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We estimate the impacts of temperature on time allocation by ex-
ploiting plausibly exogenous variation in temperature over time

within counties. Temperature increases at the higher end of the dis-
tribution reduce hours worked in industries with high exposure to
climate and reduce time allocated to outdoor leisure for the non-
employed, with this time reallocated to indoor leisure. At the lower
end of the distribution, time allocated to labor is nonresponsive to
temperature increases, but outdoor leisure increases while indoor
leisure decreases as temperature warms. We also find suggestive evi-
dence of short-run adaptation to higher temperatures through tem-
poral substitutions and acclimatization.

I. Introduction

High temperatures cause discomfort, fatigue, and even cognitive im-
pairment depending on the composition of one’s activities and the degree to
which they are exposed to the elements.1 As a result, weather may play an

Contact the corresponding author, Matthew Neidell, at mn2191@columbia.edu.
Data are available as supplementary material online.
1 See Nielsen et al. ð1993Þ, Galloway andMaughan ð1997Þ, and Gonzalez-Alonso
et al. ð1999Þ for evidence on endurance and fatigue. See Epstein et al. ð1980Þ, Ramsey
ð1995Þ, Pilcher,Nadler, andBusch ð2002Þ, and Hancock, Ross, and Szalma ð2007Þ for
evidence on cognitive performance.
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important role in individuals’ decisions regarding the allocation of their
time. Higher temperatures can lead to changes in time allocated to work by

2 Graff Zivin/Neidell
altering the marginal productivity of labor ðor the marginal cost of sup-
plying laborÞ, especially in climate-exposed industries, such as agriculture,
construction, and manufacturing. Higher temperatures may also change
the marginal utility of leisure activities, altering the distribution of time al-
located to nonwork activities. Each of these responses will, in turn, gener-
ate indirect impacts through trade-offs between labor and leisure. Since
time is a limited but extremely valuable resource, the welfare implications
associated with these weather-induced reallocations of time are potentially
quite large.
This article is the first to estimate the impacts of daily temperature

shocks on the allocation of time to labor as well as leisure activities. The
analysis uses individual-level data from the 2003–6 American Time Use
Surveys ðATUSÞ linked to weather data from the National Climatic Data
Center. Our econometric models include year-month and county fixed
effects, which enables us to identify the effects of daily temperature using
the plausibly exogenous variation in temperature over timewithin counties
and within seasons. We flexibly model temperature by including a series of
indicator variables for 5-degree temperature bins, with the highest bin
for days over 100 degrees Fahrenheit ð˚FÞ. One of the tremendous ad-
vantages of using the ATUS is that we can exploit data from the 2006 heat
wave that produced high temperatures across much of the United States to
produce more reliable estimates of behavioral responses at the high end of
the temperature distribution.2 We also employ a variety of strategies to
examine compensatory behavior within and across days as well as by his-
torical climate.
Our results reveal a wide range of impacts. While we find suggestive

evidence of a moderate decline in aggregate time allocated to labor at high
temperatures, further analysis reveals considerable heterogeneity across in-
dustry sectors based on their exposure to climatic elements. At daily max-
imum temperatures above 85˚F, workers in industries with high exposure
to climate reduce daily time allocated to labor by as much as 1 hour. Almost
all of the decrease in time allocated to labor happens at the end of the day
when fatigue from prolonged exposure to heat has likely set in. We find
limited evidence consistent with adaptation to higher temperatures, recog-
nizing that demand factors may limit workers’ discretion in choosing labor
supply.
In terms of leisure activities, we generally find an inverted U-shaped re-

lationship with daily maximum temperature for outdoor leisure and a cor-

2 The 2006 heat wave covered most of the United States from mid-July through
early August. For example, beginning on July 17, every state except Alaska expe-

rienced a high temperature over 90˚F for 3 consecutive days based on our weather
data ðdescribed belowÞ.
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responding U-shaped relationship for indoor leisure. This relationship is
most pronounced for those not currently employed, as they have the most

Climate Change and the Allocation of Time 3
flexibility in their scheduling. Overall, these results suggest that protective
behavior in response to warmer temperatures may provide an important
channel for minimizing the potential health impacts of heat. Temporal sub-
stitutions as well as acclimatization also appear to mute the impacts of ex-
treme heat, although these findings are often not significant at conventional
levels, in part because of a limited sample size when the data are disaggre-
gated at the high end of the distribution.
While our analysis of responses to acute temperature changes cannot

fully reflect responses to the more gradual and systemic changes in temper-
ature predicted under climate change, our results may help to illuminate a
heretofore ignored potential channel through which global warming may
affect social welfare. It may also help to shed light on the microfoundations
for the macroeconomic literature that has focused on climate and economic
growth ðSachs and Warner 1997; Nordhaus 2006; Dell, Jones, and Olken
2012Þ.3 The absence of data suitable for identification at climatic scales
makes findings based on weather fluctuations an important, albeit imper-
fect, input for policy-making processes in the face of this uncertainty.4

II. Data

A. The American Time Use Survey

The American Time Use Survey ðATUSÞ is a nationally representative
cross-sectional survey available from 2003 to 2006 describing how and
where Americans spend their time. Respondents are individuals over age
15 randomly selected from households that have completed their final
month in the Current Population Survey ðCPSÞ. Each respondent com-
pletes a 24-hour time diary for a preassigned date, providing details of the
activity undertaken, the length of time engaged in the activity, and where
the activity took place. Each respondent is interviewed the day after the
diary date and is contacted for 8 consecutive weeks to obtain an interview.
For simplicity, we categorize time allocated throughout the day into

three broad activity categories: work, outdoor leisure, and indoor leisure.5

To measure time allocated to labor, we sum the total number of minutes

3 Our analysis also provides a potential test of the assumption embedded in most

of the Integrated Assessment Models that time allocated to labor is exogenous; these
models are used to simulate the economic impacts of climate change and play a
prominent role in the design of climate change policies.

4 Note that similar empirical strategies have been employed in other studies ex-
amining various aspects of climate change ðe.g., Schlenker, Hanemann, and Fisher
2005; Deschenes and Greenstone 2007, 2011Þ.

5 In our original specification, we also included sleep because it may be affected
through changes in the marginal utility of labor or leisure ðBiddle and Hamermesh
1990Þ, but since it proved insensitive to temperature, we focus on the allocation of

This content downloaded from 132.239.21.24 on Mon, 9 Dec 2013 14:53:27 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


in which the activity occurred at the respondent’s workplace, noting that
this could be driven by both demand and supply factors. Categorizing lei-

4 Graff Zivin/Neidell
sure is less straightforward. Despite information in the ATUS on where
the activity took place, there is no single comprehensive indicator of in-
door versus outdoor activities. For example, a potential response to where
an activity took place is “at the home or yard,” so we cannot isolate
whether individuals were inside or outside. As a result, we use several steps
to construct a measure of time spent outdoors, with all remaining activi-
ties coded as indoor activities. First, we code outdoor time if the respon-
dent reported the activity was “outdoors, away from home” or the respon-
dent was “traveling by foot or bicycle.” Second, we include activities that
do not fall into these categories but that, based on the activity code, were
unarguably performed outdoors. For example, if a respondent was “at the
home or yard” and conducted “exterior maintenance” or “lawn mainte-
nance,” we coded this as an outdoor activity.We classify activities that take
place in ambiguous locations, such as “socializing, relaxing, and leisure”
that occurred at home, as indoors, so our measurement of total time spent
outdoors understates actual outdoor time. Given this categorization, nearly
all outdoor activities are somewhat physically demanding, while indoor ac-
tivities are generally of lower intensity.6 While imperfect, this split is par-
ticularly attractive for our purposes, since the marginal utility of physically
active endeavors, especially those outdoors, is expected to be most respon-
sive to changes in temperature.
We define three groups of individuals based on climate exposure and

activity choices. Since one of the parameters of interest is the impact of
temperature on time allocated to labor, we distinguish between two types
of workers based on exposure to climate—those who are generally shel-
tered from climate ðlow-riskÞ and those who are not ðhigh-riskÞ. We separate
workers into these risk categories based on National Institute for Occu-
pational Safety and Health ðNIOSHÞ definitions of heat-exposed indus-
tries ðNIOSH 1986Þ and industry codes in the ATUS. These include in-
dustries where the work is primarily performed outdoors—agriculture,
forestry, fishing, and hunting; construction; mining; and transportation
and utilities—as well as manufacturing, where facilities are typically not
climate-controlled and the production process often generates considerable
heat. Individuals from all remaining industries are defined as low-risk. Given
potential ambiguities regarding the degree of heat exposure within the man-
ufacturing sector, we also perform sensitivity analyses by classifying these

time over waking hours. Furthermore, for nonwork activities, we do not distinguish
between home production and leisure, although for simplicity we refer to it as lei-
6 We can separately identify high-intensity indoor activities that took place at a
gym or sports club, but very few activities fell into this category: on average, in-
dividuals spend 0.9 minutes per day at a gym.

sure throughout.
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workers as low-risk, and we find that this makes little difference. The third
group consists of those currently unemployed or out of the labor force.

Climate Change and the Allocation of Time 5
This group includes retirees ð38%Þ, the unemployed ð12%Þ, and students
ð50%Þ. Those who are on a day off are considered employed, and their
work hours are recorded as zero for that day.
To obtain information on the residential location of the individual in

order to assign local environmental conditions, we link individuals to the
CPS to get their county or MSA ðMetropolitan Statistical AreaÞ of resi-
dence. County and MSA are only released for individuals from locations
with over 100,000 residents to maintain confidentiality, making geographic
identifiers available for three-quarters of the sample, though we examine
the external validity of this limitation below. Since our weather data are at
the county level, we assign individuals with only an MSA reported to the
county with the highest population in theMSA. Although spatial variation
in weather is unlikely to be substantial within MSAs, we also assessed the
sensitivity of this assumption by limiting analyses to individuals with exact
county identified, and we found that this had little impact on our estimates.

B. Weather

We obtain historical weather data from the National Climatic Data Cen-
ter ðNCDCÞ TD 3200/3210 “Surface Summary of the Day” file. This file
contains daily weather observations from roughly 8,000 weather stations
throughout the United States. The primary data elements we include are
daily maximum and minimum temperature, precipitation, snowfall, and rel-
ative humidity. Humidity is typically only available from select stations,
so we impute humidity from neighboring stations when missing.7 Exclud-
ing humidity entirely from our regression models had little impact on our
results. Furthermore, including county-season fixed effects, which con-
trol for average seasonal humidity within an area, also had little impact on
our results. The county of eachweather station is provided, andwe take the
mean of weather elements within the county if more than one station is
present in the county.8

C. Daylight

Daylight is positively correlated with temperature and is likely to in-
fluence time allocation, making it a potential confounder. To compute the
hours of daylight for every day in each county, we compute daily sunrise

7 Unfortunately this limits our ability to explore the joint impacts of heat and
humidity, which may also be relevant for affecting time allocation. It is also worth

noting that the heat index, which is a nonlinear combination of temperature and
humidity, is only valid for temperatures above 80˚F and humidity above 40%, so it
cannot be calculated for the entire temperature distribution.

8 If data from one weather station were missing, we computed means using data
from the remaining stations within the county.
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and sunset times based on astronomical algorithms ðMeuus 1991Þ using
the latitude and longitude of the county centroid ðobtained from the

6 Graff Zivin/Neidell
MABLE/Geocorr2K maintained by the Missouri Census Data CenterÞ,
adjusting for daylight savings time. The sunrise and sunset results have
been verified to be accurate to within a minute for locations between ±72˚
latitude. Since this is an algorithm, we are able to compute these data for
every single county and date in our sample.

D. Merged Data

We merge the ATUS and weather data by the county and date, leaving
us with a final sample of just over 40,000 individuals with valid weather
data. Table 1 presents summary statistics for our final sample. Time allo-
cated to work is just under 3 hours per day, but this includes individuals
who report zero hours of work because they are not employed or are in-
terviewed on a day off. Conditional on working, time allocated to labor is
7 hours a day overall, but it is closer to 8 hours a day for high-risk la-
borers.9 In terms of leisure activities, individuals spend just under three-
quarters of an hour a day in the defined outdoor activities, recalling that
we are likely to understate total outdoor time. Many individuals are iden-
tified as spending zero minutes outside; conditional on spending time out-
side, individuals allocate roughly 2 hours to outdoor leisure. Outdoor lei-
sure is highest for high-risk workers, but it is comparable across the two
other groups. Most of the day is spent in indoor activities—nearly 12 hours
a day—and nearly everyone spends at least 1 minute a day inside. The
nonemployed spend the most time indoors, followed by low-risk workers
and then high-risk workers. The remaining 7.5 hours per day is spent
sleeping ðnot shownÞ.10
Many demographic variables from the CPS are brought forward to the

ATUS, providing a large pool of potential covariates for our analysis, which
is also shown in table 1. Nearly all demographics are comparable across
groups, with one notable exception. The mean age of the nonemployed is
52, compared to 42 and 41 for high- and low-riskworkers, respectively. This
difference is not surprising given that 38% of the nonemployed in our sam-
ple are retired. Nonetheless this difference is important to keep in mind
when analyzing responses across groups because while the nonemployed
may have more flexibility in their scheduling, they may also be more sen-
sitive to extreme temperatures because of their age ðWagner et al. 1972Þ.
Figure 1 shows the distribution of maximum temperatures from 2003

to 2006 for those county-dates from which we have observations in our

9 We also present results from analyses below that explicitly account for the

excess zeros.

10 As previously mentioned, we did not find evidence of a relationship between
temperature and sleep.
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Table 1
Summary Statistics

All
ðN5 42,280Þ

High Risk
ðN 5 6,246Þ

Low Risk
ðN 5 21,151Þ

Non-
employed

ðN 5 14,883Þ
Mean SD Mean SD Mean SD Mean SD

Time allocation:
Labor:
Hours 2.69 3.99 4.33 4.5 4.02 4.26
Percent hours 5 0 .61 .49 .43 .5 .42 .49
Hours | hours > 0 6.94 3.41 7.66 3.2 6.92 3.34

Outdoor leisure:
Hours .73 1.61 .99 2.09 .65 1.48 .73 1.55
Percent hours 5 0 .6 .49 .6 .49 .61 .49 .58 .49
Hours | hours > 0 1.82 2.12 2.47 2.7 1.67 1.99 1.75 1.98

Indoor leisure hours 11.7 3.81 10.12 3.81 10.69 3.79 13.80 2.82
Covariates:
Maximum temperature

ð˚FÞ 67.48 19.04 67.01 18.92 67.31 19.18 67.91 18.88
Minimum temperature

ð˚FÞ 47.16 17.57 46.52 17.24 47.03 17.73 47.61 17.47
Precipitation ðinches/100Þ 11.17 30.23 11.09 28.95 10.83 29.5 11.70 31.77
Snowfall ðinches/10Þ .66 5.17 .69 4.88 .64 4.87 .67 5.66
Maximum relative

humidity 84.68 14.22 84.9 13.93 84.67 14.2 84.60 14.38
Age 45.29 17.25 42.32 11.47 41.34 13.39 52.16 21.50
Percent over age 65 .16 .37 .03 .16 .04 .20 .38 .49
Male .43 .5 .74 .44 .41 .49 .34 .47
No. children < age 18 .92 1.16 1.03 1.17 .98 1.13 .79 1.19
Annual earnings ð$1,000Þ 46.0 61.2 80.3 62.2 68.2 63.3 . . . . . .
Diary day a holiday .02 .13 .02 .14 .02 .13 .02 .13
Employed .65 .48 . . . . . . . . . . . . . . . . . .
Absent from work .03 .17 .04 .2 .04 .21 . . . . . .
Out of labor force .31 .46 . . . . . . . . . . . . .88 .33
Employed full-time .51 .5 .91 .29 .75 .43 . . . . . .
White non-Hispanic .68 .47 .69 .46 .7 .46 .66 .47
High school dropout .17 .38 .13 .34 .1 .3 .29 .45
High school graduate .25 .43 .33 .47 .2 .4 .29 .45
Some college .26 .44 .28 .45 .28 .45 .22 .42
Spouse/partner in

household .55 .5 .68 .47 .57 .49 .47 .50

NOTE.—All statistics are at the daily level. High risk is defined as those employed in agriculture, for-
estry, fishing, and hunting; mining; construction; manufacturing; and transportation and utilities indus-
tries. Low risk consists of remaining industries. Nonemployed is defined as unemployed or out of the la-
bor force.
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sample, along with the forecasted distribution for 2070–99 based on the
Hadley 3 climate forecast model under the business-as-usual emissions sce-

FIG. 1.—Historical and forecasted temperature ð˚FÞ distribution. This figure is
based on daily observations for each county included in the final ATUS sample for
the years indicated. The 2070–99 forecasted temperatures are based on the Hadley
3 climate model under the highest warming scenario ðA1Þ.

8 Graff Zivin/Neidell
nario ðA1Þ for the same counties in our final sample.11 The distribution is
predicted to shift almost uniformly to the right, suggesting that while sum-
mers may become unpleasantly hot, winters may become more pleasantly
temperate. At the high end of the distribution, it is worth noting that the
number of days that exceed 100˚F is expected to rise from roughly 1% of
days in the historic period tomore than 15%of days in the period 2070–99.
Since these days are concentrated in the summer months, it is expected that
greater than 50% of summer days will experience temperatures that ex-
ceed 100˚F. This dramatic shift underscores the importance of exploring
the tails of the distribution.12

E. Sample Representativeness

A potential concern with the ATUS is nonresponse—not all individuals
selected for the ATUS agree to participate, and this may bias our analysis.
While others have assessed the degree of nonresponse bias with respect
to sociodemographic factors ðAbraham, Maitland, and Bianchi 2006Þ, a
particularly relevant concern in this context is that temperature may affect

11 These forecasts were a major input into the Intergovernmental Panel on Cli-

mate Change’s third assessment report. Daily values were assigned to counties, as
described in Schlenker and Roberts ð2008Þ.

12 See Graff Zivin and Neidell ð2010Þ for a discussion of the impact of these
forecasted temperature increases on time allocation.
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whether an individual participates in the survey. Because the weather data
apply to the universe of observations, we can assess whether temperature

Climate Change and the Allocation of Time 9
is related to survey participation by plotting the distribution of temper-
ature for counties in our final sample for both the days time diaries are
available and the days time diaries are unavailable. Shown in appendix
figure A1, available in the online version of Journal of Labor Economics,
the distribution of temperature across the two groups is nearly identical,
suggesting that nonresponse bias due to temperature is likely to be min-
imal in our analysis.13

III. Econometric Model

A. Baseline Model

To examine the relationship between temperature and time allocation,
we estimate the following econometric model:

labori 5 f1ðtempcðiÞ;tðiÞÞ1 d1ZcðiÞ;tðiÞ 1 g1Xi 1 g1ðtðiÞÞ1 a1cðiÞ 1 ε1i;

outdoori 5 f2ðtempcðiÞ;tðiÞÞ1 d2ZcðiÞ;tðiÞ 1 g2Xi 1 g2ðtðiÞÞ1 a2cðiÞ 1 ε2i;

indoori 5 f3ðtempcðiÞ;tðiÞÞ1 d3ZcðiÞ;tðiÞ 1 g3Xi 1 g3ðtðiÞÞ1 a3cðiÞ 1 ε3i;

ð1Þ

where the variable labor is the amount of time allocated to labor market
activities for individual i, the variable outdoor is the amount of time al-
located to outdoor leisure activities, and the variable indoor is the amount
of time allocation to indoor leisure activities. We let tðiÞ represent the date
individual i is observed and cðiÞ represent the county individual in which
i resides.
We include fðtempÞ to allow for a nonlinear relationship between daily

maximum temperature and time allocation: increases in temperature may
lead to increases in outdoor leisure at colder temperatures, but beyond a
certain point they may lead to decreases ðGalloway and Maughan 1997Þ.
Our model includes separate indicator variables for every 5˚F temperature
increment ðas displayed in fig. 1Þ, which allows differential shifts in ac-
tivities for each temperature bin.14 We omit the 76˚F–80˚F indicator var-
iable, so we interpret our estimates as the change in minutes allocated to
that activity at a certain temperature range relative to 76˚F–80˚F. We focus

13 We note that our results may not generalize to less populated areas because

ð3Þ

ð2Þ
we only observe the county of residence for more populated areas.
14 Models with 2.5˚F-size bins for temperature yield strikingly similar results.

We also estimated models with higher-order polynomials in temperature. Our re-
sults were sensitive to the polynomial degree ðresults available upon requestÞ, thus
persuading us to use a more flexible approach.
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on maximum temperature, rather than daily average temperature, because
most individuals are indoors for a significant period of time for routine

10 Graff Zivin/Neidell
activities, such as sleeping, when minimum temperatures often occur.15

Maximum temperature is also likely to be highly correlated with other rel-
evant temperature measures throughout the day, so it is likely to be a rea-
sonable proxy for individual exposure.16

In terms of control variables,ZcðiÞ;tðiÞ are other county-level environmental
attributes potentially correlated with temperature ðdaylight, precipitation,
humidity, and minimum temperatureÞ.17 The Xi are individual-level covar-
iates meant to capture preferences for particular activities, listed in table 1.
The gðtðiÞÞ includes day-of-week dummy variables to account for differ-
ences in schedules throughout the week and year-month dummy variables
to control for seasonal and annual time trends in activity choice. The acðiÞ
are county fixed effects that capture all time-invariant observable and un-
observable attributes that affect time allocation decisions. Therefore, our
parameters of interest that relate temperature to time are identified from
daily variations in weather within a county.We demonstrate below that our
results are insensitive to numerous robustness checks, supporting the valid-
ity of our model.
We estimate equations ð1Þ–ð3Þ simultaneously as a generalized method

of moments system of equations in order to constrain the net effect from
a temperature change on total time to sum to zero ðWooldridge 2002;
StataCorp 2011Þ.18 This procedure also allows us to address autocorrela-
tion and spatial correlation in temperature by clustering standard errors at
the state-month level. We estimate these models for all individuals and
then separately for those employed in high-risk industries and those em-
ployed in low-risk industries. For those not currently employed, we esti-
mate equations ð1Þ–ð3Þ, modifying the constraints accordingly.

B. Exploring Adaptation

The above model allows for little adaptation to changes in temperature,
and hence at best it describes a partial picture of short-run behavioral

15 We also control for minimum temperature to allow for potential recovery

from higher temperatures, though excluding minimum temperature entirely had
minimal affect on our estimates.

16 In fact, when we used mean daily temperature in place of maximum, we found
comparable results. These results are reported in appendix table A2, available in
the online version of Journal of Labor Economics.

17 We control for precipitation with a series of indicator variables for no rain,
0–0.1 inches, 0.1–0.2 inches, . . . , 0.8–0.9 inches, and greater than 0.9 inches.

18 We include this constraint because sleep is not included, which prevents the
dependent variables from summing up to 24 hours for each individual. Given that
we found little evidence relating temperature to sleep, this restriction had minimal
affect on our estimates ðshown below in our robustness checksÞ.
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responses to temperature. On hot days, individuals may shift activities to
cooler moments within the day ðintraday substitutionÞ or postpone them

Climate Change and the Allocation of Time 11
until cooler days arrive ðinterday substitutionÞ. In addition to temporal
substitutions, individuals may acclimatize to new temperatures through
both physiological changes and behavioral changes by adopting various
technologies to cope with unpleasant temperatures.
We estimate several alternative models to explore the scope for adap-

tation, with the mean of the dependent variables for these alternative
models shown in table 2. To assess interday substitution, we include ðflex-
ibly modeledÞ lagged temperature in equations ð1Þ–ð3Þ in addition to con-
temporaneous temperature, and we also place a comparable constraint on
lagged temperatures that the net effect on total time sums to zero. Since
people may not be able to substitute across immediately adjacent days, we
specify lagged temperature as the maximum temperatures across the pre-
vious 6 days.19 If individuals substitute activities across days, then we expect
unpleasant lagged temperatures to increase the demand for current activ-
ities.
By aggregating responses within a day, any estimated effects are net of

intraday substitutions whereby individuals reschedule activities to more
pleasant times of the day. To assess intraday substitution, we split the de-
pendent variables in equations ð1Þ–ð3Þ into time spent during daylight ver-
sus twilight hours and estimate separate models for each. To define time
allocation during twilight, we include activities that began less than 2 hours
after sunrise or less than 2 hours before sunset, where sunrise and sunset
values vary over both space and time. Since we are interested in comparing
daylight versus twilight responses and the mean level of each variable differs
ðas shown in table 2Þ, we present these results as the percentage change in
time allocation by dividing the change in minutes by the mean of the de-
pendent variable. If unpleasantlywarmdays are cooler during the evening or
the morning, then we expect smaller responses to temperatures during
twilight hours as compared to daylight hours.
Physiological acclimatization can occur in short periods of time—up to

2 weeks in healthy individuals under controlled training regimens—but
longer for unhealthy individuals or those experiencing passive exposure
ðWagner et al. 1972Þ.20 We assess the impacts of short-run acclimatization
by estimating separate temperature responses for June and August. Since
hot days are a relatively new phenomenon in June but quite common by

19 Consistent with this, we found more moderate evidence of interday substi-

tution using 1-day lag only. We also estimated the impact of future temperatures
to assess whether individuals anticipate changes in temperature, and we obtained
estimates consistent with anticipatory behavior but statistically insignificant.

20 Physiological acclimatization arises through numerous channels, including
changes in skin blood flow, metabolic rate, oxygen consumption, and core tem-
peratures ðArmstrong and Maresh 1991Þ.

This content downloaded from 132.239.21.24 on Mon, 9 Dec 2013 14:53:27 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


August, a diminished response to high temperatures in August should be
viewed as evidence of acclimatization.21 Since this test greatly reduces our

Table 2
Various Labor and Outdoor Leisure Measures

All High Risk Low Risk Nonemployed

Intraday substitution:
Labor, twilight 1.31 2.25 1.92
Labor, daylight 1.38 2.08 2.10
Outdoor leisure, twilight .24 .36 .22 .23
Outdoor leisure, daylight .48 .63 .43 .51
Number of observations 42,280 6,246 21,151 14,883

By historical July–August temperature:
Labor, warm 2.68 4.49 4.14 .08
Outdoor leisure, warm .71 .98 .61 .74
Labor, cold 2.72 4.20 4.01 .10
Outdoor leisure, cold .76 1.02 .69 .74
Number of observations 15,058 2,364 7,592 5,102

By month:
Labor, June 2.69 4.58 3.94 .13
Outdoor leisure, June 1.00 1.24 .91 1.03
Labor, August 2.75 4.25 4.16 .08
Outdoor leisure, August .94 1.19 .86 .98
Number of observations 3,527 477 1,822 1,228

NOTE.—All numbers represent the mean value of each variable for each group. Daylight is defined as
the time from 2 hours after sunrise until 2 hours before sunset. Twilight is defined as before 2 hours after
sunrise or after 2 hours before sunset. Warm ðcoolÞ is defined as counties in the top ðbottomÞ third of the
1980–89 July–August temperature distribution.
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sample size and power to detect differential effects, we modify the mini-
mum temperature bin to under 65˚F, a reasonably innocuous change given
the months of our focus.
By including county fixed effects, the econometric model identifies

short-run behavioral responses to temperature. Although most physio-
logical acclimatization occurs within a short period of time, behavioral
acclimatization may require more time to take effect. To assess longer-run
adjustments, we explore the affects of temperature separately for histori-
cally warmer and cooler areas. In particular, we compare the response
function for people who live in places with the warmest third of average
July-August temperatures during the 1980s to those that live in the coldest
third.22 The presumption is that those who live in hotter climates have had

21 We do not want to conduct this test by comparing the impact of temperature

across seasons for at least two reasons. First, this only identifies impacts where there
is sufficient temperature overlap across seasons, making it unlikely to identify the
impact from very hot weather. Second, marginal utility from pleasant weather may
diminish at different rates depending on how often such weather is experienced.

22 The colder places predominantly consist of counties in the Northeast and
upper Midwest; warmer places in the Southeast and Southwest; and omitted places
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longer periods of time to adapt to warmer conditions, through more com-
plete physiological adaptation as well as investments in technologies that

Climate Change and the Allocation of Time 13
make it easier to cope with high temperatures. If people adapt to changes
in climate, people in cooler places would show comparable adaptations
as they become warmer, suggesting that the short-run response curve of
colder places will eventually become like the short-run response curve of
hotter places.

IV. Results

A. Baseline Results

We begin with a focus on the impacts of temperature on time allocation
for all individuals and then focus on the impacts for the groups defined in
table 1.23 In figure 2, we find some evidence of a downward trend in time
allocated to labor from higher temperatures, shown in the first panel. The
estimates, however, are not large in magnitude—the response at daily max-
imum temperature 1001˚F is 19 minutes—and are not statistically signifi-
cant at conventional levels. This suggests that, consistent with recent find-
ings ðConnolly 2008Þ, time allocated to labor on net is not responsive to
changes in temperature.
Turning to leisure time, we find an asymmetric relationship between

daily maximum temperature and outdoor leisure. Time outside at 25˚F is
37 minutes less than at 76˚F–80˚F, and it steadily climbs until 76˚F–80˚F.
It remains fairly stable until 100˚F and falls after that, though the impact
at the highest temperature bin is not statistically significant. While this pat-
tern is consistent with physiological evidence suggesting fatigue from ex-
posure at temperature extremes ðGalloway and Maughan 1997Þ, the lack of
significance at high temperatures and the high inflection point suggests ex-
ternal factors may play an important role in individual responses.
Indoor leisure shows a highly asymmetric U-shaped pattern. Indoor lei-

sure increases by roughly 30 minutes at 25˚F compared to 76˚F–80˚F, and
it then steadily decreases until 76˚F–80˚F. It remains stable until roughly
95˚F and then increases considerably after that. At daily maximum tem-
peratures over 100˚F, indoor leisure increases by 27 minutes relative to
76˚F–80˚F, with this estimate statistically significant at conventional levels.
The analysis in figure 2, however, masks potentially important hetero-

geneity due to differential occupational exposure to temperature. In fig-
ure 3, we focus on time allocations for individuals employed in industries

in the mid-Atlantic, mountain states, and lower Midwest. California was almost
23 We present all results graphically, but we also provide coefficient estimates
for figs. 2–5 in appendix table A1, available in the online version of Journal of
Labor Economics.

evenly split among the three categories. We also perform this analysis for those in
the warmest/coldest quartile or quintile, and we found comparable results.
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with a high risk of climate exposure. For time allocated to labor, we con-
tinue to find little response to temperatures below 80˚F but monotonic

FIG. 2.—Relationship between temperature and time allocation for all indi-
viduals. N 5 42,280 in all regressions. The 95% confidence interval is shaded in
gray. Each figure displays the estimated impact of temperature on time allocation
based on equations ð1Þ–ð3Þ in the text. Covariates include age, gender, number of
children, earnings, employment status, race, education, marital status, family in-
come, day-of-week dummies, minimum temperature, precipitation, humidity, sun-
rise, sunset, year-month dummies, and county fixed effects.
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declines in time allocated to labor above 85˚F. At daily maximum temper-
atures over 100˚F, time allocated to labor drops by a statistically signifi-
cant 59 minutes as compared to 76˚F–80˚F. Thus, as hypothesized, the mar-
ginal productivity of labor for these workers appears to be significantly
affected by temperatures at the high end of the temperature spectrum.
In terms of leisure activities, the results are comparable to the patterns

found for all workers, with a slightly higher increase in indoor leisure to
accommodate the decrease in time allocated to labor at higher tempera-
tures. At high temperatures, workers appear to substitute their time allo-
cated to labor for indoor leisure, with surprisingly no decline in outdoor
leisure. This suggests that, while the marginal utility from outdoor leisure
may be declining, the marginal utility of indoor leisure is decreasing at a
faster rate over this temperature range.
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In figure 4, we focus on time allocations for those in low-risk industries.
For time allocated to labor, we again see little response to colder temper-

FIG. 3.—Relationship between temperature and time allocation for high-risk
industries. See the legend of figure 2 for the estimating equations and the list of co-
variates included.N5 6,246 in all regressions. The 95% confidence interval is shaded
in gray. High-risk industry is defined as agriculture, forestry, fishing, and hunting;
mining; construction; manufacturing; and transportation and utilities industries.
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ature. While we see a decrease in time allocated to labor at daily maximum
temperatures above 95˚F, this effect is modest and not statistically signifi-
cant. The high fraction of workers in these industries explains why we see
no net effect on time allocated to labor from higher temperatures. In terms
of leisure activities, we see comparable responses as above for colder tem-
peratures but more muted responses at hotter temperatures, which is con-
sistent with the smaller labor response for this group.
In figure 5, we present results for those not employed. Consistent with

expectations, we find outdoor and indoor leisure more responsive to tem-
perature changes, particularly at hotter temperatures. Outdoor leisure be-
gins decreasing at lower temperatures when compared to employed in-
dividuals, with declines beginning around 90˚F. Furthermore, the impacts
at higher temperatures are larger and statistically significant. Daily maxi-
mum temperatures over 100˚F lead to a statistically significant decrease in
outdoor leisure of 22 minutes compared to 76˚F–80˚F. Consistent with
Deschênes and Greenstone ð2011Þ, such responses at high temperatures are
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supportive of short-run adaptation whereby individuals protect themselves
from the heat by spending more time inside, which may lessen the health

FIG. 4.—See the legend of figure 2 for the estimating equations and the list of
covariates included. N 5 21,151 in all regressions. 95% confidence interval shaded
in gray. Low-risk industry is defined as remaining industries not listed in figure 3.
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impacts fromhigher temperatures ðAlberini,Mastrangelo, and Pitcher 2008Þ.
B. Robustness Checks

In figure 6, we display results from models that assess the sensitivity of
our results to several specification checks, though our results are robust to
additional checks not shown. We focus solely on time allocated to labor
for high-risk workers and outdoor leisure for the nonemployed because
this is where we find the largest and most significant effects, though results
are similar for the other activities and groups shown in figures 2–5. We
include in this figure the confidence intervals from our baseline results to
facilitate interpretation.
Since those employed in the manufacturing industry may in fact work

in low-risk industries if the manufacturing plant is climate-controlled, we
may have erroneously classified exposure risk for some workers. Our first
robustness check shifts individuals from the manufacturing industry into
low risk.24 Despite the nearly 50% decrease in sample size in the high-risk

24 This test is irrelevant for the nonemployed group.
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group, our estimates are largely unaffected by this change. If anything, we
find a slightly larger reduction in time allocated to labor at higher temper-

FIG. 5.—Relationship between temperature and time allocation for the nonem-
ployed. See the legend of figure 2 for the estimating equations and the list of co-
variates included.N5 14,883 in all regressions. The 95% confidence interval based
on standard errors clustered on state-month is shaded in gray. Nonemployed is
defined as unemployed or out of labor force.
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atures, which is consistent with this misclassification, though the difference
is minimal.
In the next twochecks,we assess potential omitted-variable bias. First,we

exclude all individual-level covariates to assess whether county fixed effects
capture sorting into locations based on temperature. Second, we include
county-season fixed effects, which allows for seasonal factors specific to
each county, such as differences in seasonal activities and humidity ðto the
extent it is not captured in our imputed humidity variableÞ.25 Figure 6
confirms that these modifications have minimal impact on our estimates,
suggesting that confounding is unlikely to be a major concern.26

25 We define seasons as the 3-month periods fromDecember–February, March–
June, July–August, and September–November. As an additional approach for con-

trolling for area-time specific shocks, we also ran specifications with state-months
fixed effects, and this too had little affect on our estimates.

26 When we include county-season fixed effects, although the estimates for work
in high-risk industries are not statistically different from using county fixed effects,
according to a Hausman test, the estimates at the highest temperature bins are no
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As previously mentioned, we have a large mass of observations at zero.
Since these zeros represent corner solutions rather than a negative latent

FIG. 6.—Robustness checks. See the legend of figure 2 for the estimating equa-
tions and the list of covariates included. The 95% confidence interval for baseline
estimates is shaded in gray. “1/2 manufacturing” moves those employed in the
manufacturing industry from high to low risk; “w/o ind. cov.” excludes all individual
level covariates; “county-season FE” includes a county-seasonfixed effect; “two-part
model” presents marginal effects from models that separately estimate the exten-
sive and intensive margins to account for excess zeros and does not constrain coef-
ficients across activities to sum to zero.
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value, linear models should produce consistent estimates of the partial
effects of interest near its mean value. We further probe this by estimating
two-part models, which formally accommodate the mass at zero when it
represents a corner solution by separately modeling the extensive and
intensive margins.27 In estimating this model, we also relax the constraint
that the coefficients across activities sum to zero, so it also tests this re-
striction.28 Shown in figure 6, the results from the two-part model are

longer statistically significant. Given the loss in precision and theminimal change in
27 More specifically, based on laws of probability, EðyjxÞ5 Pðy > 0jxÞ � Eðyjy
> 0; xÞ. We estimate Pðy > 0jxÞ using a probit model and Eðyjy > 0; xÞ by OLS, and
we compute marginal effects by taking the derivative of Pðy > 0jxÞ � Eðyjy > 0; xÞ

point estimates, we use the more efficient county fixed effects as our baseline spec-
ification.

28 In addition to two-part models, we also estimated Tobit fixed effect models
by brute force and semi-parametric censored regression models with fixed effects
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quite comparable to the linear estimates. Taken together, the results from
figure 6 document a robust relationship between temperature and time

Climate Change and the Allocation of Time 19
allocation.

C. Adaptation

Our static, short-run model may conceal important responses that
minimize the impact of temperature shocks. In this section, we probe
potential behavioral substitutions and acclimatization as described in the
econometric section. As with the robustness checks, we focus solely on
time allocated to labor for high-risk workers and outdoor leisure for the
nonemployed because this is where we find the largest effects and hence
have the largest scope for adaptation. It is important to keep in mind that
some of these tests rely on considerably smaller sample sizes, particularly
at the upper tail of the distribution, and thus they are underpowered to
produce statistical significance at conventional levels. Given the impor-
tance of this topic and the inherently limited data availability under cur-
rent climatic conditions, these results should be viewed as suggestive of
the types of adaptation we may see in the future.
We begin by exploring the interday effects of temperature whereby

individuals may compensate for unpleasant weather by shifting their ac-
tivities across days, suggesting that the estimates we have shown thus far
may overstate the impacts from warmer temperatures. In figure 7, we
present estimates from regressions that include the same indicator vari-
ables for lagged temperature ðrecalling that lagged temperature is defined
as the maximum temperature over the previous 6 daysÞ as well as in-
dicators for current temperature. Given that we find a decrease in time
allocated to labor for high-risk workers, if interday substitution exists, we
expect to see an increase in time allocated to labor from high lagged tem-
peratures. This does not appear to be the case, suggesting little or no role
for interday substitution in the workplace. In contrast, outdoor leisure for
the nonemployed appears responsive to rescheduling. The two highest
temperature bins for lagged temperature are positive, with the estimate of
an increase of 15 minutes at 1001˚F ðcompared to 76˚F–80˚FÞ statistically
significant at the 10% level.
In figure 8, we present results exploring the potential for intraday

substitution by estimating whether individuals shift the timing of activi-
ties within the day. For time allocated to labor, we find that hours worked
during daylight is largely unaffected by warmer temperatures. However,
hours worked during twilight is highly responsive to warmer tempera-
tures, and hence this appears to be the driving force behind the labor
response found in our base analyses. Furthermore, the difference in re-
sponses for temperatures above 85˚F is statistically significant at con-

ðHonoré 1992Þ, and we found quite comparable results for the marginal effect of

temperature on observed time allocation.
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ventional levels.29 If we separate twilight time into the beginning versus
end of the day ðnot shownÞ, we also find that nearly all of the decrease

FIG. 7.—Interday substitution. See the legend of figure 2 for the estimating equa-
tions and the list of covariates included. Estimates include indicator variables for
both contemporaneous temperature and lagged temperature, where lagged tem-
perature is defined as the maximum of the 6 previous days’ temperature. The 95%
confidence interval for lagged estimates is shaded in gray.

20 Graff Zivin/Neidell
during twilight hours comes from the end of the day. This pattern is
consistent with the idea that workers have little discretion over labor
supply during core business hours but as fatigue sets in from accumulated
exposure to higher temperatures and marginal productivity declines, time
allocated to labor becomes responsive.
Turning to outdoor leisure for the nonemployed, we find patterns

consistent with individuals shifting activities to more favorable times of
the day, though the differences are not statistically significant. For ex-
ample, we find the turning point for twilight activities occurs at higher
temperatures. Furthermore, the drop-off from daily maximum tempera-
tures above 100˚F is smaller during twilight hours, representing a 26%
decrease as opposed to a 58% decrease during daylight hours ðcompared
to 76˚F–80˚FÞ.

29 It is also worth noting that, consistent with the notion that these effects are
being driven by exposure to high temperature, we find no such twilight effect for

those employed in low-risk industries.
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As a test of short-run acclimatization, we explore whether individuals
are less sensitive to warmer temperatures as they become more common

FIG. 8.—Intraday substitution. See the legend of figure 2 for the estimating equa-
tions and the list of covariates included. Daylight is defined as the time from 2 hours
after sunrise until 2 hours before sunset. Twilight is defined as before 2 hours after
sunrise or after 2 hours before sunset.
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by estimating the impact of temperatures separately in June versus August.
As shown in figure 9, while our estimate for the highest temperature bin is
consistent with acclimatization for labor, the overall pattern is less well be-
haved. For outdoor leisure, we find a pattern highly consistent with short-
run acclimatization. Responses in August compared to June are smaller at
high temperatures but larger at unseasonably cold temperatures. Given
the dramatic drop in sample size, it is unsurprising that these differences
are not statistically significant. The differences at high temperatures, how-
ever, are large in magnitude. For example, at days with a maximum tem-
perature over 100˚F, the nonemployed spend 30 more minutes outside in
August than in June.
Our final test for adaptation allows for heterogeneous responses to

temperature based on historical climates by grouping counties into those
in the highest third of historical July–August temperatures and the cold-
est third. As shown in figure 10, although we continue to see declines in
both time allocated to labor and outdoor leisure at high temperatures in
the historically warmer places, the response to high temperatures, partic-
ularly for outdoor leisure, is noticeably smaller than the response in colder
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places. Here again the difference in estimates is not statistically significant
but the point estimates are quite large.

FIG. 9.—Short-run acclimatization. See the legend of figure 2 for the estimating
equations and the list of covariates included. Results from this figure are based on
regressions stratified by month. N 5 483 for June estimates and N 5 477 for
August estimates for high risk. N 5 1,173 for June estimates and N 5 1,228 for
August estimates for the nonemployed.
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V. Conclusion

In this article, we examine the impacts of temperature on individual’s al-
location of time within the United States. We find large reductions in time
allocated to labor in climate-exposed industries as daily maximum tem-
peratures increase beyond 85˚F, most of which is reallocated to indoor lei-
sure. Thus, at high temperatures, the marginal productivity of labor in these
sectors appears to fall. The near omnipresence of air conditioning in the
United States ensures that labor is reallocated to indoor activities since the
marginal utility from outdoor leisure is presumed to also fall at temperature
extremes.30 For outdoor leisure activities, we generally find an inverted U-
shaped relationship with temperature, which is most pronounced for those
not currently employed. The absence of any labor-market impacts for

30 According to the 2001 American Housing Survey, 79.5% of all households

had some form of air conditioning, with the rate of ownership much higher in
warmer regions.
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climate-insulated industries underscores the importance of exposure and
thus of climate control technologies.

FIG. 10.—Medium-run acclimatization. See the legend of figure 2 for the estimat-
ing equations and the list of covariates included. Results from this figure are based
on regressions stratified by historical climate. Warm ðcoolÞ is defined as counties
in the top ðbottomÞ third of the 1980–89 July–August temperature distribution.
N 5 2,066 ð2,364Þ for warm ðcoolÞ July–August in high-risk industries. N 5 5,365
ð5,102Þ for warm ðcoolÞ July–August for the nonemployed.
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While our evidence from temperature shocks cannot adequately char-
acterize the behavioral responses that could arise under the more gradual
and systemic temperature changes expected under climate change, as the
only estimates available they provide a unique opportunity to explore the
potential implications of a warmer climate on time allocation decisions. If
responses to high-frequency variation in temperature are indicative of the
sorts of responses we may see under low-frequency variation, our results
imply that climate change could lead to a substantial transfer of income
from mostly blue-collar sectors of the economy to more white-collar sec-
tors. Moreover, the restructuring of leisure time could have substantial
welfare implications; summer reductions in outdoor time would represent
a direct utility loss while winter increases could bring gains, both of which
could also affect population health through changes in physical activity.
Of course all societies make fixed cost investments in technologies—

both physical and social—that balance climatic expectations and adapt-
ability to short-run deviations in weather. As these investments evolve,
the scope for both short- and long-run responses to temperature extremes
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will likely differ from those found here. As such, all inference with regard
to climate change should be undertaken with extreme care. Nonetheless,

24 Graff Zivin/Neidell
our results underscore the important role played by environmental fac-
tors in shaping labor markets,31 as well as the demand for leisure. This rep-
resents a fruitful area for future research.
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