restricted to new and competitive

renewal grants so that there is one observation per successful grant application cycle. A grant is defined as cited by patents if

there exists a patent that cites a publication that acknowledges funding from that grant. A grant is matched with a publication if

it acknowledges the project number of the grant and is published within 5 years of the grant’s funding year. A patent is citation-

linked to a grant if it cites a publication that is linked to a grant. A grant is considered related to a patent if that grant produces

a publication that is similar (as defined by the PubMed Relatedness Matching Algorithm) to a publication that is cited by a

patent. In this paper, we require that similar publications be published within 5 years of each other. A grant is an R01 equivalent

(e.g. a large project-based grant) if its NIH funding mechanism is either an R01, R23, R29, or R37. Center grants are those grants

whose mechanism starts with a “P” (e.g., a P01 grant containing multiple projects). A teaching or fellowship grant is one whose

grant mechanism designation begins with a “T” or an “F.” New grants are projects that have not previously received NIH funding. 

Funding Amount (total project allocation, 

2010 dollars; mean & s.d.)
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Table 2: Patent Characteristics, 1980-2012

Full Sample
% Citing NIH 

Funded Research

% Related to NIH 

Funded Research

Sample Coverage

# Patents 315,982 44.00 84.10

Patent Characteristics: 

General

Private Sector 232,276 39.38 82.33

Public Sector 83,394 56.91 89.07

Patent Characteristics: 

Private Sector Only

Advanced Drug Candidates 4,718 49.92 88.22

FDA Approved Drugs 1,999 42.47 86.79

Large Asssignee 164,431 36.23 80.37

Small Asssignee 29,183 51.37 87.89

Patents Linked to NIH Funding

Note: Sample is the set of all USPTO granted patents from 1980-2012 that meet the following criteria: (i)

they are either in NBER Patent Categories 1 (“Chemicals”) or 3 (“Drugs and Medical”) and (ii) they cite at

least one publication in the PubMed database. A patent is defined as citing NIH-funded research if it cites a

publication that acknowledges the project number of an NIH grant and is published within 5 years of that

grant’s funding year. A patent is considered related to NIH funding if it cites a publication that is similar (as

defined by the PubMed Relatedness Matching Algorithm) to a publication that acknowledges NIH funding.

We require that similar publications be published within 5 years of each other. A patent is labelled “Private

Sector” if it is assigned to a domestic US or foreign corporation (NBER assignee categories 1 and 2 minus

foundations, universities, and hospitals). A patent is labelled “Public Sector” if it is assigned to a US or

foreign goverment (NBER categories 5 and 6) or if it is assigned to a foundation, university, or hospital. A

patent is labeled an advanced drug candidate if it is associated with a drug or biologic in Phase III clinical

trials or beyond (these are listed in Orange Book and/or IMS Patent Focus); A patent is associated with an

FDA approved drug if that patent is associated with a marketed treatment accoding to IMS Health. A patent

is associated with a large assignee if its assignee employs over 500 employees; it is considered small otherwise. 
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Table 3: NIH Research Area (DST) Characteristics, 1980-2005

Full Sample Cited by Patents
Related to 

Patents

10.85 15.60 11.62

(16.58) (19.05) (17.01)

Output Characteristics

$40,631,460 $45,556,350 $41,397,230

(43,611,800) (44,448,260) 43,683,690

12.82 14.71 13.07

(19.17) (19.85) (19.28)

101.7 116.8 103.7

(153.6) (159.1) (154.4)

24.84 28.33 25.30

(27.95) (28.31) (28.00)

3,520 4,023 3,589

(3,742) (3,755) (3,745)

N 14,085 8,886 13,027

DSTs Linked to Patents

Note: Sample is the same as that in Table 1, except aggregated to the NIH Disease/Science/Time level. See the notes

to Table 1 for additional definitions. The funding and patent variables are weighted by average DST size, i.e., the

average yearly number of grants in a Disease/Science research area. In fractional patent counts, a patent matched to N

distinct DSTs counts as 1/Nth of a patent for each DST. In unit patent counts, a single patent matched to N distinct

DSTs counts as one patent for each DST. Funding amounts are expressed in 2010 dollars (deflated by the Biomedical

R&D Producer Price Index).

# of Patents Related to NIH-Funded 

Research (Unit counts) 

# of Patents Related to NIH-Funded 

Research (Fractional counts) 

# of Patents Citing NIH-Funded Research 

(Unit counts)

# of Patents Citing NIH-Funded Research 

(Fractional counts)

Funding Amount (DST)

Average # of Grants
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Table 4: Effect of NIH Investments on Follow-On Patenting
by Private-Sector Firms

(1) (2) (3) (4) (5)

2.595
***

2.281
***

2.242
***

2.550
***

2.450
***

(0.171) (0.267) (0.254) (0.294) (0.288)

Elasticity 0.822 0.723 0.71 0.808 0.777

R
2 0.417 0.600 0.641 0.918 0.933

21.830*** 17.830*** 17.841*** 18.626*** 18.412***

(1.343) (2.103) (2.053) (2.177) (1.980)

Elasticity 0.872 0.712 0.713 0.744 0.735

R
2 0.447 0.674 0.710 0.944 0.956

Observations 14,085 14,085 14,085 14,085 14,085

Year FEs Incl. Incl. Incl. Incl. Incl.

Disease × Science FEs Incl. Incl. Incl. Incl.

Disease × Year FEs Incl. Incl. Incl.

Science × Year FEs Incl. Incl.

Incl.

Note: Each observation is Disease/Science/Time (DST) combination. A patent is citation-linked to a DST if it cites

research that acknowledges funding from that DST. For more details on this sample, see the notes to Tables 1 and

3. Funding is defined by the sum of project-cycle allocations for all new and competing renewal grants that are

associated with that DST. The patent sample is restricted to those with private sector assignees, and weighted by

average DST size, i.e., the average yearly number of grants in a Disease/Science research area. See Table 2 for more

details. Year FEs are fixed effects for the fiscal year associated with a DST. NIH Institutes are taken to represent

diseases and NIH study sections (review committees) are taken to represent science areas. Elasticities are evaluated

at sample means. Application count FEs are indicator variables for the number of applications that a DST receives.

Standard errors in parentheses, clustered at the disease/science level (
*
p  < 0.10, 

**
p  < 0.05, 

***
p  < 0.01).

Application Count FEs

DST Funding (×$10 mln.) 

Mean=4.06; SD=4.36

Unit Patent Counts: Mean=101.7; SD=153.6

DST Funding (×$10 mln.) 

Mean=4.06; SD=4.36

Fractional Patent Counts: Mean=12.82; SD=19.17

# of Patents Citing NIH-Funded Research
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Table 5:
Effect of NIH Investments on Total Related Private-Sector Patenting

(1) (2) (3) (4) (5)

4.516
*** 3.593*** 3.590*** 3.712*** 3.239***

(0.278) (0.434) (0.420) (0.445) (0.284)

Elasticity 0.738 0.588 0.587 0.607 0.530

R
2 0.536 0.759 0.783 0.965 0.974

603.063*** 456.657*** 453.108*** 504.727*** 445.981***

(34.936) (55.780) (54.616) (54.459) (32.671)

Elasticity 0.696 0.527 0.523 0.583 0.515

R
2 0.561 0.843 0.861 0.978 0.983

Observations 14,085 14,085 14,085 14,085 14,085

Year FEs Incl. Incl. Incl. Incl. Incl.

Disease × Science FEs Incl. Incl. Incl. Incl.

Disease × Year FEs Incl. Incl. Incl.

Science × Year FEs Incl. Incl.

Incl.

# of Patents Related to NIH-Funded Research

Unit Patent Counts: Mean=3,969; SD=3,918

DST Funding (×$10 mln.) 

Mean=4.06; SD=4.36

Fractional Patent Counts: Mean=24.8; SD=28.0

DST Funding (×$10 mln.) 

Mean=4.06; SD=4.36

Application Count FEs

Note: Each observation is Disease/Science/Time (DST) combination. A patent is considered to be in the same area as

an NIH grant if it cites a publication that is similar (as defined by the PubMed Relatedness Matching Algorithm) to

a publication that is linked to a patent. For more details on this sample, See the notes to Tables 1 and 2. Funding is

defined by the sum of project-cycle allocations for all new and competing renewal grants that are associated with that

DST. The patent sample is restricted to those with private sector assignees, and weighted by average DST size, i.e.,

the average yearly number of grants in a Disease/Science research area. See Table 2 for more details. Year FEs are

fixed effects for the fiscal year associated with a DST. NIH Institutes are taken to represent diseases and NIH study

sections (review committees) are taken to represent science areas. Elasticities are evaluated at sample means.

Application count FEs are indicator variables for the number of applications that a DST receives.

Standard errors in parentheses, clustered at the disease/science level (
*p  < 0.10, **p  < 0.05, ***p  < 0.01).
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Table 6: Effect of NIH Investments on Private-Sector Patenting
Windfall Funding IV

First Stage

DST Funding 

(× $10 mln.)

OLS IV OLS IV

(1) (2) (3) (4) (5)

1.251*** 2.478*** 2.002** 3.614*** 2.329***

(0.232) (0.496) (0.853) (0.671) (0.834)

Elasticity 0.785 0.634 0.592 0.381

Cragg-Donald Wald F-stat 478

Kleibergen-Paap Wald F-stat 37.51

R2 0.921 0.738 0.515 0.863 0.623

Observations 14,085 14,085 14,085 14,085 14,085

Year FEs Incl. Incl. Incl. Incl. Incl.

Disease × Science FEs Incl. Incl. Incl. Incl. Incl.

Disease × Year FEs Incl. Incl. Incl. Incl. Incl.

Science × Year Linear Trends Incl. Incl. Incl. Incl. Incl.

Application Controls Incl. Incl. Incl. Incl. Incl.

DST Funding 

(×$10 mln.) 

Mean=4.06; 

SD=4.36

Windfall Funding (×$10 mln.) 

Note: See notes to Tables 4 and 5 for details about the sample. The outcome variables are fractional patent counts. The instrument is the total amount

of funding (2010 dollars) for the subset of grants funded by a DST whose rank of rank scores were marginal, i.e., were within 25 applications of the

award cutoff for their specific disease area (Institute). Application controls include (i) FEs for the number of applications that a DST receives; (ii) FEs

for the number of applications associated with a DST that are also in a 25-grant radius around the relevant IC payline, as well as (iii) cubics in the

average raw and rank scores of applications associated with a DST that are also in a 25-grant radius around the payline. Elasticities are evaluated at

the sample means.

Citation Linked Total Related

Mean=24.8; SD=28.0Mean=12.82; SD=19.17

Standard errors in parentheses, clustered at the disease/science level (*p < 0.10, **p < 0.05, ***p < 0.01).
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Table 7: Effect of NIH Investments on Private-Sector Patenting
Heterogeneity by Patent Type

All Private 

Sector

Advanced Drug 

Candidates
Same Area Different Area Large Assignee Small Assignee

Mean=24.8; 

SD=28.0

Mean=0.546; 

SD=0.864

Mean=18.9; 

SD=23.8

Mean=15.9; 

SD=19.0

Mean=17.5; 

SD=20.7

Mean=3.47; 

SD=4.18

(1) (2) (3) (4) (5) (6)

OLS

3.614*** 0.081*** 2.698*** 2.297*** 2.561*** 0.506***

(0.671) (0.015) (0.419) (0.547) (0.487) (0.101)

Elasticity 0.592 0.602 0.580 0.587 0.594 0.592

IV

2.329*** 0.053** 1.202** 1.894*** 1.658*** 0.362**

(0.834) (0.026) (0.561) (0.685) (0.574) (0.162)

Elasticity 0.381 0.394 0.258 0.484 0.385 0.424

Observations 14,085 14,085 14,085 14,085 14,085 14,085

Note: See notes to Tables 5 and 6 for sample details. The outcome variables are fractional patent counts. All specifications include disease-science FEs,

disease-year FEs, science by year linear time trends, FEs for the number of applications to the DST, cubics in the average raw score and average science

rank received by applications in the 25-grant radius window around the IC payline, and FEs for number of DST applicants in a 25-grant radius around an

IC’s funding cutoff. A patent is labelled “Private Sector” if it is assigned to a domestic US or foreign corporation (NBER assignee categories 1 and 2 minus

foundations, universities, and hospitals). A patent is labeled an advanced drug candidate if it is included in IMS Patent Focus, which has information on

patents on drugs in Phase III trials or further. A patent is in the same disease area as a DST if the plurality of NIH research areas that it is linked are also

associated with that same “D” disease area. A patent is associated with a large assignee if its first assignee employs more than 500 employees; it is

considered small otherwise.

DST Funding (×$10 mln.) 

Mean=4.06; SD=4.36

DST Funding (×$10 mln.) 

Mean=4.06; SD=4.36

Standard errors in parentheses, clustered at the disease/science level (*p < 0.10, **p < 0.05, ***p < 0.01).
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Table 8: Implied Drug Valuation of NIH Investments

Advanced 

Drug 

Candidates

FDA 

Approved
Pre-approval Main Drug-level

Mean=0.546; 

SD=0.864

Mean=0.316; 

SD=0.532

Mean=0.212 

SD=0.358

Mean=0.035; 

SD=0.084

Mean=0.059; 

SD=0.099

(1) (2) (3) (4) (5)

OLS

0.081*** 0.046*** 0.032*** 0.005*** 0.008***

(0.015) (0.010) (0.007) (0.001) (0.001)

Elasticity 0.602 0.591 0.613 0.580 0.551

Implied Drug Value ($ mln.) — $20.0 $22.2 $17.4 $27.8

IV

0.053** 0.034** 0.017 0.001 0.004

(0.026) (0.017) (0.013) (0.003) (0.004)

Elasticity 0.394 0.437 0.326 0.116 0.275

Implied Drug Value ($ mln.) — $14.7 $11.8 $3.5 $13.9

Observations 14,085 14,085 14,085 14,085 14,085

Note: See notes to Tables 5 and 6 for sample details. The outcome variables are fractional patent counts. All specifications include

disease-science FEs, disease-year FEs, science by year linear time trends, FEs for the number of applications to the DST, cubics in

the average raw score and average science rank received by applications in the 25-grant radius window around the IC payline, and

FEs for number of DST applicants in a 25-grant window around an IC’s funding cutoff. A patent is labelled “Private Sector” if it is

assigned to a domestic US or foreign corporation (NBER assignee categories 1 and 2 minus foundations, universities, and

hospitals). A patent is labeled an advanced drug candidate if it is included in IMS Patent Focus, which contains information on

patents on biopharmaceutical candidates in Phase III trials or further. We do not generate an implied value for these patents since

they are not necessarily associated with an approved drug/biologic. Within this set, patents are labeled as “FDA approved” if

linked to an approved drug/biologic. A patent is labeled “pre-approval” if it is “FDA approved” and was filed prior to the time at

which corresponding received marketing approval. A patent is labeled as “main” patent if it is the first patent ever filed associated

with a marketed drug. Column 5 aggregates results to the drug level, reweighting by the number of unique drugs associated with a

DST. Implied drug values are calculated assuming a mean lifetime discounted value of $3.47 billion, in 2010 dollars. This figure

comes from DiMasi, Grabowski, and Vernon (2004). All estimates assume that there is one pivotal patent per drug; FDA approved

patents are scaled by 8; pre-approval patents by 5; main patents and drug specific outcomes are not scaled. For instance, the OLS

estimate in column (2) imply that an additional $10 mln. in NIH funding for a DST would result in $22.6 mln. in downstream

pharmaceutical sales.

DST Funding (×$10 mln.) 

Mean=4.06; SD=4.36

DST Funding (×$10 mln.) 

Mean=4.06; SD=4.36

Standard errors in parentheses, clustered at the disease/science level (*p  < 0.10, **p  < 0.05, ***p  < 0.01).
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Table 9: Effect of NIH Investments on Firm Reallocation
of R&D Investments

Citation Related Citation Related

Mean=122.6; 

SD=289.1

Mean=178.1; 

SD=197.7

Mean=2.57 

SD=3.20

Mean=21.05; 

SD=66.9

(1) (2) (3) (4)

5.561 4.877*** 0.467 0.049

(3.964) (1.393) (1.336) (0.045)

Elasticity 0.184 0.111 0.738 0.009

R2 0.898 0.983 0.825 0.908

Observations 14,085 14,085 14,085 14,085

Note: Each observation is Disease-Science Area-Time (DST) combination. The outcome variables are fractional patent counts.

Total non-DST patents are calculated by first identifying all assignees that produce a patent linked to a DST (either through

citations or through PMRA relatedness). We then find all non-D, non-S patents issued to that restricted set of assignees in the

same year. This is our “Total non-DST” patent count. “Average non-DST” patents normalizes this by the number of DST-linked

patents. A patent is assigned to the disease area to which it is most often associated. All regressions include disease-science FEs,

disease-year FEs, science-year FEs, and FEs for the number of applications to the DST, and cubics in the number of DST-linked

patents that are matched.

Total non-DST patents
Average non-DST patents,

per DST-linked patent

DST Funding (×$10 mln.)

Standard errors in parentheses, clustered at the disease/science level (*p  < 0.10, **p  < 0.05, ***p  < 0.01).
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Appendix A: A Primer on NIH Funding

The National Institutes of Health (NIH) is the primary organization within the United States government
with responsibilities for health-related research. The NIH is the single largest funder of biomedical research,
with an annual budget of approximately $30 billion. According to its own web site, NIH’s mission is “to seek

fundamental knowledge about the nature and behavior of living systems and the application of that knowledge

to enhance health, lengthen life, and reduce illness and disability.”

NIH comprises 21 different Institutes (plus an assortment of centers that our analysis will ignore), each with
a distinct, though sometimes overlapping, research agenda. For example, the National Institute for Mental
Health, as the name suggests, focuses on mental health related research. It shares interests with the National
Institute of Aging on issues related to dementia. All Institutes receive their funding directly from Congress,
and manage their own budgets. Table A1 lists each of the agency’s component institutes.

Figure A1(i) provides an example of language from an appropriations bill for the National Cancer Institute;
here, Congress uses the disease burden associated with pancreatic cancer to underscore the need for more
research in this field. Figure A1(ii) compiles a list of the mostly commonly used words in the Congressional
appropriations documents for all NIH Institutes, for a sample year. The highest-frequency word in both House
and Senate appropriations is, unsurprisingly, “research.” The majority of the remaining list are medicine
or disease focused: “disease,” “health,” “child,” “behavior,” “patients,” “syndrome,” etc. This reasoning is
supported by research showing that funding levels for particular Institutes are more highly correlated with
disease burden than with scientific advances (Gillum et al., 2011).

Approximately 10% of the overall NIH budget is dedicated to the intramural research program, with almost
all Institutes providing some support. The program directly supports about 6,000 scientists working within
the federal laboratories on NIH Campuses. Unlike the intramural program, where allocation decisions are
relatively opaque, the operations of the extramural program are quite transparent. More than 80% of the total
budget supports extramural research through competitive grants that are awarded to universities, medical
schools, and other research institutions, primarily in the United States. The largest and most established
of these grant mechanisms is the R01, a project-based renewable research grant which constitutes half of
all NIH grant spending and is the primary funding source for most academic biomedical labs in the United
States. There are currently 27,000 outstanding awards, with 4,000 new projects approved each year. The
average size of each award is 1.7 million dollars spread over 3 to 5 years and the application success rate is
approximately 20 percent (Li 2014).

Requests for proposals identify priority areas, but investigators are also free to submit applications on
unsolicited topics under the extramural research program. All applications are assigned to a review committee
comprised of scientific peers, generally known as a study section (Table A2 lists the 173 study sections that
currently exist). Reviewers are asked to ignore budgetary issues, limiting their attention to scientific and
technical merit on the basis of five criteria: (1) Significance [does the project address an important issue?];
(2) Approach [is the methodology sound?]; (3) Innovation [is the research novel?]; (4) Investigator [are the
skills of the research team well matched to the project?]; and (5) Environment [is the place in which the work
will take place conducive to project success?]. Each reviewer assigns a two digit priority score ranging from
1.0 for the best application to 5.0 for the worst. At the study section meeting, three reviewers are typically
asked to discuss an application and present their initial scores. This is followed by an open discussion by
all reviewers and a brief period for everyone to revise their initial scoring based on the group deliberations
before anonymously submitting their final scores. The overall priority score for the proposal is based on the
average across all study section members. Those applications determined to be of the lowest quality by the
study section do not receive priority scores. Scores are then normalized within review groups through the
assignment of percentile scores to facilitate funding decisions.

Funding decisions are decoupled from the scientific review and determined by program areas within the
Institutes. In essence, each decision making unit (e.g., Division, Program, Branch) within an Institute is
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allocated a fixed annual budget. Units then fund new projects in order of their priority score until their
budget, net of encumbered funds for ongoing grants awarded in previous years, is exhausted. The highest
percentile score that is funded is known as the payline. A grant’s score is generally the sole determinant of
the funding decision,i irrespective of proposal costs (assuming they are deemed reasonable). Researchers who
do not receive funding are given the opportunity to respond to reviewer criticisms and submit an amended
application.

Institutes considered in the econometric analysis. We exclude from our analytic sample observa-
tions corresponding to the National Library of Medicine (NLM), the National Institute of Nursing Research
(NINR), and the National Institute on Minority Health and Health Disparities (NIMHD), which together
represent less than 3% of NIH’s total budget. We drop the NLM because it seldom supports extramural
researchers. We drop NINR and NIMHD because we found no instances of the grants funded by these
Institutes generating publications referenced in private-sector patents.

A cursory look at the names of the list of the 18 Institutes we do include in most of our analyses reveals that
some of these Institutes may not be strictly disease-focused. This is certainly the case for NIGMS (which
supports mostly untargeted laboratory research), for NHGRI (the genome Institute), and NIBIB (which
focuses on imaging technology). In a sensitivity test, we will explore whether our main results are robust
to the exclusion of these three “science-focused” Institutes. Further, we will also investigate the effects of
dropping NIA, NIDCD, NIEHS, and NICHD who traditionally support research on a broad spectrum of
loosely related diseases.

Study sections. As mentioned above, the majority of grant evaluation occurs in approximately 200 standing
review committees, known as “study sections.” Each study section is organized around a scientific topic—for
instance, “Cellular and Molecular Immunology”—and is responsible for evaluating the quality of applications
in its area. Traditionally, the boundaries delineating study sections have changed only very slowly (too slowly
for many NIH critics). Additions and deletions of study sections is relatively rare, and often controversial.
In 2006, however, the NIH reorganized its standing study sections. This involved closing or consolidating
some study sections, splitting others, and creating new study sections, for instance one on data analytics, to
respond to new topics and tools. The overall review process stayed largely the same. This change happens
outside of our sample frame and, throughout our analysis, we refer to the old system.

Allocation of Applications to Study Sections. Could applicants improve their odds of funding by
sending their applications to study sections reputed to be “weaker”? Study section shopping of this type
would be almost surely unproductive, given year-to-year fluctuations in funding and the vagaries of the
reapplication process (most proposals are not funded at the first review).ii Formally, grant applicants do not
choose the study section that will review their proposals. Rather, each application is assigned by staff within
the Division of Receipt and Referral at the NIH to a study section based on the needed expertise to evaluate
scientific and technical merit.iii While many investigators ask to be reviewed by a specific study section,
the NIH grants such requests based on the scientific content of the proposal, a consideration of conflicts of
interest, and the administrative viability of the request (Chacko 2014). More importantly, the typical advice
received by new investigators is to petition to be reviewed in the study section that is most likely to have
members on their roster whom are familiar with their narrowly-defined field, and then to stick to this initial
choice. Consistent with this advice, an essential component of “grantsmanship” at NIH is to build a cordial
relationship with the Scientific Review Officer, the staff person within NIH’s Center for Scientific Review

iInstitute directors have the discretion to fund applications out of order if, for example, they are especially important to
the Institute’s mission. Since applications can only be submitted three times, Institutes may also choose to fund applications
on their last evaluation cycle instead of newly submitted applications that can be reconsidered later. These exceptions appear
rare (Jacob and Lefgren 2011).

iiEven grant administrators are usually unable to communicate to applicants how the score they received in committee is
likely to translate into a final funding decision. It is implausible that grant applicants could be better informed than these
knowledgeable insiders.

iiihttp://public.csr.nih.gov/ApplicantResources/ReceiptReferal/Pages/Submission-and-Assignment-Process.aspx,
accessed August 30, 2014
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who administers the logistics of the review process. These informal practices would seem to run counter any
temptation to “chase the money.”

We see this in the data, where there is considerable inertia in scientist-study section pairings. In a typical five
year-period, 88% of NIH grant recipients are evaluated by only one study section; eleven percent are evaluated
by two study sections; and only one percent are evaluated by three study sections or more. Why would a
given scientist’s grant applications ever be reviewed by multiple study sections? One reason is that study
sections are not immutable. Some are created; others are eliminated; yet others are merged. Intellectual
breadth may also explain the anomalies: In a sample of 10,177 well-funded investigators for whom we have
gathered a carefully curated list of publications (cf. Azoulay et al. 2012), intellectual breadth (as proxied
by the diversity of MeSH keywords that tag the publications produced by these scientists in rolling five-year
windows) is strongly correlated with the likelihood of having one’s work reviewed by multiple study section
(Table A3). This results holds even when controlling for the total level of funding received. This results hold
even when controlling for the total level of funding received. This suggests that scientists have their work
reviewed by two or more committees only to the extent that they are active in subfields that are sufficiently
distant in intellectual space.

Disease/Science as a level of analysis. As highlighted in the introduction, the organization of the
NIH into disease-based funding Institutes and science-based review committees will play an important role
in our empirical work, since our independent and dependent variables will be computed at the level of the
disease/science/year (DST, technically the IC/study section/year level). If applications evaluated by a study
section were always funded by the same Institute, the distinction we emphasize between the disease/science
level of analysis and disease-level variation over time would not be very meaningful. However, it is indeed
the case that study sections are “promiscuous,” in the sense that the grant applications they pass favorable
judgement on will go on to be funded by several different Institutes. Figure A2(i) shows that the majority, 75
percent, of study sections evaluated grants funded by at least two Institutes. Conversely, Figure A2(ii) shows
that the typical Institute draws on applications stemming from more than 50 study sections, on average.

Not only is the DST level of analysis policy-relevant, it is tractable by using the structure of NIH grant
review and mapping Institutes into disease areas, and study sections into science areas, respectively. And
because of the “intellectual promiscuity” documented above, in practice, increases in funding for one disease
can impact innovation in another by supporting research on the scientific foundations these two areas share.

Figure A3 plots residual variation in funding taking out, successively, fixed effects for calendar year, dis-
ease/science, disease/year, and science/year. These kernel density estimates make clear that there remains
substantial unexplained variation in funding after controlling for all these fixed effects. It is this DST-level
variation that we use to estimate the effect of funding on private-sector patenting.
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Table A1: NIH Institutes and Centers (ICs)

Institute Abbrev. Established Avg. Budget
*

National Cancer Institute NCI 1937 $4,019,793

National Heart, Lung, and Blood Institute NHLBI 1948 $2,489,629

National Institute of Allergy and Infectious Diseases NIAID 1948 $2,070,634

National Institute of Dental and Craniofacial Research NIDCR 1948 $325,861

National Institute of Mental Health NIMH 1949 $1,378,636

National Institute of Diabetes and Digestive and Kidney Diseases NIDDK 1950 $1,491,613

National Institute of Neurological Disorders and Stroke NINDS 1950 $1,244,241

National Eye Institute NEI 1968 $562,126

National Institute on Alcohol Abuse and Alcoholism NIAAA 1970 $423,341

National Institute on Drug Abuse NIDA 1974 $960,637

National Institute of Arthritis and Musculoskeletal and Skin Diseases NIAMS 1986 $458,273

National Institute of Child Health and Human Development NICHD 1962 $1,043,447

National Institute of Environmental Health Sciences NIEHS 1969 $557,645

National Institute on Aging NIA 1974 $702,184

National Institute on Deafness and Other Communication Disorders NIDCD 1988 $347,646

National Institute of General Medical Sciences NIGMS 1962 $1,629,056

National Human Genome Research Institute NHGRI 1989 $375,451

National Institute of Biomedical Imaging and Bioengineering NIBIB 2000 $316,430

National Library of Medicine NLM 1956 $229,442

National Institute of Nursing Research NINR 1986 $106,880

National Institute on Minority Health and Health Disparities NIMHD 1993 $228,287
*Over the 1980-2005 time period, In thousands of 2010 dollars (amounts deflated by the Biomedical R&D PPI)
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Table A3: Intellectual Breadth and Study Section Affiliations

(1) (2) (3) (4)

Two Study Sections 
0.141** 0.124** 0.026** 0.011** 
(0.005) (0.005) (0.003) (0.003)

Three Study Sections 
0.249** 0.222** 0.042** 0.018** 
(0.011) (0.012) (0.006) (0.007)

Four Study Sections 
0.333** 0.297** 0.065** 0.035* 
(0.033) (0.034) (0.017) (0.017)

Five Study Sections 
0.354** 0.313** 0.037 0.003
(0.084) (0.084) (0.055) (0.055)

Ln(NIH Funding) 
0.030** 0.031** 
(0.005) (0.003)

Scientist Fixed Effects Not Incl. Not Incl. Incl. Incl.

Nb. of Scientists 10,177 10,177 10,177 10,177
Nb. of Observations 146,661 146,661 146,661 146,661
Adjusted R2 0.226 0.227 0.711 0.712

The dependent variable is the log odds of intellectual diversity, computed as one minus the herfindahl of MeSH keywords 
in a sample of 10,177 “superstar scientists.” The specifications in columns (1) and (2) include indicator variables for type of 
degree (MD, PhD, MD/PhD), year of highest degree, and gender. All specifications include a full suite of indicator variables 
for calendar year and for scientist age. 

Standard errors in parentheses, clustered by scientist (†p < 0.10, *p < 0.05, **p < 0.01) 
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Figure A1: Congressional Appropriations for NIH Institutes

(i) Example of Appropriations Language

Pancreatic cancer.—Pancreatic cancer is the country’s fourth 
leading cause of cancer death. Most patients present with advanced 
disease at diagnosis and the median overall survival rate for people 
diagnosed with metastatic disease is only about six months. The 
Committee is concerned that there are too few scientists research-
ing pancreatic cancer and compliments the NCI’s past efforts for 
increasing the research field through its program of a 50 percent 
formalized extended payline for grants that were 100 percent rel-
evant to pancreatic cancer. The Committee considers this an impor-
tant method for attracting both young and experienced investiga-
tors to develop careers in pancreatic cancer. In 2004, the NCI es-
tablished a new policy for awarding additional grants in pancreatic 
cancer research and extended this initiative to research that is 50 
percent relevant to pancreatic cancer. The Committee requests NCI 
to report in February, 2006 on how the two changes in policy have 
affected the pancreatic cancer portfolio, including the percentage 
relevancy of each grant to pancreatic cancer, and urges NCI to con-
tinue its commitment to fertilize the pancreatic cancer field. 

Lymphoma.—Lymphoma is the fifth most common cancer and 

(ii) Word Frequency in Appropriations Documents
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Figure A2: Institute and Study Section Overlap

(i) Number of Institutes per Study Section
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(ii) Number of Study Sections per Institute
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Figure A3: Residual Variation in DST Funding

-5 -4 -3 -2 -1 0 1 2 3 4 5

 
Log Funding Residual

Year Effects

Year & Disease/Science

Year & Disease/Year

Year, Disease/Year, & Disease/Science

Year, Disease/Year, Science/Year, & Disease/Science

ix



Appendix B: “Life-science” Patents

To assess the impact of NIH funding, we need to define a universe of life science patents. While we do not
want to impose strong restrictions on where NIH funding could have an effect (e.g., by looking in specific
disease areas) focusing on a specific subset of the universe of issued patents is necessary for two reasons.
From a substantive standpoint, it is important to assign most patents to one or more NIH research areas,
and this would be infeasible were we to focus on all patents granted by the USPTO.iv From a pragmatic
standpoint, linking NIH publications to patents requires probabilistic matching (see Appendix C2), and the
rate of false positives is much lower if we restrict the set of potential matches.

To do so, we started with the 5,269,968 patents issued by the USPTO between 1980 and 2012. Then,
using the NBER patent categorization described in Hall et al. (2001), we focused on patents in the classes
belonging to NBER Categories 1 (Chemicals) and 3 (Drugs and Medical). This left 1,310,700 patents. Of
these patents, 565,593 cite at least one non-patent reference. Using the algorithm described in Azoulay et
al. (2012) and Sampat and Lichtenberg (2011) we determined that 312,903 patents cite an article indexed in
PubMed. We refer to this set—patents in NBER Classes 1 and 3 that cite to at least one PubMed indexed
article—as “life-science patents.” Classes 1 and 3 cover a range of subcategories, listed in Table B1.

To provide a better sense of what this set includes, we took a random sample of 1,000 in the universe
described above, and looked them up in the Thomson Reuters Innovation Database. This database includes
information on the expert classification of each patent to one or more codes in the Derwent World Patents
Index (DWPI 2012). Of the 1,000 patents, 656 had at least one DWPI “B” code, indicating they are in the
“pharmaceuticals” category. According to DWPI 2012 (page 5) these pharmaceutical patents include:

• Compounds and proteins of pharmaceutical (or veterinary) interest;

• Compounds used as intermediates in the manufacture of pharmaceutical products;

• Compositions used for diagnosis and analysis in pharmaceuticals;

• Technologies dealing with production of tablets, pills, capsules, etc.

• Devices for dispensing pharmaceuticals.

Importantly, the “B” classes also include a range of biotechnology research tools and processes.

What about those without a “B” code, about one-third of the life science patents? The majority of these
non-pharmaceutical patents are in five DWPI categories covering chemistry and medical devices: Class A
(Polymers and Plastics), Class D (Food, Detergents, Water Treatment, and Associated Biotechnology),
Class E (General Chemicals), Class S (Instrumentation, Measuring, and Testing), and Class P (General
Human Necessities, including diagnosis/surgery).

Private sector vs. public sector patents. We are primarily interested in the effect of NIH funding on
the rate of production of private-sector patents, excluding those assigned to public research entities such
as universities, research institutes, academic medical centers, or government agencies (e.g., the intramural
campus of NIH). This focus is justified by our desire to focus on disembodied knowledge flows. Since the
Bayh-Dole act, life-science academics have considerably increased their rate of patenting (Azoulay et al.
2007; 2009). Previous scholarship has documented the growing importance of patent-paper pairs (Murray
and Stern 2007) where a given piece of academic knowledge gives rise to both an article and a patent
listing the authors of the article as inventors and their employer (often a public institution) as assignee.
Including these patents in our analyses would make the interpretation of our results (which emphasizes
indirect spillovers of knowledge) difficult. To separate private-sector from public-sector patents, we adapted

ive.g., class 150, “Purses, Wallets, and Protective Covers,” or Class 169, “Fire Extinguishers.”
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Bronwyn Hall’s patent assignee name matching algorithm to isolate private-sector assignees.v Using this
method, we restrict the sample to 232,276 patents, or 74% of the life science patents (see Table 2 in the main
body of the manuscript).

Patents on drug candidates and approved drugs. Though a substantial share of the life science patents
are “pharmaceuticals” not all are therapeutic molecules or proteins. Even among those that are, there is
substantial heterogeneity in value, since only a small share of drugs and biologics enter trials, and of these
a small share receive marketing approval.

To examine heterogeneity of the effects of NIH funding, and to assess the effects on drug development, we
isolated patents associated with important drugs and biologics. We began with all patents from current and
archival versions of the FDA’s Orange Book (officially named Approved Drug Product with Therapeutic
Equivalence Evaluations). Since the 1984 Hatch-Waxman Act, branded firms are required to list on the
Orange Book patent issued before drug approval with at least one claim covering a drug’s active ingredient,
formulation, or methods of use for approved indications. Though there is strong incentive to list patents
issued after drug approval as well (Hemphill and Sampat 2012), strictly speaking this is not required. More-
over other drug patents (methods of manufacture, formulations not covering the marketed product, methods
of use covering unapproved indications) are barred.

In parts of our analysis, we look at the effects of NIH funding on “important” life science patents associated
with drugs that have been approved or entered late-stage clinical trials. For doing so, the Orange Book is
restrictive, for several reasons. First, it does not list all patents on a drug, as already noted. Second, it
does not list patents for all biologic drugs (since these drugs were historically covered by a division of the
FDA exempt from Orange Book listing rules). Third, it does not include patents on drugs and biologics
in late stage trials. Accordingly, we supplemented the patent list from the Orange Book with those from
IMS Patent Focus, which includes patents on drugs and biologics in Phase III trials and above, and is less
restrictive about the types of patents it includes than the Orange Book.vi

Together 4,718 of the 232,276 life science patents were listed in the Orange Book and/or IMS. We call this
set of patents “Advanced Drug Candidates.”

For welfare calculations, we multiply the effects of NIH patenting with measures of the value of new drugs.
In order to do so, we need to isolate the patents associated with new molecular and biological entities
(NMEs and NBEs), eliminating patents on drugs that associated with other drugs (e.g., line extensions) and
unapproved drugs. This is not to say that drugs beyond NMEs and NBEs are unimportant. However, doing
so is necessary since our measures of private and social value of drugs are based on data on new drugs that
have been approved for marketing (as opposed to line extensions or unapproved drugs).

To construct this set, we used information on all NMEs and NBEs approved by the FDA between 1984 and
2012. Specifically, we collected information on all new molecular entities and biological license applications
approved by the FDA. We searched for patents on each of these in the Orange Book using application
numbers, and supplemented with searches in IMS patent focus using drug names. About 30 percent of these
patents were listed both in the Orange Book and IMS, 67 percent in IMS only, and 3 percent in the Orange
Book only. On average, there were 7.6 patents per drug in the dataset (7.3 for NME and 9.6 for biologics).
After limiting to private sector patents (see above), we were left with a set of 1,999 private sector life science
patents associated with new molecules and biologics.

vhttp://eml.berkeley.edu/~bhhall/pat/namematch.html
vihttp://www.imshealth.com/deployedfiles/imshealth/Global/Content/Technology/Syndicated%20Analytics/

Lifecycle%20and%20Portfolio%20Management/IMS_LifeCycle_Patent_Focus_Global_Brochure.pdf
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Table B1: Relevant Patent Classes

Cat. 

Code
Category Name

Sub-Cat. 

Code
Sub-Category Name Patent Classes

1 Chemical 11 Agriculture, Food, Textiles 8, 19, 71, 127, 442, 504

12 Coating 106,118, 401, 427

13 Gas 48, 55, 95, 96

14 Organic Compounds
534, 536, 540, 544, 546, 548, 549, 552, 554, 556, 

558, 560, 562, 564, 568, 570

15 Resins 520, 521, 522, 523, 524, 525, 526, 527, 528, 530

19 Miscellaneous

23, 34, 44, 102, 117, 149, 156, 159, 162, 196, 201, 

202, 203, 204, 205, 208, 210, 216, 222, 252, 260, 

261, 349, 366, 416, 422, 423, 430, 436, 494, 501, 

502, 510, 512, 516, 518, 585, 588

3 Drugs & Medical 31 Drugs 424, 514

32 Surgery & Medical Instruments 128, 600, 601, 602, 604, 606, 607

33 Biotechnology 435, 800

39 Miscellaneous 351, 433, 623
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Appendix C1: Linking NIH Grants to Publications that

Acknowledge NIH Support

The NIH asks of its grantees to include acknowledgements to agency support in any publications resulting
from the grant, and to do so in a very specific format.vii Since the early 1980s, PubMed has recorded
these acknowledgements in a separate field, and we use these data to link every grant in the NIH Compound
Grant Applicant File (CGAF) with the publications that result. The process used to systematically map
publication-to-grant linkages is relatively straightforward, but may be prone to measurement error. We
discuss three potential issues below, and investigate the bias they might create for the reported results.

Dynamic linking inconsistency. In the vast majority of the cases, a grant acknowledgement provides
a grant mechanism, a funding institute, and a grant serial number (as in R01GM987654), but typically no
reference to a particular grant cycle. This limitation is potentially serious, since we need to be able to assign
each publication to a particular DST, and not simply to particular DS. To fix ideas, our final dataset relies on
987,799 unique publications that acknowledge a grant funded by NIH. 100% of these acknowledgements occur
in a window of ten years before the year in which the article appeared in print. 93% of these publications
are linked to the same grant within seven years, 83% within five years, and 47% within two years. To find
the relevant grant cycle for each publication acknowledging a grant, we adopted the following procedure:
(i) look up the year of publication tpub for the acknowledging publication; (ii) create a five year “catchment
window” [tpub−5; tpub]; (iii) identify the most recent fiscal year tgrant in that window during which the grant
was funded either as a new grant or as a competitive renewal; and (iv) link the publication to the funding
institute identified in the grant acknowledgement, the study section that evaluated this grant according to
NIH records, in the year tgrant.

While we cannot directly observe whether a publication was funded by a different grant cycle, we have
verified that our benchmark results are robust to alternative choices for the length of the catchment window:
[tpub − 2; tpub], [tpub − 7; tpub], [tpub − 10; tpub].

Overclaiming of publications. NIH grant renewal is dependent on the research and publications stem-
ming from that stream of funding. To our knowledge, NIH does not audit the acknowledgement trail
systematically—this is left to the discretion of scientific review officers (the federal employees who manage
the flow of information between reviewers in a particular study section and the NIH funding apparatus).
Therefore, grantees may have an incentive to “over-attribute” publications—e.g., to credit some publications
to the support of a grant, even if they were in fact enabled by other streams of funding. This raises the
concern that increases in DST funding, even if exogenous, can lead us to identify more related patents, but
only through the spurious channel of false attributions.

We believe that our results are unlikely to be driven by this behavior for two reasons. First, the vast majority
of public biomedical research funding in the US comes from NIH, meaning that most scientists do not have
meaningful amounts of funding from other sources to support their research.viii While scientists often use
grant funding to subsidize research projects that are not directly related to the topic of their grant, these
projects should still be counted as a product of grant funding.

Second, if misattribution were driving our results, we would expect to see that boosts in NIH funding increase
the number of patents directly linked to NIH funding (our “citation-linked” measure of patenting, see Table
4), but it would not increase the total number of patents in a DST’s intellectual area (our “PMRA” measure
of patenting, see Table 5). Our PMRA measure is designed to capture, through related publications, patents
building on research related to a DST, regardless of whether that research is NIH-funded. If increases in

viihttp://grants.nih.gov/grants/acknow.htm
viiiNIH accounted for 70% of the research budget of academic medical centers in 1997 (Commonwealth Fund Task Force on

Academic Health Centers 1999); within Graduate Schools of Arts and Sciences, who cannot rely on clinical income to support
the research mission, one would expect the NIH share to be greater still.
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DST funding merely induce scientists to acknowledge these grants, we would not see the overall increase in
innovation that we document in Tables 5 and 6.

Underclaiming of publications. Given the incentives created by the funding renewal decision, it seems
unlikely that researchers would err by failing to credit their grant upon publication when they legitimately
could. However, the number of NIH grant acknowledgements in PubMed jumps from 25,466 for articles
appearing in 1980 to 56,308 for articles appearing in 1981 before stabilizing on a slow upward trend that
correlates with the growth in funding thereafter. This is likely because the National Library of Medicine only
gradually moved to a regime where grant acknowledgement data was systematically captured. Although the
grants acknowledged in these early publications likely predate the start of our observation period (1980),
this is an additional source of measurement error to which we must attend. In contrast to the second issue,
however, there is no reason to suspect that erroneous capture of these data is related to the size of a DST.
Year effects, included in all our specifications, should deal adequately with any secular change in NLM’s
propensity to accurately capture information related to grant acknowledgment.

Example. We illustrate the procedure with the case of particular publication, Deciphering the Message in

Protein Sequences: Tolerance to Amino Acid Substitutions, by Bowie et al., which appeared in the journal
Science on March 16th, 1990 (see the left side of Figure C1). The publication credits grant support from
NIH, specifically grant AI-15706. Despite the fact that this acknowledgement appears at the very end of
the paper as the ultimate reference in the bibliography (reference #46 on page 1310), PubMed captures
this data accurately (see the right side of Figure C1). Note that the acknowledgement omits the grant
mechanism, as well as the leading zero in the grant serial number. These issues, which are typical in the
PubMed grant acknowledgement data, turn out to be unimportant. In particular, the National Institute of
Allergy and Infectious Diseases (NIAID, code-named AI) has only one grant with serial number 015706: A
project R01 grant first awarded to Robert T. Sauer, an investigator in the biology department at MIT, in
1979, and competitively renewed in 1982, 1987, 1992, 1997, and 2002. The grant was evaluated by the BBCA

(Molecular and Cellular Biophysics) study section; its title is Sequence Determinants of Protein Structure

& Stability, with a budget of $1,211,685 for the cycle that began in 1987, three years before the date of the
publication above (whose last author is also Robert Sauer). As a result, the publication is linked to the DST
corresponding to the combination AI (Institute)/BBCA (study section)/1987 (year).

Figure C1: Example of Grant Acknowledgement

xiv



Appendix C2: Linking PubMed References to USPTO Patents

We use patent-publication citation information to identify patents that build on NIH-funded research. Patent
applicants are required to disclose any previous patents that are related to their research. Failure to do so can
result in strong penalties for the applicant and attorney, and invalidation of the patent (Sampat 2009). There
is a long history of using citation data as measures of intellectual influence or knowledge flows between public
and private sector research (Jaffe and Trajtenberg 2005; Narin and Olivastro 1992). Recent work (Sampat
2010, Alcacer, Gittleman and Sampat 2009), however, shows that patent examiners rather than applicants
insert many of these citations, casting doubt on their utility as measures of knowledge flows or spillovers
(Alcacer and Gittleman 2006).

We will instead use information on patent citations to published scientific articles. This is appealing both
because publications rather than patents are the main output of scientific researchers (Agrawal and Henderson
2002), but also because the vast majority of patent-paper citations, over 90 percent, come from applicants
rather than examiners, and are thus more plausibly indicators of real knowledge flows than patent-patent
citations (Lemley and Sampat 2012). Roach and Cohen (2012) provide empirical evidence on this point.

Determining whether patents cite publications is more difficult than tracing patent citations: while the cited
patents are unique seven-digit numbers, cited publications are free-form text (Callaert et al. 2006). Moreover,
the USPTO does not require that applicants submit references to literature in a standard format. For
example, Harold Varmus’s 1988 Science article “Retroviruses” is cited in 29 distinct patents, but in numerous
different formats, including Varmus. “Retroviruses” Science 240:1427-1435 (1988) (in patent 6794141) and
Varmus et al., 1988, Science 240:1427-1439 (in patent 6805882). As this example illustrates, there can be
errors in author lists and page numbers. Even more problematic, in some cases certain fields (e.g. author
name) are included, in others they are not. Journal names may be abbreviated in some patents, but not in
others.

To address these difficulties, we developed a matching algorithm that compared each of several PubMed

fields — first author, page numbers, volume, and the beginning of the title, publication year, or journal name
— to all references in all biomedical and chemical patents issued by the USPTO since 1976. Biomedical
patents are identified by technology class, using the patent class-field concordance developed by the National
Bureau of Economic Research (Hall, Jaffe, and Trajtenberg 2001). We considered a dyad to be a match if
four of the fields from PubMed were listed in a USPTO reference.

Overall, the algorithm returned 1,058,893 distinct PMIDs cited in distinct 322,385 patents. Azoulay, Graff
Zivin and Sampat (2012) discuss the performance of this algorithm against manual searching, and tradeoffs
involved in calibrating the algorithm.

Example. We illustrate the procedure with the case of particular patent, #6,687,006, issued on March 15,
2005 and assigned to the biopharmaceutical firm Human Genome Sciences, Inc. In the section of the patent
entitled Other Publications, we can find a citation to “Bowie, J.U., et al., Deciphering the Message in
Protein Sequences. . . ,” precisely the publication we took as an example in Appendix C1. Our text-parsing
algorithm identifies this reference and associates it with PubMed article identifier 2315699. As a result,
this patent will participate in the patent count corresponding to the DST AI/BBCA/1987 (see Appendix C1).
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Figure C2: Example of Patent-to-Publication Citation

xvi



Appendix D: PubMed Related Citations Algorithm [PMRA]

One of our outcome measures (described in more detail in Appendix F) captures all patents in the intellectual
vicinity of an NIH funding area. A crucial input in the construction of this measure is the National Library of
Medicine’s PubMed Related Citations Algorithm (PMRA), which provides a way of determining the degree
of intellectual similarity between any two publications. The following paragraphs were extracted from a brief
description of PMRA:ix

The neighbors of a document are those documents in the database that are the most similar to it. The simi-
larity between documents is measured by the words they have in common, with some adjustment for document
lengths. To carry out such a program, one must first define what a word is. For us, a word is basically an
unbroken string of letters and numerals with at least one letter of the alphabet in it. Words end at hyphens,
spaces, new lines, and punctuation. A list of 310 common, but uninformative, words (also known as stopwords)
are eliminated from processing at this stage. Next, a limited amount of stemming of words is done, but no
thesaurus is used in processing. Words from the abstract of a document are classified as text words. Words
from titles are also classified as text words, but words from titles are added in a second time to give them a
small advantage in the local weighting scheme. MeSH terms are placed in a third category, and a MeSH term
with a subheading qualifier is entered twice, once without the qualifier and once with it. If a MeSH term is
starred (indicating a major concept in a document), the star is ignored. These three categories of words (or
phrases in the case of MeSH) comprise the representation of a document. No other fields, such as Author or
Journal, enter into the calculations.

Having obtained the set of terms that represent each document, the next step is to recognize that not all words
are of equal value. Each time a word is used, it is assigned a numerical weight. This numerical weight is
based on information that the computer can obtain by automatic processing. Automatic processing is important
because the number of different terms that have to be assigned weights is close to two million for this system.
The weight or value of a term is dependent on three types of information: 1) the number of different documents
in the database that contain the term; 2) the number of times the term occurs in a particular document; and
3) the number of term occurrences in the document. The first of these pieces of information is used to produce
a number called the global weight of the term. The global weight is used in weighting the term throughout the
database. The second and third pieces of information pertain only to a particular document and are used to
produce a number called the local weight of the term in that specific document. When a word occurs in two
documents, its weight is computed as the product of the global weight times the two local weights (one pertaining
to each of the documents).

The global weight of a term is greater for the less frequent terms. This is reasonable because the presence of a
term that occurred in most of the documents would really tell one very little about a document. On the other
hand, a term that occurred in only 100 documents of one million would be very helpful in limiting the set of
documents of interest. A word that occurred in only 10 documents is likely to be even more informative and
will receive an even higher weight.

The local weight of a term is the measure of its importance in a particular document. Generally, the more
frequent a term is within a document, the more important it is in representing the content of that document.
However, this relationship is saturating, i.e., as the frequency continues to go up, the importance of the word
increases less rapidly and finally comes to a finite limit. In addition, we do not want a longer document to be
considered more important just because it is longer; therefore, a length correction is applied.

The similarity between two documents is computed by adding up the weights of all of the terms the two docu-
ments have in common. Once the similarity score of a document in relation to each of the other documents in
the database has been computed, that document’s neighbors are identified as the most similar (highest scoring)
documents found. These closely related documents are pre-computed for each document in PubMed so that
when one selects Related Articles, the system has only to retrieve this list. This enables a fast response time
for such queries.

In Table D1, we illustrate the use of PMRA with an example taken from our sample. Brian Druker is a
faculty member at the University of Oregon whose NIH grant CA-001422 (first awarded in 1990) yielded
9 publications. “CGP 57148, a tyrosine kinase inhibitor, inhibits the growth of cells expressing BCR-ABL,

TEL-ABL, and TEL-PDGFR fusion proteins” (PubMed ID #9389713) appeared in the December 1997 issue

ixAvailable at http://ii.nlm.nih.gov/MTI/related.shtml
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of the journal Blood and lists 16 MeSH terms. PubMed ID #8548747 is its fifth-most related paper accord-
ing to the PMRA algorithm; it appeared in Cancer Research in January 1996 and has 13 MeSH terms, 6 of
which overlap with the Druker article. These terms include common terms such as Mice and Pyrimidines as
well as more specific keywords including Oncogene Proteins v-abl and Receptors, Platelet-Derived

Growth Factor.

Table D1: PMRA and MeSH Terms Overlap — An Example

Source Article PMRA-Linked Article

Carroll et al., “CGP 57148, a tyrosine kinase 

inhibitor, inhibits the growth of cells expressing 

BCR-ABL, TEL-ABL, and TEL-PDGFR fusion 

proteins.” Blood , 1997.

Buchdunger et al. “Inhibition of the Abl protein-

tyrosine kinase in vitro and in vivo by a 2-

phenylaminopyrimidine derivative.” Cancer 

Research , 1996.

PMID #9389713 PMID #8548747

MeSH Terms MeSH Terms

Animals 3T3 Cells

Antineoplastic Agents Animals

Cell Division Cell Line, Transformed

Cell Line Growth Substances

DNA-Binding Proteins* Mice

Enzyme Inhibitors* Mice, Inbred BALB C

Fusion Proteins, bcr-abl* Oncogene Proteins v-abl*

Mice Piperazines*

Oncogene Proteins v-abl* Piperidines*

Piperazines* Proto-Oncogene Proteins c-fos

Protein-Tyrosine Kinases* Pyrimidines*

Proto-Oncogene Proteins c-ets Receptors, Platelet-Derived Growth Factor*

Pyrimidines* Tumor Cells, Cultured

Receptors, Platelet-Derived Growth Factor*

Repressor Proteins*

Transcription Factors*

Substances Substances

Antineoplastic Agents Growth Substances

DNA-Binding Proteins Oncogene Proteins v-abl

ETS translocation variant 6 protein Piperazines

Enzyme Inhibitors Piperidines

Fusion Proteins, bcr-abl Proto-Oncogene Proteins c-fos

Oncogene Proteins v-abl Pyrimidines

Piperazines imatinib

Proto-Oncogene Proteins c-ets Receptors, Platelet-Derived Growth Factor

Pyrimidines

Repressor Proteins

Transcription Factors

imatinib

Protein-Tyrosine Kinases

Receptors, Platelet-Derived Growth Factor

xviii



Appendix E: Structure of the Disease/Science Panel Dataset

As explained in Section 3.1, the level of analysis chosen for the econometric exercise is the disease/science/year
level. With 17 NIH institutes (the “D” in DST), 624 standing study sections (the “S”), and 25 years (the
“T”), one might expect our analytical sample to 265,200 DST observations (and 10,608 distinct DS research
areas), but a quick perusal of the tables reveal only 14,085 DSTs, or 5.31% of the total number of potential
DSTs (respectively 2,942 actual DS, or 27.73% of the total number of potential DS). Why such a seemingly
high number of missing DSTs? This appendix (i) clarifies that there are different types of “missing DSTs”; (ii)
explains why most of these missing DSTs are missing for benign reasons; and (iii) investigates the robustness
of our results to the concern that some DSTs are missing for substantive reasons. Figure E1 provides a
graphical representation of the structure of our panel dataset. For example, the purple line corresponds to
the combination of the National Institute of Allergy and Infectious Diseases [NIAID] and the Molecular and
Cellular Biophysics [BBCA] study section. In every year between 1980 and 2005, NIAID awarded at least
three grants that were reviewed by the BBCA study sections. Therefore, in this case, all the 26 potential
DSTs are accounted for.

Missing DSTs: A Taxonomy. A full 191,650 DSTs (72.27%) are missing from our data because the
corresponding DS combinations are never observed. One can think of these instances as cases where the
pairing of a disease with a science area would be intellectually incongruous. Consider, for instance, the
pairing of the National Institute of Mental Health (NIMH) and the Tropical Medicine and Parasitology
[TMP] study section. Not only are there no grants awarded by NIMH that were reviewed by the TMP
study section, there is also no evidence of any unfunded grant application reviewed by TMP whose author
designated NIMH as the funding institute. This case is represented by the orange dotted line in Figure E1.

We are left with 2,942 disease/science research areas that awarded at least one grant in at least one year
during the observation period, or 2, 942 × 25 = 73, 550 potential DSTs. 55,058 of these 73,550 DSTs are
missing because many study sections are not in continuous existence between 1980 and 2005: our sample
is unbalanced. At regular intervals in the history of NIH, study sections have been added, dropped, split,
or merged to accommodate changes in the structure of scientific disciplines as well as shifting patterns of
momentum for some research areas, relative to others. DSTs that are missing because of the natural life
cycle of study sections need not concern us, as long as we make the reasonable assumption that every grant
application, at a given point time, has a study section that is fit to assess its scientific merits.

Figure E1 displays three examples that fall into this category. Consider first the red line, corresponding to
the combination of the National Heart, Lung, and Blood Institute [NHLBI] and the Physiology [PHY] study
section. The Physiology study section ceased to exist in 1998, so the NHLBI/PHY combination “misses”
seven DSTs. What happened to the applications received in 2000 that would have been reviewed by the
PHY study section had they been received in 1998? The answer is that newly created study sections, such as
Integrative Physiology of Obesity and Diabetes [IPOD] or Skeletal Muscle Biology and Exercise Physiology
[SMEP] almost certainly reviewed them. Similarly, the combination of NIDDK and the Biochemistry study
section (which was born in 1991) is “missing” observations between 1980 and 1990, while the combination
between NIA and the Neurology B-2 study section is missing observations between in 1980, 1981, 1982, and
observations from 1998 to 2005. Notice that in all three of these cases, DSTs are not missing “in the middle,”
but only at the extremities.

Potentially more problematic for our analysis is the case of DS combinations that display intermediate
sequences of starts and stops. Consider for example the blue line in Figure E1, which corresponds to the
combination of the National Cancer Institute [NCI] and the Reproductive Biology [REB] study section. Ten
of the potential 22 observations for this combination are missing between 1980 and 2001 (the REB study
section ceased to exist after 2001). The story is similar for the combination of the National Eye Institute
[NEI] and the Epidemiology and Disease Control 1 [EDC-1] study section. All together, out of the 2,942 DS
combinations in our dataset, 2,101 (71.41%) are contiguous, and 841 are “hole-y” (for a total of 4,407 missing
DSTs). We are concerned about these cases because it is possible that research was proposed in these areas,
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and that at least some of it got done (maybe thanks to alternative sources of funding), leading to patents
downstream which we have no way of linking back to publicly-funded research efforts. One piece of evidence
that allays these concerns is that in the great majority of cases (80%), we do not observe any application in
the corresponding DSTs—if no funds were awarded, it is because no research was in fact proposed to NIH
for funding consideration. In light of this fact, it seems harder to imagine that patents could be linked to
these areas via some alternative method which does not rely on bibliometric linkages.

Robustness check: Contiguous DSTs. In addition, we probe the robustness of our results by replicating
the main specifications while restricting the sample to the set of 2,101 intact, contiguous DS areas, for a total
of 7,966 DSTs (57 percent of our original dataset). In Table E1, we report the results of specifications modeled
after those used to generate the estimates in Table 6, our benchmark set of results. Using this approach,
we obtain coefficients that are numerically very similar to those presented in Table 6, and estimated very
precisely.

In summary, the great majority of the DSTs that appear to be missing from our data are not really missing,
but rather, not in existence. And the small minority of DSTs that could genuinely said to be “missing”
cannot be expected to change our conclusions, since limiting the analysis to the set of intact DS areas yields
identical results.

Figure E1: A Taxonomy of DSTs

1980 1985 1990 1995 2000 2005

NIAID/BBCA: Molecular and Cellular Biophysics

NIA/NEUB 2: Neurology B 2

NIDDK/BIO: Biochemistry

NEI/EDC 1: Epidemiology and Disease Control 1

NCI/REB: Reproductive Biology

NIMH/TMP: Tropical Medicine and Parasitology

NHLBI/PHY: Physiology
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Table E1: Contiguous Disease-Science Categories Only

First Stage

DST Funding 

(×$10 mln.)

OLS IV OLS IV

(1) (2) (3) (4) (5)

1.170*** 2.516*** 2.052** 3.660*** 2.114**

(0.183) (0.568) (0.892) (0.776) (0.910)

Elasticity 0.796 0.649 0.604 0.349

R2 0.920 0.753 0.554 0.862 0.631

Observations 7,966 7,966 7,966 7,966 7,966

Year FEs Incl. Incl. Incl. Incl. Incl.

Disease × Science 

FEs
Incl. Incl. Incl. Incl. Incl.

Disease × Year FEs Incl. Incl. Incl. Incl. Incl.

Science × Year 

Linear Trends
Incl. Incl. Incl. Incl. Incl.

Application 

Controls
Incl. Incl. Incl. Incl. Incl.

Standard errors in parentheses, clustered at the disease/science level (*p  < 0.10, **p  < 0.05, ***p  < 0.01).

Note: See notes to Tables 4 and 5 for details about the sample. The outcome variables are fractional patent counts. The

instrument is the total amount of funding (2010 dollars) for the subset of grants funded by a DST whose rank of rank scores were

marginal, i.e., were within 25 applications of the award cutoff for their specific disease area (Institute). Application controls include

(i) FEs for the number of applications that a DST receives; (ii) FEs for the number of applications associated with a DST that are

also in a 50-grant window around the relevant IC payline, as well as (iii) cubics in the average raw and rank scores of applications

associated with a DST that are also in a 50-grant window around the payline. Elasticities are evaluated at the sample means. Only

contiguous disease-science areas, as defined in the text, are included. 

Citation Linked Total Related

Mean=14.2; SD=19.89 Mean=27.2; SD=28.5

Windfall Funding     

(×$10 mln.) 

DST Funding ($10 

mln.) Mean=4.49; 

SD=4.44
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Appendix F: Linking NIH Research Areas (DSTs) to Patents

We begin by linking the universe of funded NIH grants between 1980 and 2005 to the set of articles that it
supports using grant acknowledgement data from PubMed. We then link these publications to private-sector
patents using two alternative procedures; in turn, the outcome measures that build on these procedures are
designed to answer slightly different questions about the impact of NIH funding. The first measure asks
whether private firms build on NIH-funded research in their patented inventions. The second measure asks
whether NIH funding leads to the net creation of private-sector patents that would not have otherwise been
developed. We describe the two procedures below; the overall data and variable construction process is
summarized in Figure 1 in the main body of the manuscript.

Patents building on NIH-funded research: Direct linkages. We consider how many patents explicitly
build on NIH-funded research. Figure F1 illustrates the procedure with an example. In its first three years
of funding, the NIH grant CA-065823 was acknowledged by four publications, among which is the article
published by Thiesing et al. in the leading hematology journal Blood. We observe this link because grant
acknowledgements are reported for publications indexed in the National Library of Medicine’s PubMed

database. Next, the Thiesing et al. article is listed as prior art in patent number 7,125,875 issued in 2006 to
the pharmaceutical firm Bristol Myers Squibb.

Patents building on NIH-funded research: Indirect linkages. The second procedure links a patent
to a grant if this patent refers to a publication that is “intellectually similar” to a publication that does
acknowledge NIH funding. In other words, these linkages are indirect: from a grant, to a publication that
acknowledges it, to the publications that are proximate in intellectual space, to the patents that in turn cite
these related publications. The grant linked to patents in this way delineate the pool of research expenditures
that is intellectually relevant for the creation of these patents, even in the absence of a direct linkage between
the patent and the grant. Figure F2 illustrates this process. Patent number 6,894,051 was issued to Novartis
in May 2005, one of the five patents listed in the FDA Orange book as associated with the drug imatinib

mesylate, better known by its brand name, Gleevec. Patent 6,894,051 does not cite any publications which
are directly supported by the NIH so it would not be linked to an NIH DST under our citation-linkage
measure of innovative output. It does, however, cite PubMed publication 8548747, published in Cancer

Research in 1996. The PubMed Related Citation Algorithm [PMRA, see Appendix D] indicates that this
publication is closely related to PubMed article 9389713, which acknowledges funding from NIH grant CA-
0011422. Using these second procedure, we can link the vast majority of life-science patents to an NIH
disease-science area. In other words, most patents cite publications that are similar to publications that
acknowledge NIH funding.

Under the indirect procedure, the same patent can be linked to many distinct grants through the inclusion
of related publications. In our regressions, we adjust for this by weighting patents in the following way:
regardless of what outcome measure we use, if a patent is linked to N grants, it counts as 1/N of a patent in
each NIH research area. This means that a patent is restricted to being counted once across all NIH research
areas to which it is linked.

Aggregation from the individual grant-patent linkage up to the NIH research area level [DST].
The procedures outlined above describe how to link patents to specific NIH grants. However, we do not per-
form the econometric analysis at the grant level. Rather, we aggregate grants up to the disease/science/time
(DST) level, as explained in Section 3. Understanding the impact of NIH funding at the DST level offers
conceptual advantages apart from its econometric ones. Because DSTs are defined to be intellectually coher-
ent units in which knowledge generated by one projects is likely to benefit other projects, our estimate of the
impact of NIH funding on DST-level outcomes, then, captures the benefits of potential complementarities
between research in the same area. This would not be true of an analysis of grant-level funding on grant-level
patenting.
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Appendix G: Impact of NIH Funding,

Traditional Fixed Lag Approach

Our approach differs from traditional estimates of the impact of public R&D funding in that, instead of
making ex ante assumptions about where and when to look for its effects, the structure of the bibliometric
linkages naturally reveals, ex post, where and with what kind of lags the effects are being felt.

Relative to the traditional approach, one might worry that our estimates reflect in part idiosyncrasies of
the linking process, rather than the effect of funding. For example, if scientists over-attribute publications
to their grants in order to appear productive, then DSTs with more grants will exhibit a higher number of
bibliometric linkages to patents, regardless of whether the funding in these DSTs actually contributed to the
development of those patents. This will artificially inflate our estimates of the impact of NIH funding on
citation-linked patents in Table 4 (though it should not increase the total number of patents in a research
area, as estimated in Table 5).

In this appendix, we repeat our empirical exercise using the traditional method of examining the relationship
between funding in a year and patenting in subsequent years, assuming a series of fixed lags between funding
and innovation. The results are broadly similar in magnitude to those obtained in the benchmark specification
using our preferred “ex post” methodology, with some important caveats that we detail below. We continue
to favor the ex post approach because bibliometric linkages offer a variety of benefits, including the ability
to track innovations across disease areas.

In order to follow the traditional approach, we must find a way to identify the research area(s) that is/are
likely to be responsible for a particular patented innovation. Toole (2012), for instance, assumes that funding
in a given disease area impacts drug development in the same disease area, and then goes on to examine the
impact of funding on new drug approvals using a distributed lag structure. Here we replicate the spirit of his
work, but with two important twists: (i) our outcome variable is patents, not drug approvals, and patents
are more challenging to associate ex ante with disease areas; (ii) we perform the exercise both using a more
aggregated disease level to partition funding into research areas (the unit of analysis used in Toole (2012)
and most of the literature to date), and also using a finer-grained disease/science level, which parallels the
level of analysis used throughout the main body of the manuscript.

Patent mapping. We create an ex ante mapping of patents to research areas by exploiting the fact that
NIH grants sometimes directly generate patented innovations. The 1980 Bayh-Dole Act created incentives
for researchers and their institutions to patent the discoveries derived from federal funding. The Act also
required that patents resulting from public funding acknowledge this fact and list specific grants in their
“Government Interest” statements. We obtained this information from the NIH’s iEdison database. In total,
1,799 NIH grants generated 1,010 distinct patents.x We examine the three digit main patent class in each of
these 1,010 patents to create a probabilistic mapping of each patent class to research areas, where a research
area is defined as a funding institute (roughly isomorphic to a broad disease area, see Appendix A). For
each funding institute/patent class combination, we construct the fraction of that class’ patents that are
supported by funding for the institute associated with that disease:

Fcd =
# of class c patents acknowledging funding from NIH Institute d

# class c patents

So for instance, if a patent is part of a class that includes 100 patents, 10 of which are supported by the
National Cancer Institute (NCI) and 15 of which are supported by the National Heart Lung and Blood
Institute (NHLBI), then it will count as 0.10 of a patent to the NCI and 0.15 to the NHLBI. Note that this
mapping only relies on the empirical distribution of Bayh-Dole patents across funding institutes. Within our
universe of 315,982 life science patents, 269,839 (85%) have a main patent class that is represented in the

xWhile these patents are also issued between 1980 and 2012, they do not overlap with those in our main analyses because
they are overwhelmingly assigned to universities or to the NIH intramural campus, as opposed to private-sector firms.
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much smaller set of Bayh-Dole patents. We use our class-to-research area mapping to allocate each of these
269,385 patents in one or more funding institute using the weights described above.

We proceed in a similar fashion to create a mapping between disease/science areas and patent classes:

Fcds =
# of class c patents acknowledging funding from NIH Institute d and reviewed by study section s

# class c patents

The next step is to construct the number of patents in a research area issued in a particular year t. In the
case of research areas defined at the disease level:

Patentsdt =
∑

c

Fcd · # of patents in class c issued in year t

In the case of research areas defined at the disease/science level:

Patentsdst =
∑

c

Fcds · # of patents in class c issued in year t

i.e., the number of patents issued in a particular year t as the proportion of class c’s patents that can be
mapped to the NIH research area defined by disease d and science area s. Since the weights Fcd and Fcds

are time-invariant, the allocation of patents to research areas is not influenced by changes in funding and
other potentially endogenous factors.

Estimation. Using these outcome variables, we estimate the following regressions:

Patentsd,t+k = α0 + α1kFundingdt + δd + γt + εdt for k = 1, . . . , 20 (1)

at the disease level, and

Patentsds,t+k = β0 + β1kFundingdst + δds + µdt + νst + εdt for k = 1, . . . , 20 (2)

at the disease/science level. The coefficients of interests are α1k and β1k for k = 1, . . . , 20, and we display
them graphically in Panels A and B of Figures G1, together with their 95% confidence intervals. For
comparison, we represent our benchmark result—from Table 6, column (5)—as an horizontal line (since this
estimate does not depend on pre-specified lags).

Results. Figure G1, Panel A shows that, averaged over all the possible lags, the ex ante approach using the
disease level of analysis yields effects whose magnitudes are quite comparable to our main ex post benchmark
(2.33 patents for a $10 million boost in funding), and in fact surprisingly similar to it for lags of 11 to 14 years.
Interestingly, however, the ex ante approach appears to “overshoot” in the short run, and “undershoot” in
the long run. For instance, we estimate that a $10 million boost in funding to an institute would increase
private-sector patenting by about 10 patents in the next year. Given the time needed both to perform
the research and to complete the patent prosecution process, a near-term return to public funding of this
magnitude seems highly implausible. This highlights some of the concerns with the fixed-lag approach; by
assuming different lag structures, one could get very different estimates of the impact of funding, not all of
which appear plausible. For this reason, we prefer the ex post approach.

Figure G1, Panel B, repeats the fixed lag approach using the DST as unit of analysis, paralleling our primary
specifications. Here, the ex ante approach yields smaller estimates relative to the ex post benchmark (though
the differences are not statistically significant for lags 11 to 14). The lack of congruence between the results
in Panel A and Panel B makes sense in light of the different levels of analysis used to generate these figures.
In Panel B, we do not capture in the outcome variable any patent that can be mapped ex ante to the
same disease area unless it can also be mapped to the same science area. This is obviously very restrictive.
Panel B therefore highlights another benefit of the ex post approach: it allows one to track innovation across
research areas where ex ante mappings would simply assume the lack of any relation between funding and
downstream innovation.
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To explore the hypothesis that our disease/science level regressions yield smaller coefficients because they
restrict associated patents to be ones in a narrow disease/science area, we reproduce Figure G1 using a slightly
broader measure of “science area.” Study sections are organized into slightly broader categories known as
integrated review groups (IRGs). In our data, there are 624 study sections, and 327 IRGs. Figure G2 plots
coefficients from a version of Equation (2), with patents matched to the relevant IC-IRG. Here, we find larger
estimates, within range of our ex post results for at least some of the lags.
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Figure G1: Effect of NIH Funding on Private-Sector Patenting

ex ante Approach with Fixed Lags
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Note: Research areas correspond to NIH funding institutes.

A. Disease Level of Analysis
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B. Disease/Science Level of Analysis

Estimated Coefficient 95% Confidence Interval

Effect from Table 6, column (5)

Figure G2: Reprise of Figure G1, Panel B but with broader,

IRG-based level measure of science area
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Appendix H: Identification Robustness Checks

The fixed effect estimation strategy outlined in Section 3 identify the causal impact of NIH funding under
the assumption that NIH funding for a DST does not respond to changes in the specific innovative potential
of a disease/science area combination. In this Section, we present several tests to argue that this is not the
case.

Table H1 presents the IV estimates and the corresponding reduced-form estimates side-by-side. We find that
the reduced-form coefficient estimates for windfall funding (Columns 1 and 3) are quite similar in magnitude
with the IV coefficient estimates for actual funding in a DST, instrumented by windfall funding (Columns 2
and 4).

One potential concern is that the NIH occasionally funds grant applications out of the order in which they
are scored. As discussed in Section 3.3 and Appendix B, peer review rules at the NIH make it difficult for
NIH’s component Institutes to direct resources to DSTs. ICs, however, do have the discretion to fund grant
applications as exceptions to the standard scoring rules; approximately four to five percent of grants are
funded in this way. While this usually occurs in response to the emergence of new data to strengthen the
application, grants are also sometimes funded out of order if they were evaluated in an exceptionally strong
committee and received a lower relative score than their absolute quality should indicate.xi This practice
has the potential of generating a correlation between DST funding and its unobserved potential.

We show that this possibility does not appear to affect our results using two different tests. If the component
Institutes do selectively fund grant applications from competitive, high-interest science areas out of order,
then we would expect that the amount of funding for DSTs that share the same scientific interests should
be correlated; that is, if the NCI (cancer) were allocating more money to genetics because of increased
potential in that area, then we should weakly expect the NIDDK (diabetes) to do the same. Similarly, if
Congress increased funding for all Institutes whose disease focus has a strong hereditary component, we
would also expect cancer-genetics and heart disease-genetics funding to be positively correlated. Table H2
examines the correlation between own-disease funding for a science area, Fundingdst, and funding for that
same science area from other diseases Funding

−d,st. Column 1, which includes only year fixed effects, shows
a strong negative correlation between own and other funding. This, however, is likely due to the mechanical
relationship between the size of one’s own disease area in a given science area, and the size of other disease
areas. Column 2 controls for this confounder by introducing disease by science fixed effects; we find no
correlation between own and other disease funding. This is also true if we add disease by year fixed effects
as we do in Column 3. Column 3 includes the same set of controls as we use in estimating our main results.
Columns 4 through 6 repeat this exercise using the proportion of a disease area’s funding devoted to a
particular science area as the variable of interest. This asks: if the NCI begins spending a greater proportion
of its budget on genetics, does it appear that other disease areas do the same? Again, we find that this does
not appear to be the case.

Another way to address the possibility that out-of-order scoring matters is to instrument for DST funding
using funding from grants that are not funded out of order. Ideally, we would add up requested funding
amounts for the top ranked applications, regardless of whether they were actually funded, but we do not have
data on funding requests for unfunded applications. Instead, we count funding amounts for the subset of
DST grants that are funded in order. Table H3 presents our findings using this alternative strategy. Columns
1 and 2 indicate that we have a strong first stage and, using this instrument, we find that an additional $10
million in ordered funding increases net patenting by 3.7, compared with 2.8 in our main OLS specification
and 2.9 in our preferred IV specification.xii The implied elasticities of all these estimates are similar.

Our next test checks the plausibility of the exclusion restriction for our instrument. Table H4 tests alternative
first stages using past or future windfalls as an instrument. If windfall funding for a DST is correlated with

xiAuthors’ conversation with Stefano Bertuzzi, NIH Center for Scientific Review.
xiiNote that our original lucky funding instrument already purges funding dollars to out of order grants.
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time-varying observed potential in that disease/science area after conditioning on the number of applications
around the payline and their raw scores and science ranks, then we might expect past or future windfalls
to still be predictive of current funding; excitement about targeted cancer therapies in the wake of Gleevec
might, for instance, drive funding for cancer/cell-signaling for several years. The results in Table H4 show,
however, that this is not the case. While current windfalls (Column 2) are strongly predictive of total DST
funding, past and future windfalls are not.

Figure H1 illustrates this point graphically. The first panel of Figure H1 plots past windfall funding on the x-
axis against current windfall funding on the y-axis and finds no evidence of a relationship. The second panel
does the same for current and future windfall funding. The final panel examines the relationship between
windfall funding and “non-windfall” funding, i.e. Fundingdst−Windfall Fundingdst. If windfall funding were
truly random, then it should not be correlated with the overall quality of the DST as given by the amount
of non-marginal funding it receives. Again, we find no relationship.

Finally, Table H5 tests whether, after controlling for our primary set of regressors, our instrument for funding
is correlated with any measures of lagged application quality or lagged patent output. Column 1 reports the
F-test of the joint significance of 10 year lags in the number of patents that acknowledge NIH funding from
a disease/science area, as well as the number of patents that cite publications supported by that area or
which cite publications related to those funded by that area. We also examine whether windfall funding is
correlated with lagged applicant scores or lagged windfall funding. Again, we fail to reject the null hypothesis
in all these cases.
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Figure H1: Correlation Between Windfall DST Funding

and Other DST Funding
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Table H1: Reduced Form and IV Estimates

Reduced Form IV Reduced Form IV

(1) (2) (3) (4)

2.504 2.914
*

(1.583) (1.528)

2.002
**

2.329
***

(0.853) (0.834)

R2 0.713 0.515 0.838 0.623

Observations 14,085 14,085 14,085 14,085

Year FEs Incl. Incl. Incl. Incl.

Disease × Science FEs Incl. Incl. Incl. Incl.

Disease × Year FEs Incl. Incl. Incl. Incl.

Science × Year Linear Trends Incl. Incl. Incl. Incl.

Application Controls Incl. Incl. Incl. Incl.

Note: See notes to Table 6 for details about the sample. The outcome variables are fractional patent counts. The

instrument is the total amount of funding (2010 dollars) for the subset of grants funded by a DST whose rank of rank

scores were marginal, i.e., were within 25 applications of the award cutoff for their specific disease area (Institute).

Application controls include (i) FEs for the number of applications that a DST receives; (ii) FEs for the number of

applications associated with a DST that are also in a 50-grant window around the relevant IC payline, as well as (iii)

cubics in the average raw and rank scores of applications associated with a DST that are also in a 50-grant window

around the payline. 

DST Funding ($10 mln.) 

Mean=4.06; SD 4.87

Citation Linked Total Related

Mean=12.82; SD=19.17 Mean=24.8; SD=28.0

Windfall Funding ($10 mln.) 

Mean=0.20; SD 0.52

Standard errors in parentheses, clustered at the disease/science level (*p  < 0.10, **p  < 0.05, ***p  < 0.01).
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Table H2: Relationship Between Own DST Funding and Funding

by Other Diseases for the Same Science Area

(1) (2) (3)

-0.446*** 0.009 -0.008

(0.017) (0.042) (0.043)

R
2 0.134 0.732 0.771

Observations 14,085 14,085 14,085

Year FEs Incl. Incl. Incl.

Disease × Science FEs Incl. Incl.

Disease × Year FEs Incl.

D’ST Funding, Other Diseases, Same 

Science (×$10 mln.)

DST Funding ($10 mln.) 

Note: Each cell is a study section/IC/year. Funding is defined by the sum of project-cycle allocations for all Type I

and II grants reviewed by that study section. See notes to Tables 1 and 2 for additional details about this sample.

Standard errors in parentheses, clustered at the disease/science level (*p  < 0.10, **p  < 0.05, ***p  < 0.01).
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Table H3: Instrumenting DST Funding with Funding

for Grants Funded in Order Only

First Stage

DST Funding 

(×$10 mln.)

OLS IV OLS IV

(1) (2) (3) (4) (5)

0.629*** 2.478*** 2.544*** 3.614*** 3.733***

(0.085) (0.496) (0.540) (0.671) (0.697)

Elasticity 0.785 0.806 0.592 0.611

R2 0.949 0.738 0.519 0.863 0.634

Observations 14,085 14,085 14,085 14,085 14,085

Year FEs Incl. Incl. Incl. Incl. Incl.

Disease × Science FEs Incl. Incl. Incl. Incl. Incl.

Disease × Year FEs Incl. Incl. Incl. Incl. Incl.

Science × Year Linear Trends Incl. Incl. Incl. Incl. Incl.

Application Controls Incl. Incl. Incl. Incl. Incl.

Standard errors in parentheses, clustered at the disease/science level (
*p  < 0.10, **p  < 0.05, ***p  < 0.01).

DST Funding, Grants in Order 

Only (×$10 mln.) 

DST Funding ($10 

mln.) Mean=4.06; 

SD=4.36

Note: The outcome variables are fractional patent counts. The instrument is the total amount of funding for awarded DST grants that are funded

in order of score (i.e., which are not exceptions). For more details on this sample, see the notes to Tables 6. Application controls include (i) FEs for

the number of applications that a DST receives; (ii) FEs for the number of applications associated with a DST that are also in a 50-grant window

around the relevant IC payline, as well as (iii) cubics in the average raw and rank scores of applications associated with a DST that are also in a 50-

grant window around the payline. 

Citation Linked Total Related

Mean=12.82; SD=19.17 Mean=24.8; SD=28.0
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Table H4: Alternative First Stages, Past and Future Windfalls

Past Windfall Current Windfall Future Windfall

(1) (2) (3)

0.067 1.251
*** 0.085

(0.243) (0.232) (0.205)

R2 0.927 0.921 0.927

Observations 9,326 14,085 9,326

Dependent variable: Total DST Funding

Note: This table presents alternative first stages using past and future windfall funding. Current windfall funding is

the total amount of funding for awarded DST grants within 25 grants of an Institute specific award cutoff in the

same year T. Future windfall is this same amount, but defined for DS,T+1. Past windfall funding is similarly

defined, for DS,T-1. Controls include disease-science and disease-year fixed effects, linear science-year time trends, as

well as fixed effects for the number of applicants to a DST, the number of applicants within a 25-grant radius

window around the IC payline, as well as cubics in the average raw and rank scores of applications in the funding

window. The outcome variables are fractional patent counts.

Windfall Funding

Standard errors in parentheses, clustered at the disease/science level (*p  < 0.10, **p  < 0.05, ***p  < 0.01).
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Table H5: Correlation Between Windfall Funding

and Measures of DST Quality

RHS includes 10 Years of Lags for: F -stat of Joint Significance

# of Patents Citing Research Acknowledging NIH Funding 0.908

# of Patents Citing Research Similar to NIH-Funded Research 0.697

Raw and Rank Scores 0.156

All of the Above 0.188

Note: Each observation is a disease/science/time (DST) combination. Each column reports a regression of our windfall

funding instrument on measures of DST input and output quality. We controls for the same set of variables as in our most

detailed specification in Tables 4 and 5. Column 1 reports probabiities associated with an F -test for the joint significance of

one to ten year lags of past DST patent production: citation-linked and PMRA-linked (20 variables).
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Appendix I: Alternative Specifications and Samples

Another set of robustness checks describes alternative specifications and samples. All of the results in the
body of the manuscript rely on sample weights, where each observation is weighted by the yearly average of
awarded grants for a disease-by-science area. Weighting is justified by our desire to prevent small DSTs to
influence too strongly the results, relative to large DSTs. Table I1 replicates the benchmark results of Table 6,
with the only difference that we do not weight the sample. The difference in results between the weighted
and unweighted version are minor. Though we believe that weighting by average DST size (measured by
yearly number of grants in a DS) is appropriate, this choice does not affect our substantive conclusions.

Our main results rely on linear fixed effects and IV models; this may be problematic because patenting
outcomes tend to be very skewed. Table I2 shows that our results hold in logs as well. Columns 1 and 2
rerun our main results for our first outcome measure, the number of patents that cite research funded by that
DST; Column 1 uses the same set of controls as our main fixed effects estimates from Table 4 and Column 2
uses our IV controls. On the subsample of DSTs with nonzero patenting under this measure (63% of our
main DST sample), we show that a one percent increase in DST funding increases patenting by between
0.8 and 0.9 percent. This is similar, though slightly higher, to the elasticities we find in our main results.
Columns 3 and 4 repeat this exercise using our second outcome measure, the total number of related patents.
Again, we find elasticities between 0.8 and 0.9, which are slightly higher than in our main results.

A shortcoming of the log-log parametrization is that it entails dropping 1,062 DST observations that are
not linked to any private-sector patent. Many researchers have dealt with the problem of excess zeros
through the use of ad hoc transformations of the dependent variable, such as log(1+ y). Because of Jensen’s
inequality, the estimates corresponding to the transformed outcome are difficult to compare numerically
to the estimates when the dependent variable is left untransformed. A better approach in our view is to
estimate our specifications using Quasi-Maximum Likelihood Poisson, which is consistent under very mild
regularity conditions and allows us to deal with the skewness of the outcome variable as well as with its
mass point at zero (Wooldridge 1997; Santos Silva and Tenreyro 2006). Table I3 estimates our benchmark
specifications using the QML-Poisson approach, with one important caveat. The likelihood function fails to
converge when we fully saturate the model with disease-by-science fixed effects, disease-by-year fixed effects,
and science-by-year fixed effects. We are able to achieve convergence and to generate QML estimates when
including disease-by-year fixed effects (columns 1 and 3), and when we combine disease-by-year and disease-
by-science fixed effects (columns 2 and 4). While these specifications are not strictly analogous to the most
saturated models presented in Tables 4 and 5, they remain very close to them in spirit. The magnitudes
obtained with the Poisson parametrization, and the elasticities they imply, are numerically similar to the
elasticities computed in Tables 4 and 5.

Next, we restrict our sample to different Institutes (ICs). In our paper, we refer to Institutes as representing
diseases or body systems. In practice, however, not all ICs are organized in this way. The National Institute
on Aging, for instance, does not focus on diseases in the same way as the National Cancer Institute. Other
Institutes are even more difficult to think of as representing a disease or body system; the National Human
Genome Research Institute (NHGRI) focuses on science areas rather than on disease areas. The fact that
ICs do not always correspond to diseases does not impact the validity of our instrument, which relies only
on the fact that ICs span study sections and vice versa.

It does, however, raise the concern that the IC by year fixed effects in our specifications may not, for some
grants, be capturing changes in the innovative or commercial potential of their actual disease areas. For
example, if the NHGRI funds research on cancer genetics, the IC by year FE associated with this grant will
control for time varying potential in genetics, but not in cancer more generally. In Table I4, we restrict
our sample to ICs that are more closely affiliated with disease and body system areas. Columns 1 and 2
reproduce our main results; Columns 3 and 4 exclude three science-focused ICs (general medicine, genome
research, and biomedical imagine), and Columns 5 and 6 keep only ICs clearly associated with a disease or
body system.
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Finally, we replicate our design using public-sector patents—rather than private-sector patents—as the out-
come variable. Public-sector patents are patents assigned to universities, non-profit foundations and research
institutes, government entities (including the intramural research campus of the NIH), and academic medical
centers. There are fewer such patents: only 47,461 can be linked “directly” through a publication they cite
to a DST, compared with 91,462 private-sector patents. Our analysis focuses on the private sector because
the meaning of citations to publications contained in patents is likely different for biopharmaceutical firms,
and corresponds more closely to the idea of a knowledge spillover. Life-science academics sometimes patent,
and yet other times found biopharmaceutical firms, typically with a license to a patent assigned to the
researcher’s academic employer. In other words, the same individuals might obtain NIH funding, publish
results from research made possible by this funding, and choose to apply for a patent whose claims will cover
these very same results. We might still be interested in assessing the magnitude of the patent-to-funding
elasticity in this case. Although the question of crowd-out arises in the case of public-sector patents as well,
it is probably capturing a different dynamic.

These objections notwithstanding, Table I5 replicates our benchmark results with public-sector patents as
the outcome. Though the coefficient estimates differ from those displayed in Table 6, the elasticities are
quite similar.
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Table I1: Benchmark Results with No Weights

First Stage

DST Funding 

(× $10 mln.)

OLS IV OLS IV

(1) (2) (3) (4) (5)

1.184
*** 2.155*** 2.367*** 3.404*** 2.667***

(0.218) (0.383) (0.578) (0.573) (0.564)

Elasticity 0.894 0.762 0.559 0.438

Cragg-Donald Wald F-stat 508

Kleibergen-Paap Wald F-stat 37.86

R
2 0.907 0.641 0.302 0.853 0.475

Observations 14,085 14,085 14,085 14,085 14,085

Year FEs Incl. Incl. Incl. Incl. Incl.

Disease × Science FEs Incl. Incl. Incl. Incl. Incl.

Disease × Year FEs Incl. Incl. Incl. Incl. Incl.

Science × Year Linear Trends Incl. Incl. Incl. Incl. Incl.

Application Controls Incl. Incl. Incl. Incl. Incl.

Note: See notes to Tables 4 and 5 for details about the sample. The outcome variables are fractional patent counts. The instrument is the

total amount of funding (2010 dollars) for the subset of grants funded by a DST whose rank of rank scores were marginal, i.e., were within

25 applications of the award cutoff for their specific disease area (Institute). Application controls include (i) FEs for the number of

applications that a DST receives; (ii) FEs for the number of applications associated with a DST that are also in a 50-grant window around

the relevant IC payline, as well as (iii) cubics in the average raw and rank scores of applications associated with a DST that are also in a 50-

grant window around the payline. Elasticities are evaluated at the sample means.

Standard errors in parentheses, clustered at the disease/science level (
*
p  < 0.10, 

**
p  < 0.05, 

***
p  < 0.01).

Mean=4.72; SD=12.56 Mean=9.25; SD=18.68

Windfall Funding (×$10 mln.) 

DST Funding 

(×$10 mln.) 

Mean=1.52; 

SD=2.91

Citation Linked Total Related
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Table I2: Log Patents-Log Funding Parametrization

(1) (2) (3) (4)

0.790***
0.874

***
0.899

***
0.899

***

(0.069) (0.059) (0.031) (0.030)

R2 0.937 0.837 0.954 0.909

Observations 8,880 8,880 13,013 13,013

Full OLS Controls Incl. Incl.

Full IV Controls Incl. Incl.

Standard errors in parentheses, clustered at the disease/science level (*p < 0.10, **p < 0.05, ***p  < 0.01).

Log(# Citation Linked Patents) Log(# Related Patents) 

Log(DST Funding)

Note: The dependent variable in Columns 1 and 2 is the log of citation-linked fractional patents, with zeros treated

as missing. There are 14,085-8,880=5,205 DSTs that do not produce research ever cited by a patent. Full OLS

controls are the controls used in the most saturated specification of Tables 4 and 5 (see notes to those tables). Full

IV controls are those used in Table 6. Log(#Related Patents) is the log of the number of fractional patents related

by our second outcome measure, using PMRA. There are 14,085-13,023=1,062 DSTs that do not produce resarch

that is related to a patent in our sample. 
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Table I3: Poisson Specification

(1) (2) (3) (4)

0.790***
0.874

***
0.899

***
0.899

***

(0.069) (0.059) (0.031) (0.030)

R2 0.937 0.837 0.954 0.909

Observations 8,880 8,880 13,013 13,013

Full OLS Controls Incl. Incl.

Full IV Controls Incl. Incl.

Standard errors in parentheses, clustered at the disease/science level (*p < 0.10, **p < 0.05, ***p  < 0.01).

Log(# Citation Linked Patents) Log(# Related Patents) 

Log(DST Funding)

Note: The dependent variable in Columns 1 and 2 is the log of citation-linked fractional patents, with zeros treated

as missing. There are 14,085-8,880=5,205 DSTs that do not produce research ever cited by a patent. Full OLS

controls are the controls used in the most saturated specification of Tables 4 and 5 (see notes to those tables). Full

IV controls are those used in Table 6. Log(#Related Patents) is the log of the number of fractional patents related

by our second outcome measure, using PMRA. There are 14,085-13,023=1,062 DSTs that do not produce resarch

that is related to a patent in our sample. 
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Table I5: Effect on Public-Sector Patenting

OLS IV OLS IV

(1) (2) (3) (4)

1.193*** 0.910** 1.376*** 0.761**

(0.259) (0.461) (0.275) (0.351)

Elasticity 0.771 0.588 0.560 0.310

R2 0.790 0.558 0.896 0.678

Observations 14,085 13,043 14,085 13,043

Year FEs Incl. Incl. Incl. Incl.

Disease × Science FEs Incl. Incl. Incl. Incl.

Disease × Year FEs Incl. Incl. Incl. Incl.

Science × Year Linear Trends Incl. Incl. Incl. Incl.

Application Controls Incl. Incl. Incl. Incl.

DST Funding ($10 mln.) 

Mean=4.06; SD=4.36

Note: See notes to Table 6 for details about the sample. The outcome variables are fractional patent counts. The

instrument is the total amount of funding (2010 dollars) for the subset of grants funded by a DST whose rank of rank

scores were marginal, i.e., were within 25 applications of the award cutoff for their specific disease area (Institute).

Application controls include (i) FEs for the number of applications that a DST receives; (ii) FEs for the number of

applications associated with a DST that are also in a 50-grant window around the relevant IC payline, as well as (iii)

cubics in the average raw and rank scores of applications associated with a DST that are also in a 50-grant window

around the payline. Public sector patents are defined as those assigned to government, non-profit foundations, academic,

or hospital entities. 

Citation Linked Total Related

Mean=6.75; SD=10.01 Mean=9.97; SD=11.05

Standard errors in parentheses, clustered at the disease/science level (*p  < 0.10, **p  < 0.05, ***p  < 0.01).
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Appendix J: “Core PMRA” Indirect Linking Strategy

Recall that our preferred outcome measure identifies all patents related to an NIH funding area, whether or
not these patents actually cite NIH-funded research. This allows us to account for a richer set of channels
through which NIH funding may impact private-sector patenting. “Related” patents may include patents
linked to NIH funding via a longer citation chain or patents by NIH-trained scientists who end up in the
private sector. Crucially, these related patents may also be the result of private sector investments in related
research areas; they need not be financially dependent on the NIH at all. Capturing the total number of
private sector patents in an intellectual area is important because it allows us to take into account the
possibility that NIH funding may crowd out private investments. If this were the case, then we would not
expect NIH funds to increase the total number of patents in a given research area: it would simply change
the funding source for those patents. The impact of NIH funding on total innovation in a research area
captures the net effect of potential crowd-in and crowd-out.

A potential drawback with this approach is that our definition of a DST’s “intellectual area” can vary over
time. If funding allows a disease/science area to expand the set of topics that it supports, then we may
associate increased funding with more patents simply because higher levels of grant expenditures leads us to
credit DSTs with patents over a wider slice of technological space.

To ensure that our results are not driven by this phenomenon, it is important that the breadth of the
space over which we attempt to link patents with grants in a DST is exogenous to the amount of funding
a DST receives. One way to ensure this is true is to verify that this space is stable over time, within each
disease/science (DS) area.

To do this, we categorize all MeSH keywords associated with a publication funded by a DS combination into
one of two types: “stable” MeSH keywords are ones that appear in publications funded by that DS across
all years in the observation window, whereas “peripheral” keywords appear only in a subset of years in the
data. We then restrict our set of related publications to those that match to a DS on core keywords only.
This fixes the boundaries of an intellectual area over time and therefore breaks any mechanical relationship
that might exist between funding and the number of indirectly linked patents.

Concretely, for each DS, across all years in the observation window, we list all the MeSH keywords tagging the
publications that directly acknowledge the grants in the DS. We then compute the frequency distribution of
keywords within each DS. To fix ideas, in the DS corresponding to the National Institute of General Medical
Sciences (NIGMS) and the Microbial Physiology II study section (MBC-2), the MeSH keyword DNA-Binding

proteins sits above the 80th percentile of the frequency distribution; E coli sits above the 95th percentile;
Structure-Activity Relationship sits above the 50th percentile; and Glucosephosphates lies below the
fifth percentile.

In the next step, we once again link each acknowledged article to the related articles identified by PMRA.
However, we can now track whether these related articles are themselves tagged by keywords that our
previous analysis has identified as “stable” within the DS—those keywords that are at the median or above
of the DS-specific MeSH keyword frequency distribution.xiii The last step is to identify the patents that cite
these indirectly linked articles, but we now restrict the citations to exist between patents and only the subset
of “stable” related articles.

We experimented with several alternative ways to characterize “stable” indirectly linked articles. We report
the results of specifications modeled after those used to generate the estimates in columns 4 and 5 of Table 6,
our benchmark set of results. We manipulate two characteristics of keywords to generate the four variations
of the strategy presented in the table below. First, for each article indexed by PubMed, some keywords are
designated as main keywords, in the sense that they pertain to the article’s central theme(s). We generate
the keyword frequency distributions using all keywords and only main keywords, separately.

xiiiIn unreported results, we also experimented with a top quartile threshold, with little change to the results.
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Second, MeSH keywords are arrayed in a hierarchical tree with 13 levels, with keywords for each article
potentially sitting at any of these levels. Eighty percent of keywords that occur in PubMed belong to the
third level of the hierarchy or below. For each keyword below the third level, we climb up the MeSH hierarchy
to the third level to find its third-level ancestor (in the case of keywords that belong to multiple branches in
the tree, we pick the ancestor at random). We recompute the keyword frequency distribution at this coarser,
but more homogeneous level. Combining these two characteristics (main vs. all keywords; any levels vs.
third level of the MeSH tree) provides us with four distinct keyword frequency distributions to identify the
set of stable, indirectly-linked articles. Each of these in turn correspond to a column in Table J1.

Two features of the results in this table deserve mention. First, the magnitudes of the coefficients are slightly
smaller than those observed in Table 6. This is to be expected, since our “stable” linking strategy shrinks
the number of opportunities to associate patents with DSTs. Second, the elasticities that correspond to the
estimates are comparable to those computed in Table 6. In fact, they are, if anything, a little larger.

In conclusion, the results corresponding to these alternative linking strategies bolster our claim that the
indirect linking strategy presented in the main body of the manuscript allows us to identify total private-
sector innovation in a DST in a way that is not mechanically related to the amount of funding this DST
receives.
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Table J1: Effect of NIH Investments on Total Related

Private-Sector Patenting, Stable Research Area Keywords Only

Level Adjusted Raw Level Adjusted Raw

Mean=14.8; 

SD=17.0

Mean=12.5; 

SD=14.9

Mean=23.1; 

SD=25.8

Mean=22.5; 

SD=25.2

(1) (2) (3) (4)

OLS

2.241***
2.018

***
3.371

***
3.305

***

(0.385) (0.352) (0.607) (0.593)

Elasticity 0.615 0.655 0.592 0.596

IV

2.333***
2.157

***
3.543

***
3.468

***

(0.411) (0.381) (0.643) (0.622)

Elasticity 0.640 0.701 0.623 0.626

Observations 14,085 14,085 14,085 14,085

Standard errors in parentheses, clustered at the disease/science level (*p < 0.10, **p < 0.05, ***p  < 0.01).

DST Funding (×$10 mln.) 

Mean=4.06; SD=4.36

DST Funding (×$10 mln.) 

Mean=4.06; SD=4.36

Main Keywords All Keywords

Note: The dependent variable is the number of fractional patents in the same area as a given DST, but using a more

restrictive definition of relatedness than in our benchmark specification. If a patent cites a publication that directly

acknowledges an NIH grant, but which does not contain any keywords that have commonly been used in that D-S, then

the linked patent is not counted under this approach. See Appendix J for more details regarding this matching method.

Columns 1 and 2 apply this method counting only keywords that are designated as main keywords; Columns 3 and 4 do

this for all keywords. Columns 1 and 3 match two different keywords if they share the same level 3 parent keyword in the

National Library of Medicine’s semantic keyword tree. Columns 2 and 4 do not.  
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