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Abstract: This paper examines the impact of fetal exposure to air pollution on fourth-
grade test scores in Santiago, Chile. We rely on comparisons across siblings which ad-
dress concerns about locational sorting (for nonmovers) and all other time-invariant fam-
ily characteristics that can lead to endogenous exposure to poor environmental quality.
We also exploit data on air quality alerts to help address concerns related to short-run
time-varying avoidance behavior, which has been shown to be important in a number
of other contexts. We find a strong negative effect from fetal exposure to carbon mon-
oxide (CO) and correlated pollutants (like PM10) on math and language skills mea-
sured in fourth grade. These effects are economically significant, and our back-of-the-
envelope calculations suggest that the 50% reduction in CO in Santiago between 1990
and 2005 increased lifetime earnings by approximately US$100 million per birth cohort.
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A LONG LITERATURE in economics has emphasized the important role of human
capital in determining labor market activity and economic growth.1 It is widely be-
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1. See Heckman, Lochner, and Todd (2006) for a review on the links between human cap-
ital and wages; Romer (1986) and Lucas (1988) form some of the important work showing the
importance of human capital for economic growth.
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lieved that information technology has increased the private and social returns to ed-
ucation, which may partly explain why governments around the world spend an aver-
age of 5% of their GDP on education (World Development Indicators 2010) and why
Americans alone spend more than $7 billion on private tutoring every year (Dizik
2013). Yet human capital formation depends on many inputs, and growing literatures
in public health and economics highlight the important role played by prenatal and
early childhood health in this process (Currie and Hyson 1999; Cunha and Heckman
2008; Almond and Currie 2011). Pollution has been known to have adverse effects on
contemporaneous childhood health,2 which raises the question of whether early-life
pollution exposure affects long-term human capital outcomes. If so, pollution could
have a sizable cost to society through its contemporaneous and dynamic effects on
the production of human capital. Such effects may constitute a sizable, and heretofore
largely unmeasured, cost of pollution.

Estimating the relationship between fetal environmental exposures and human
capital outcomes later in life is challenging for two reasons. First, data sets that link
environmental and human capital measures over an extended period of time are quite
rare. Second, exposure to pollution levels is typically endogenous. Families can engage
in both short- and long-run avoidance behaviors to reduce exposure: for example, cur-
tailing outdoor activities or moving to a more pristine location. As a result research in
this area has been extremely limited,3 relying on quasi-experimental variation in expo-
sure induced by nuclear accidents/testing in data-rich Scandinavian countries (Al-
mond, Edlund, and Palme 2009; Black et al. 2013) or policy-induced variation in pol-
lution coupled with strong assumptions about individual mobility (Sanders 2012).

In this paper, we employ a unique panel data set from Santiago, Chile, to examine
how fetal exposure to carbon monoxide (and correlated pollutants like PM10 and
PM2.5) affects children’s performance on high-stakes national tests in primary school.4

The richness of our data allows us to overcome the core estimation challenges in this
line of research and improve upon the existing literature in several important dimen-
sions. First, we can directly link vital statistics and education data through unique in-
2. For recent examples, see Currie and Walker (2011), Knittel, Miller, and Sanders (2011),
Arceo-Gomez, Hanna, and Oliva (2012), Currie, Graff Zivin, Meckel, et al. (2013), Currie,
Graff Zivin, Mullins, and Neidell (2013), Schlenker and Walker (2015).

3. A notable exception is the literature focused on exposure to lead, a neurotoxin with well-
documented impacts on brain development even at modest concentration levels (Sanders et al.
2009). Long-term consequences include negative impacts on schooling outcomes, criminal be-
havior, and economic productivity (Rogan and Ware 2003; Reyes 2007; Nilsson 2009; Rau,
Reyes, and Urzúa 2013).

4. Outcomes in primary school are important to consider as they predict future outcomes
like dropping out of high school (Ensminger and Slusarcick 1992; Garnier, Stein, and Jacobs
1997). Research shows that parents are willing to pay more in local school taxes for modest in-
creases in test performance in elementary school (Black 1999).
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dividual identifiers. Geographic identifiers allow us to further link to data from pollu-
tion monitors operated by the Chilean Ministry of Environment. Moreover our study
period, which includes the universe of births between 1992 and 2001, corresponds to a
period when sustained economic growth and new environmental policy allowed San-
tiago to transition from high levels of pollution to more modest ones.

Second, we exploit a multipronged approach to address the endogeneity of pollu-
tion exposure. In particular, we rely on sibling comparisons which allow us to address
concerns about locational sorting (insofar as households do not endogenously move
between sibling births) and purge estimates of all other time-invariant family charac-
teristics, including those that might spuriously influence our core relationship of inter-
est in ways that would otherwise be unobservable to the econometrician. As we will
detail below, using sibling fixed effects (FE) yields results that are quite a bit larger
than ordinary least squares (OLS) estimates, suggesting an important role for family-
level characteristics.5 We also exploit data on air quality alerts to address short-run
time-varying avoidance behavior, which has proved to be important in a number of
other contexts (Graff Zivin and Neidell 2009; Neidell 2009; Graff Zivin, Neidell,
and Schlenker 2011; Deschenes, Greenstone, and Shapiro 2012).

Finally, our paper may shed light on the micro-foundations underpinning the re-
cently documented relationship between early-life pollution exposure and labor mar-
ket outcomes (Isen, Rossin-Slater, andWalker 2014). It may also help underscore the
implicit trade-offs across economic development paths by highlighting potential feed-
back loops between industrialization, human capital formation, and economic growth.
The evidence presented in this paper is also of direct policy relevance. Drawing on pre-
vious work linking academic achievement and labor productivity, we develop a quan-
titative estimate of the social costs of pollution through its effects on human capital
production and highlight the sizable benefits accrued from pollution abatement poli-
cies implemented during the last two decades. Carbon monoxide is regularly emitted
as a by-product of fossil fuel combustion and subject to regulation across the world.6

The human capital impacts from pollution along with any attending avoidance behav-
iors constitute additional costs that should be weighed against the relevant benefits
from the generation of air pollution.
5. Note that Almond, Edlund, and Palme (2009) also use a sibling FE framework. Since
endogenous exposure to fallout from the Chernobyl accident in their setting is a minimal con-
cern, while exposure was made quite salient to individuals ex post, they interpret their findings
as shedding light on parental investments rather than sorting.

6. It is worth mentioning that an important caveat here is that while we estimate the impacts
of carbon monoxide exposure, CO is emitted along with other pollutants and we are unable to
separately identify the impacts of CO versus PM10 versus PM2.5, etc. Later in the paper we
show estimates for these other correlated pollutants as well as a composite index of pollutants
(AQI).
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The remainder of the paper is organized as follows. The next section provides a
brief description of the relevant scientific background. Section 2 describes our data,
and section 3 details our econometric approach. Our results are described in section 4.
Section 5 offers some concluding remarks.

1. SCIENTIFIC BACKGROUND

Carbon monoxide is an odorless and colorless gas that is largely emitted through mo-
tor vehicle exhaust (EPA 2008). CO binds to the iron in hemoglobin, inhibiting the
body’s ability to deliver oxygen to vital organs and tissues. The detrimental effects of
CO exposure are magnified in utero. First, the reduced oxygen available to pregnant
women means less oxygen is delivered to the fetus. Second, carbon monoxide can di-
rectly cross the placenta where it more readily binds to fetal hemoglobin (Margulies
1986) and remains in the fetal system for an extended period of time (Van Housen
et al. 1989). Third, the immature fetal cardiovascular and respiratory systems are par-
ticularly sensitive to diminished oxygen levels. Exposure to carbon monoxide in utero
and in early childhood has been linked with lower pulmonary function (Plopper and
Fanucchi 2000; Neidell 2004; Mortimer et al. 2008). Moreover, most of the damaging
effects of smoking on infant health are believed to be due to the CO contained in cig-
arette smoke (World Health Organization 2000).

Animal studies have shown that CO can disrupt critical processes in the developing
brain. The limited evidence suggests that the first and third trimesters of pregnancy
may be particularly important. During the first trimester, exposure to CO can impair
the migration of neuroblasts during neurogenesis and thus impede brain development
(Woody and Brewster 1990). Exposure to CO during the third trimester can block
important receptors that regulate neuronal cell death, leading to neurodegeneration in
the developing rat brain (Ikonomidou et al. 1999). Most directly relevant for our study,
a recent epidemiological study of human exposure to wood smoke, of whichCO is amajor
constituent component, found that third-trimester exposure led to long-term deficits in
neuropsychological performance (Dix-Cooper et al. 2012). Whether exposure to out-
door CO pollution translates into cognitive impairment in humans is largely unknown
and the focus of this study.

A common challenge for all nonlaboratory studies of the impacts of air pollution is
confounding due to other pollutants. Some pollutants are co-emitted as a by-product
of combustion processes. Others follow opposing seasonal patterns due to heating and
cooling patterns and weather more generally. During our study period, Santiago reg-
ularly experienced episodes where carbon monoxide, particulate matter (PM), and ozone
pollution levels were elevated. While neither PM nor ozone cross the placental barrier,
it is still possible that they could damage fetal health through respiratory and cardio-
vascular impacts on the mother. A recent study that found CO to be the only pollut-
ant to consistently impair infant and child health (Currie, Neidell, and Schmieder
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2009) bolsters the case for our focus on CO but also underscores the importance of
utilizing a multipollutant framework to address potential confounding.

In our setting, environmental confounding could take several distinct forms. In
Santiago, like most urban environments, CO exhibits a strong seasonal pattern, with
high levels in winter and lower levels in summer. Ozone exhibits the opposite pattern,
with high levels in summer and lower levels in winter. Thus, if ozone exposure also
inhibits cognitive formation, ignoring it would lead us to understate the impacts of CO
pollution.7 To address this, all of our regressions will control for seasonality as well as
directly control for ozone pollution levels. Ideally, we would include similar controls
for PM, but given the extremely high correlation between ambient levels of CO and
PM in our setting, which typically exceeds 0.9, that is not possible. Rather, we inter-
pret our results as the composite effect of CO and PM, recognizing that the epidemi-
ological literature points toward CO as the primary culprit in this population.8 Finally,
we note that weather, particularly temperature, can impact pollution formation as well
as child health (Deschenes, Greenstone, andGuryan 2009). Thus, we add a wide range
of controls for weather in order to isolate the deleterious effect of CO. Additional de-
tails on these controls can be found in section 3 where we discuss our empirical spec-
ification and strategy.

2. DATA

In order to measure the effect of in utero pollution exposure on middle school test
scores, we require data from several broad categories. This section describes how we
construct a data set that links data on births, environmental conditions, and test scores.
Our analysis is based on the universe of births in Santiago, Chile, between 1992 and
2001 and the corresponding test scores between 2002 and 2010.

2.1. Birth Data
Birth data come from a data set (essentially the vital statistics of Chile) provided by the
Health Ministry of the government of Chile. This data set includes information on all
the children born in the years 1992–2001. It provides data on the sex, birth weight,
length, and weeks of gestation for each birth. It also provides demographic informa-
tion on the parents, including their age, education, marital status, and municipality of
residence. (Note that a Chilean municipality is a neighborhood, not a city.) Impor-
7. CO and ozone are negatively correlated. Assume for the moment that both pollutants
negatively affect long-run human capital. If we were to omit the ozone control from our regres-
sion, our estimated effect of CO would conflate the harm from high CO with the benefit from
low ozone. The CO estimate would be biased downward in magnitude.

8. As will be clarified later, our results are largely unchanged when we repeat our core anal-
yses using PM rather than CO as our exposure variable.
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tantly, these data contain a unique code for the mother, allowing us to identify off-
spring from the same mother and thus implement sibling fixed effects.

2.2. Environmental Data
Air pollution data for the period from 1998 to 2001 come from the Sistema de In-
formacion Nacional de Calidad del Aire (SINCA), a network of monitoring stations
operated by the Chilean Ministry of Environment. Data from 1992–97 come from the
Monitoreo Automatica de Contaminantes Atmosfericos Metropolitana (MACAM1)
network, also operated by the Ministry.

Given concerns about the endogeneity of monitor “births” and “deaths” (Auff-
hammer and Kellogg 2011), our analysis is based on data from the balanced panel of
three Santiago monitors that operate during our entire study period.9 Two of the mon-
itors—Parque O’Higgins and La Independencia—are centrally located and represen-
tative of general pollution patterns in metropolitan Santiago (Osses, Gallardo, and
Faundez 2013). The third monitor is located in Las Condes, a wealthy suburb in the
foothills of the Andes that sits at high elevation. Pollution patterns at this monitor
are quite different since inversion layers, which are correlated with extremely high pol-
lution events, occur at altitudes that are lower than this monitor (Gramsch et al. 2006).
As a result, we limit our assignment of pollution from the Las Condes monitor to res-
idents in the Las Condes municipality. All other residents in Santiago are assigned the
pollution readings from the nearest monitor based on municipality centroids.10

CO data during our study period are reported as an 8-hour moving average. We
construct a daily average measure of CO from these readings and then compute the
mean exposure at the trimester level. Data on particulate matter less than 10 microns
in diameter (PM10, measured as a 24-hour moving average) and ozone (O3, measured
hourly) come from the same monitoring sites as our CO data. We follow a similar
procedure to construct mean exposure at the trimester level.
9. In Santiago, new monitor placements arise endogenously from political and bureaucratic
processes. Use of an unbalanced monitor panel could induce nonzero covariance between expo-
sure measurement error and time-varying unobservable determinants of test scores, resulting in
bias. Nonetheless we explore this approach in appendix table A2 (appendix and tables A1–A5
available online), which shows results using an unbalanced panel of Santiago monitors. Esti-
mates are broadly similar, but somewhat smaller in magnitude for math scores. We do not have
similarly consistent pollution measures for other Chilean cities, e.g., Valparaiso, over this period.

10. Appendix table A3 shows results when we constrain distance to the nearest monitor.
Our OLS results are strongest (as expected) when the distance to the nearest monitor is smaller.
We have also constructed an alternative exposure measure by taking an inverse-distance weighted
average over the remaining two monitors for births outside Las Condes. Results are qualitatively
similar. In addition, assigning all high elevation municipalities (as determined by the mean or me-
dian altitude of the municipality) to the Las Condes monitor and using nearest monitor assign-
ment among remaining municipalities yields very similar results.
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In order to provide a sense of aggregate pollution patterns in Santiago, we use data
on CO, PM10, and O3, to compute a daily Air Quality Index (AQI) using the algo-
rithm developed by the US Environmental Protection Agency (EPA 2006; Mintz
2012). The AQI is a composite measure of pollution that ranges from 0 to 500 in
order to rank air quality based on its associated health risks. Seasonality in the
AQI correlates well with the patterns seen in CO during the year, as is evident from
figure 1. Air quality is worst during the winter months in Santiago when thermal in-
versions are common.

Figure 1 also shows long-run levels of CO and the AQI. As in the seasonal graphs,
the two series track each other closely. The steep declines that occur in the mid- to
late-1990s are the result of a concerted government effort to address the serious pol-
lution concerns from the previous decade. The most important of these measures
started in 1997 under the PPDA (Mullins and Bharadwaj 2014). Figure 2 shows
the monitor-level time series for the three monitors that comprise our balanced panel.
They exhibit similar seasonal patterns, but levels are much lower at the Las Condes
monitor than at the Parque O’Higgins and La Independencia monitors.

Meteorological data for this study period come from the NOAA Summary of the
Day for the monitor at Comodoro ArturoMerino Benitez International Airport (SCL).
Our analysis makes use of daily maximum temperature measures as well as daily av-
erage data on rainfall, dew point, wind speed, and an indicator for the presence of fog.
Each is converted to a trimester-level measure and used as a nonlinear control in our
regressions, as detailed in section 3.

2.3. Education Data
The data on school achievement are obtained from the SIMCE database, which in-
cludes administrative data on test scores for every student in the country between
2002 and 2010.11 The SIMCE is a national standardized test administered in all
schools in Chile. The SIMCE test covers three main subjects: mathematics, language,
and science. It is administered to every student in grade 4, and episodically in grades 8
and 10. The SIMCE scores are used to evaluate the progress of students against the
national curriculum goals set out by MINEDUC and are constructed to be compa-
rable across schools and time. The education data sets were subsequently matched
to the birth data using individual-level identifiers.12 We are unable to use the eighth-
and tenth-grade results in this setting since for these later grades, the number of sibling
groups is far too small: approximately 3,000 for eighth grade and still fewer for tenth
grade.

The match rate between births and SIMCE files (the test score records) is approx-
imately 0.8. This match rate, and the fact that Santiago has around 82,500 births per
11. This database was kindly provided by the Ministry of Education of Chile (MINEDUC).
12. More details on the match quality can be found in Bharadwaj, Løken, and Neilson 2013.
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year over our time period, leads to around 66,000 matched observations per year.
Over a 10-year period, this is around 660,000 observations. After accounting for ob-
servations that are missing essential covariates, we arrive at a potential OLS sample of
623,002. Among these observations, the number that have siblings within the age
range observable to us is 193,138. Descriptive statistics for all variables used in our
empirical analysis are presented in table 1.

3. ECONOMETRIC APPROACH

Our goal is to estimate the effect of in utero pollution exposure on human capital out-
comes later in life. The primary estimating equation uses test scores as the dependent
variable and pollution exposure in all three trimesters as the independent variables of
interest. Trimesters are computed using the birth date and the baby’s estimated ges-
tational age. The median gestational age in our data is 39 weeks. We assign weeks 1–
13 to trimester 1, weeks 14–26 to trimester 2, and weeks 27–birth to trimester 3.13

Since we have the exact date of birth and gestational age, we are able to accurately
construct the history of gestational exposure to ambient air quality. We include all tri-
mester exposure measures in a single specification, along with temperature and other
weather variables. Our basic estimating equation is:

Sijrt 5 βEmt 1 vt 1 axijrt 1 gWt 1 εijrt: (1)

The dependent variable Sijrt is fourth-grade test score in either math or language of
child i, born to mother j, in municipality (neighborhood) r, at time t. The term vt is a
vector of year and month dummies interacted with three monitor dummies (month
dummies capture important seasonal effects, which differ markedly by monitor),
and χ ijrt is a gender dummy. The term Wt includes a host of weather controls (tem-
perature, precipitation, fog, dew point, and wind) measured at the trimester level. We
use a polynomial in the trimester average of precipitation, fog, dew point, and wind in
order to capture potential nonlinear impacts. Since temperature extremes can have a
direct effect on maternal behavior and fetal health (Deschenes et al. 2009), and also
play a role in pollution formation, we control for temperature more flexibly. In partic-
ular, we create 10-degree bins based on daily maximum temperatures and count the
number of days per trimester in each bin. For example, we include three variables (one per
trimester) counting the number of days with a maximum temperature between 70 and
80 degrees Fahrenheit.14
13. While it is easier to interpret and aggregate coefficients at the trimester level, analysis at
the gestational month level yields similar results.

14. Temperature controls are constructed as follows: for each trimester, we count days for
which maximum temperature falls in each of six 10-degree Fahrenheit bins, 40–49, 50–59, 60–
69, 70–79, 80–89, ≥90. This results in 3 trimesters × 6 bins 5 18 count variables.
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Table 1. Descriptive Statistics

Mean SD Min Max

Fourth-grade math .16 1.01 –2.99 2.51
Fourth-grade language .10 1.02 –3.28 2.33
CO—trimester 1 1.31 .95 .16 4.85
CO—trimester 2 1.30 .95 .16 5.76
CO—trimester 3 1.23 .93 .16 6.59
PM10—trimester 1 90.59 29.79 39.73 197.85
PM10—trimester 2 91.53 29.42 39.73 249.45
PM10—trimester 3 89.86 29.24 36.44 261.59
O3—trimester 1 31.92 10.24 9.78 85.73
O3—trimester 2 31.01 10.46 9.78 85.73
O3—trimester 3 31.31 10.26 9.06 85.73
AQI—trimester 1 64.95 15.86 31.91 109.82
AQI—trimester 2 65.63 15.33 31.91 145.23
AQI—trimester 3 64.84 14.99 31.12 146.53
O’Higgins monitor dummy .69 .46 .00 1.00
Independencia monitor dummy .31 .46 .00 1.00
Las Condes monitor dummy .06 .23 .00 1.00
Temperature—trimester 1 58.45 7.27 45.79 70.28
Temperature—trimester 2 57.74 7.39 45.79 70.28
Temperature—trimester 3 57.74 7.39 45.79 70.28
Rainfall—trimester 1 1.64 1.15 .00 4.57
Rainfall—trimester 2 1.76 1.21 .00 4.71
Rainfall—trimester 3 1.72 1.23 .00 5.29
Dew point—trimester 1 48.43 16.08 39.74 154.12
Dew point—trimester 2 49.66 19.59 39.74 154.12
Dew point—trimester 3 51.33 22.51 37.42 245.74
Fog—trimester 1 .24 .13 .01 .53
Fog—trimester 2 .25 .13 .01 .53
Fog—trimester 3 .25 .13 .00 .61
Wind speed—trimester 1 4.78 1.31 2.61 7.52
Wind speed—trimester 2 4.70 1.34 2.61 7.52
Wind speed—trimester 3 4.79 1.34 2.47 8.09
Air quality alert—trimester 1 4.86 7.41 .00 32.00
Air quality alert—trimester 2 5.56 7.73 .00 32.00
Air quality alert—trimester 3 5.39 7.56 .00 35.00
Gestational age (weeks) 38.78 1.38 33.00 41.00
Birth weight (g) 3342.28 497.23 270.00 6046.00
Low birth weight (<2.5 kg) .05 .21 .00 1.00
Mother’s age 27.19 5.75 12.00 51.00
Sex (1 5 female) .50 .50 .00 1.00
Observations 193,138
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The term Emt contains the average level of pollution, also measured at the level of
gestational trimester based on the nearest monitor. As discussed in the previous sec-
tion, our analysis will focus on the impacts of carbon monoxide on educational out-
comes but will also include controls for ozone pollution levels. As a robustness check,
we will repeat the same analysis using PM10 as our primary pollutant, with controls for
ozone levels.15 We will also take a more structured approach to the multipollutant
problem by using the air quality index, which provides a composite measure of environ-
mental conditions based on the health dangers associated with CO, PM10, and O3 lev-
els (EPA 2006; Mintz 2012).

The seasonal patterns in pollution in Santiago are an important reason behind the
inclusion of month and year fixed effects in equation (1). As mentioned earlier, figure 1
shows that there are strong monthly patterns to CO and overall air quality as captured
by the AQI. Since these seasonal patterns could exist for other unmeasured variables
that might impact our outcome of interest (e.g., income-specific timing of childbirth),
month fixed effects are an important control in all our specifications. Our approach re-
quires residual variation in the measures of pollution after controlling for seasonality
(month fixed effects) and year fixed effects. Figure 3 shows the distribution of CO after
removing these fixed effects; we see that substantial variation remains in the pollution
measures. It is this variation that drives the identification in this paper.16

The first modification we make to equation (1) is the introduction of observable
mother’s characteristics. Hence, we estimate:

Sijrt 5 βEmt 1 vt 1 axijrt 1 gWt 1 dXj 1 εijrt, (2)

where Xj includes mother’s characteristics like age and education.
The identifying assumption in the above equation is that after controlling for ob-

servable maternal characteristics, seasonality and flexible weather controls, exposure to
pollution is uncorrelated with εijrt. One concern with this assumption is that parents
may respond to pollution levels, either directly by limiting exposure to pollution or
indirectly through ex post investments designed to mitigate harmful effects. While
such responses would not bias our results, they imply that all estimates would capture
pollution impacts net of these potentially costly behaviors.17 To clarify the interpre-
15. Recall that the correlation between CO and PM10 levels is 0.9 (see appendix table A1).
Also, our results are not sensitive to the use of ozone as a control variable. This is likely due to
the fact that ozone and CO are inversely correlated and seasonal controls do enough to capture
the effects of ozone.

16. Note that while feasible, including year of birth × month of birth fixed effects leaves us
with little residual variation. Results including year × month of birth fixed effects are insignif-
icant in the OLS and sibling fixed effects specifications. Results available on request.

17. See Graff Zivin and Neidell (2012) for a detailed conceptual model of the environmen-
tal health production function.
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tation of β in our estimation strategy, it is useful to describe a simple education pro-
duction function.

We begin by specifying a production function for school achievement, similar in
spirit to Todd andWolpin (2007). Test score achievement of student i born to mother
j in region r at time t is a function of early childhood health (H),18 investments made
from birth to time of test taking (P), and parental characteristics (X).

Sijrt 5 f Hijrt, o
k5T

k5t
Pijrk,Xj

 !
: (3)

Early childhood health is a function of in utero pollution exposure E, weather con-
ditions W (e.g., rainfall, temperature, etc.), and parental characteristics X. Individual
Figure 3. Residualized pollution (year and month dummies). Figure based on the residuals
of a regression using daily CO as the dependent variable and year and month dummies as inde-
pendent variables. We then plot the probability distribution function of the residuals using the
Stata command “kdensity” with default options: an Epanechnikov kernel and MSE-minimizing
bandwidth under an assumed Gaussian distribution.
18. In our specification, t always refers to time of birth, not time of test taking. For the most
part everyone born at time t takes the test at the same later time (T), since we use scores from
the national fourth-grade exam.
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environmental conditions are a function of ambient pollution measured at the nearest
monitor (Emt), mitigated by individual-level avoidance behavior (A).

Hijrt 5 h Eijrt,Wijrt,Xj
� �

, (4)

Eijrt 5 e Emt,Aijrt
� �

: (5)

Taking a linear approach to estimating equation (3) and plugging in linear func-
tions of equations (4) and (5), and recognizing that weather variables are observed city
wide, we can express student performance as:

Sijrt 5 βEmt 1 gWt 1 o
k5T

k5t
nkPijrk 1 hAijrt 1 dXj 1 εijrt: (6)

Equation (1) is essentially a modified version of equation (6). Test scores still de-
pend on environmental conditions and parental characteristics and now also depend
on time-varying parental investments in human capital as well as pollution avoidance
behaviors during the prenatal period. While educational investments in response to
early-life insults are not observable in our setting (they will be subsumed in our error
term), studies in other similar contexts have found those responses to be small and if
anything largely compensatory (see Bharadwaj, Eberhard, and Neilson 2013; Halla
and Zweimuller 2014). Thus, to the extent that Chilean parents make investments
to overcome cognitive deficiencies due to in utero pollution exposure, they will be re-
flected in our estimated effects from pollution. This is desirable—it captures the re-
alized impacts of pollution—but it is worth noting that the costs of those parental in-
vestments may constitute a sizable welfare cost due to pollution.

Avoidance behavior can take two broad forms, and we employ two main techniques
to capture them in our analysis. Since residential sorting can lead to nonrandom assign-
ment of pollution, we employ sibling fixed effects models to make within-household
comparisons that hold geography fixed. This is a particular concern as air quality is
capitalized into housing values (Figueroa, Rogat, and Firinguetti 1996; Chay and Green-
stone 2005). Families with higher incomes are more likely to sort into neighborhoods
with better air quality and invest in human capital.19 Sibling fixed effects in this setting
also play an important role insofar as our limited data on maternal characteristics are
missing important unobservable family characteristics that might matter for test out-
comes as well as pollution exposure (Currie et al. 2009). Our estimating equation us-
19. Note that our results are robust to the inclusion of municipality (neighborhood) linear
time trends.
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ing sibling fixed effects (indexing another sibling i′ born at t′) is essentially a first dif-
ference across siblings and takes the form:

DSijrt–i0 jrt0 5 βDEmt–mt0 1 gDWt–t0 1 Duijrt–i0 jrt0 : (7)

In general the addition of granular fixed effects can exacerbate measurement error
problems (Griliches and Hausman 1986). In studies of air pollution exposure, how-
ever, a spatial error component is often the primary concern. If measurement error is
an additively separable function of location, our sibling fixed effects estimates will
reduce rather than exacerbate bias from measurement error. In this vein, Jerrett
et al. (2005) find that community fixed effects reduce attenuation in estimates of the
pollution-mortality relationship. In addition, our sibling fixed effects will capture all
time-invariant investments in children. Equation (7) ignores time-varying investments,
however, since we do not have data on parental investments across siblings. One time-
varying activity that may influence outcomes is averting behavior. In the short run, in-
dividuals can take deliberate actions to reduce their realized exposure to pollution by
spending less time outside, wearing face masks, or engaging in a number of other ac-
tivities (Neidell 2005, 2009). Such short-run responses require knowledge about daily
or even hourly pollution levels. In our context, that knowledge is made available
through a well-publicized system of air quality alerts based on PM10 levels (which
are highly correlated with CO levels). For example, during May–August, the peak
pollution months in Santiago, PM10 forecasts are broadcast on a regular basis, with
alerts announced when this pollutant reaches certain thresholds (see Mullins and
Bharadwaj [2014] for details). To the extent that these alerts generate behavioral re-
sponses, we can account for them by including controls for the number of alert days
during the pregnancy for each trimester.20 If individuals engage in avoidance behavior,
controlling for avoidance should make the estimates larger relative to estimates where
this is not explicitly taken into account (Moretti and Neidell 2011). These avoidance
controls also reduce exposure measurement error arising from differences in indoor
and outdoor air quality (Zeger et al. 2000).

We modify equation (7) to take transient avoidance into account as follows:

DSijrt–i0 jrt0 5 βDEmt–mt0 1 gDWt–t0 1 kDAlertst–t0 1 Duijrt–i0 jrt0 : (8)

All of our core analyses will follow the same basic structure. The OLS regression de-
scribed in equation (2) will serve as our base model specification. This will be followed
20. Of course, individuals may also engage in avoidance behavior based on the visible signs of
pollution (or its correlates). While we cannot control for those behaviors in this setting, they can
be viewed as conceptually similar to unmeasured parental investments in human capital. They
create a wedge between the “biological” and “in situ” impacts of pollution and represent a po-
tentially significant welfare cost attributable to pollution.
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by estimates of the sibling fixed effect regressions described in equation (7). Finally, we
will present estimates of our fully saturated model, which includes sibling fixed effects
and controls for air quality alerts to capture time-varying avoidance behavior, as de-
scribed in equation (8).
All 
Table 2. CO Effects on Scores

OLS Sib FE Sib FE

A. Math

CO—trimester 1 –.025 –.001 –.000
(.017) (.018) (.019)

CO—trimester 2 –.002 –.021 –.022
(.011) (.016) (.016)

CO—trimester 3 –.005 –.034** –.036**
(.013) (.015) (.016)

CO—whole pregnancy –.032 –.055 –.059*
(.027) (.034) (.036)

B. Language

CO—trimester 1 –.040** –.018 –.018
(.018) (.017) (.018)

CO—trimester 2 –.017 –.015 –.018
(.013) (.015) (.016)

CO—trimester 3 –.025* –.040** –.042**
(.014) (.019) (.020)

Sibling FE No Yes Yes
Air quality alerts No No Yes

Observations 193,138 193,138 193,138
CO—whole pregnancy –.082*** –.073** –.078**

(.031) (.037) (.039)
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use subject to University of Chicago P
 from 137.110.033.009
ress Terms and Condit
 on May 01, 2017 11:1
ions (http://www.journ
Note. Standard errors are in parentheses, clustered on family andmunicipality (neighborhood).
The dependent variable is the fourth-grade math/language SIMCE test score. All regressions in-
clude year and month fixed effects interacted with monitor dummies. Demographic controls in-
clude student gender, log of mother’s age, and dummies for mother’s education. Environmental con-
trols include second-degree polynomials in precipitation, fog, wind speed, and dew point for each
trimester. Temperature controls are constructed as follows: for each trimester, we count days for
which maximum temperature falls in each of six 10-degree Fahrenheit bins, 40–49, 50–59, 60–
69, 70–79, 80–89, ≥90. This results in 3 trimesters × 6 bins5 18 count variables. We also control
for ozone pollution (level). All pollution measurements are averaged within each trimester of preg-
nancy. We represent an air quality alert with a dummy and sum within each trimester.

* p < .10.
** p < .05.
*** p < .01.
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4. RESULTS

We begin our analysis by examining the impact of CO on test scores in table 2. Panel
A presents the estimates using fourth-grade math scores as the dependent variable,
and panel B uses fourth-grade language scores as the dependent variable. Column 1
is our base OLS specification where we control for seasonality (year and month fixed
effects interacted with monitor dummies), environmental controls at the trimester level
(maximum temperature in 10 degree Fahrenheit bin days and a second degree polyno-
mial in mean precipitation, fog, wind speed, and dew point), demographic controls
(mother’s age and education, student gender), and trimester average ozone levels.21

Standard errors are clustered on family and municipality (neighborhood) in all col-
umns. To this base model we add sibling fixed effects in column 2 and further add
the total number of trimester level air quality alert days in column 3. Here and through-
out our empirical analysis, we estimate our OLS specification using the sibling sample,
facilitating ceterus paribus comparisons across specifications.

Table 2, panel A, shows negative and significant effects of in utero CO exposure on
fourth-grade math test scores in specifications that account for sibling fixed effects.22

The effects are concentrated in trimesters 2 and 3 (although estimates for trimester 2
are not statistically significant), but taken together, the effect over the entire pregnancy
is sizable and statistically significant in our preferred specification. Moving from col-
umn 1 to column 2 illustrates the importance of accounting for sorting behavior and
other time-invariant unobserved family characteristics in this setting, as the magni-
tudes of our estimates increase significantly in column 2. A 1 standard deviation in-
crease in CO in the third trimester is initially associated with a statistically insignificant
0.005 standard deviation decrease in fourth-grade math scores (col. 1); however, add-
ing sibling FE in column 2 increases the magnitude to a statistically significant 0.034
standard deviations. Adding air quality alerts to our sibling fixed effects specification
(col. 3) increases the magnitude of the estimates slightly (by about 6%–8% in most
cases), suggesting that insofar as the alerts induce avoidance behavior, this appears to
have a rather modest impact on child outcomes.23 Panel B shows similar effects in both
direction and magnitude on language test scores. The bottom line in each panel presents
21. As discussed in section 1, this study focuses on CO rather than ozone because the sci-
entific literature documents the mechanism by which CO harms a developing fetus. Ozone may
also be harmful to the fetus, but the mechanisms are unknown. Appendix table A4 reports the
estimated ozone coefficients from our preferred specification.

22. As described later in this section, our results remain qualitatively similar when we repeat
our core analysis replacing CO with PM10 or with AQI.

23. The difference in coefficients from adding the alerts controls is similar for trimesters 2 and
3. We caution against overinterpreting this pattern, however. First, these differences are very
small relative to the associated standard errors. Second, these differences reflect both the quantity
of avoidance behavior and its effectiveness, which could vary over the course of a pregnancy.
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whole-pregnancy effects (sums of trimester-level estimates), which are statistically sig-
nificant for language but not for math.

While there are many potential reasons for OLS and sibling fixed effects results to
vary in this setting, the fact that OLS seems to underestimate the effect of pollution
exposure is worth noting. This is perhaps counterintuitive if we believe that parents
with worse socioeconomic status live in areas that are more polluted and also have chil-
dren who perform worse in school. We offer three potential explanations as to why
OLS might underestimate in this context relative to sibling FE. First, measurement
error (if classical) can bias OLS toward zero. In our case, if measurement error is dif-
ferenced out when comparing siblings, then the estimates from sibling FE could be
larger than OLS. The second is parental investments. If parents act in ways that try
to compensate for health deficiencies, and parental investments are at least partially
local public goods within the household, then we would expect sibling FE estimates
to be larger than OLS. For example, books purchased for one child are likely to benefit
others within the household. In this case, investments that differentially help disad-
vantaged children who were exposed to pollution early in life will produce a greater
“catch up” compared to children in other households (i.e., OLS) than compared to
children within the same household (i.e., sibling FE). A full exploration of these forces
is considered in Bharadwaj et al. (2013). The third is avoidance behavior. This is the
explanation used in Moretti and Neidell (2011). In their model, they show that avoid-
ance behavior can introduce a downward bias in OLS. The intuition here is simple: if
increased pollution leads to more avoidance (and more avoidance leads to better
health/cognitive scores), then the OLS captures the net effect of exposure and avoid-
ance. In strategies that account for avoidance (like the instrumental variables [IV] used
in Moretti and Neidell [2011]), avoidance is held constant, and therefore the IV es-
timates are larger than OLS estimates. In our case, sibling fixed effects hold constant
time-invariant avoidance (e.g., fixed cost or lumpy investments or routine patterns of
variable cost avoidance behaviors) and hence could be yet another explanation as to
why FE estimates are larger than OLS.

Taken as whole, the results in table 2 reveal a strong negative effect from fetal ex-
posure to CO.24 While the magnitudes may appear small, it is important to note that
test performance is notoriously difficult to move, even via input-based schooling pol-
icies (Hanushek 2003). To place the magnitudes of these effects in context, they are
roughly one-fifth the magnitude of successful interventions that specifically target ed-
ucational outcomes in developing countries ( JPAL 2014). The economic importance
of these results is underscored by the size of the exposed population—far more chil-
24. An alternative measure is to measure pollution over the entire 9 months of the preg-
nancy. This measure yields similar negative and significant effects as seen in the graphs in ap-
pendix figures A1 and A2.
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dren are exposed to pollution than well-designed education-specific programs in devel-
oping countries. It is also worth noting that our effects are quite a bit larger than es-
timates based on changes in total suspended particulates pollution within the United
States (Sanders 2012).25

In table 3, we examine heterogeneity in these human capital impacts by mother’s
education. For both math and language test scores, we see that the effects of CO ex-
posure are quite a bit larger for children of mothers without a high school diploma. A
1 standard deviation increase in third-trimester CO affects the children of less edu-
cated mothers by more than twice as much as the children of more educated mothers
(cols. 3 and 6). These results provide suggestive evidence that less educated families
are more vulnerable to the detrimental effects of pollution. There are several possible
explanations for this pattern, including but not limited to (1) increased susceptibility,
perhaps due to poorer baseline health; (2) increased exposure; and (3) diminished abil-
ity to invest in children to offset early-life deficits. Our claims about the vulnerability
of less educated families are based on evidence that air quality is capitalized into hous-
ing prices (Chay and Greenstone 2005; Banzhaf and Walsh 2008). We also note that
Graff Zivin and Neidell (2013) discuss these issues of nonrandom pollution exposure
more generally and provide direct empirical evidence that those households with higher
socioeconomic status and higher levels of health investments generally live in neighbor-
hoods with better air quality. Conditional on exposure, less educated families may be
more susceptible to pollution due to a range of comorbid conditions, such as asthma
and social stress, which are prevalent among less educated families, and are known to
exacerbate the impacts of pollution (e.g., Eggleston et al. 1999; Clougherty et al. 2010).
The relative importance of these and other mechanisms remains an open question.

All of our previous analysis treated the relationship between CO exposure and test
scores as linear. Figures 4 and 5 show the relationship between pollution and test
scores for the third trimester of pregnancy using local linear regressions. The figures
confirm the negative result found in the previous tables and suggest nonlinearity is not
first order in this setting. However, we note that there are many ways to model non-
linearity in this context. In order to avoid ad hoc searches for nonlinearity, we adopt
counts of violations of the US Environmental Protection Agency’s National Ambient
Air Quality Standards for CO (9 parts per million for an 8-hour average)26 as our non-
linear exposure measure. To be clear, for each trimester we sum the number of days
on which the EPA’s safety threshold is exceeded. Table 4 presents these results for
both math and language. We find that for every extra day of EPA threshold violation
25. The estimates in Sanders (2012) may be smaller due to measurement error issues. San-
ders (2012) infers in utero pollution exposure by assuming that all students were born in the
place they attended high school.

26. The average CO level over a trimester in our sample is approximately 1 part per million.
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during the third trimester, test scores decrease significantly, with a consistent magni-
tude around 0.003 standard deviations using the fixed effects estimates. It is worth
noting that violations of the EPA standard were a regular occurrence in the 1990s in
Santiago. For example, in 1997 approximately 47 days exceeded the EPA CO limit,
which under linearity would imply an effect of nearly 0.15 standard deviations if all
47 violations happened in the second or third trimester. The average number of EPA
violations during a third trimester in our sample is 2.3, which translates to a 0.007 stan-
Figure 4. Residualized math scores and third-trimester CO. The vertical axis measures
residualized fourth-grade math/language SIMCE test scores. The horizontal axis measures
residualized third-trimester CO exposure, recentered around mean exposure for ease of inter-
pretation. Residualized variables are constructed by regressing these two variables on the full set
of controls from our preferred specification, including sibling fixed effects, alerts, and CO expo-
sure in trimesters 1–2, then calculating residuals. Other controls include year and month fixed
effects interacted with monitor dummies. Demographic controls include student gender, log
of mother’s age, and dummies for mother’s education. Environmental controls include second-
degree polynomials in precipitation, fog, wind speed, and dew point. Temperature controls
are constructed as follows: for each trimester, we count days for which maximum temperature
falls in each of six 10-degree Fahrenheit bins, 40–49, 50–59, 60–69, 70–79, 80–89, ≥90. This
results in 3 trimesters × 6 bins5 18 count variables. We also control for ozone pollution (level).
All pollution measurements are averaged within each trimester of pregnancy. We represent an
air quality alert with a dummy and sum within each trimester. Points represent means within 20
equal-frequency bins. Fitted line is a local linear regression over these points, with default kernel
and bandwidth. *p < .10; **p < .05; ***p < .01.
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dard deviation reduction in test scores for the average child exposed to such a third
trimester. Appendix table A5 adopts an alternative approach to nonlinearity, allowing
CO exposure to enter as counts of third-trimester days in four bins. Consistent with
our findings in table 4, there is suggestive evidence that harmful effects stem from the
most polluted days, with ambient readings over 3.3 parts per million (ppm).

Thus far our analysis has largely been silent on the various mechanisms that might
underpin our results. While our data do not allow us to formally disentangle possible
Figure 5. Residualized language scores and third-trimester CO. The vertical axis measures
residualized fourth-grade math/language SIMCE test scores. The horizontal axis measures
residualized third-trimester CO exposure, recentered around mean exposure for ease of inter-
pretation. Residualized variables are constructed by regressing these two variables on the full set
of controls from our preferred specification, including sibling fixed effects, alerts, and CO expo-
sure in trimesters 1–2, then calculating residuals. Other controls include year and month fixed
effects interacted with monitor dummies. Demographic controls include student gender, log of
mother’s age, and dummies for mother’s education. Environmental controls include second-
degree polynomials in precipitation, fog, wind speed, and dew point. Temperature controls are
constructed as follows: for each trimester, we count days for which maximum temperature falls
in each of six 10-degree Fahrenheit bins, 40–49, 50–59, 60–69, 70–79, 80–89, ≥90. This re-
sults in 3 trimesters × 6 bins 5 18 count variables. We also control for ozone pollution (level).
All pollution measurements are averaged within each trimester of pregnancy. We represent an
air quality alert with a dummy and sum within each trimester. Points represent means within
20 equal-frequency bins. Fitted line is a local linear regression over these points, with default ker-
nel and bandwidth. *p < .10; **p < .05; ***p < .01.
This content downloaded from 137.110.033.009 on May 01, 2017 11:16:45 AM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).
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channels, they do allow us to probe two possibilities. Since birth weight has been
shown to be an important determinant of school performance (Bharadwaj et al.
2013; Figlio et al. 2013), we directly explore the effects of in utero pollution exposure
on birth weight in a specification similar in spirit to equations (7) and (8). Our OLS
Table 4. EPA CO Violations: Effects on Scores

OLS Sib FE Sib FE

A. Math

EPA CO violations—trimester 1 –.0020 –.0007 –.0006
(.0013) (.0014) (.0015)

EPA CO violations—trimester 2 –.0012 –.0019* –.0023*
(.0010) (.0012) (.0013)

EPA CO violations—trimester 3 –.0002 –.0026** –.0032**
(.0008) (.0012) (.0014)

EPA CO violations—whole pregnancy –.003 –.005* –.006**
(.002) (.003) (.003)

B. Language

EPA CO violations—trimester 1 –.0031** –.0012 –.0016
(.0013) (.0013) (.0015)

EPA CO violations—trimester 2 –.0027** –.0020 –.0025
(.0011) (.0014) (.0016)

EPA CO violations—trimester 3 –.0014* –.0032*** –.0040***
(.0008) (.0012) (.0015)

Sibling FE No Yes Yes
Air quality alerts No No Yes
Ozone violations Yes Yes Yes

Observations 193,138 193,138 193,138
EPA CO violations—whole pregnancy –.007*** –.006** –.008***

(.002) (.003) (.003)
This content downloaded from 13
All use subject to University of Chicago Press Term
7.110.033.009 on M
s and Conditions 
ay 01, 2017 11:16:
(http://www.journal
Note. Standard errors are in parentheses, clustered on family and municipality (neighborhood). The
dependent variable is the fourth-grade math/language SIMCE test score. All regressions include year
and month fixed effects interacted with monitor dummies. Demographic controls include student gender,
log of mother’s age, and dummies for mother’s education. Environmental controls include second-degree
polynomials in precipitation, fog, wind speed, and dew point for each trimester. Temperature controls
are constructed as follows: for each trimester, we count days for which maximum temperature falls in each
of six 10-degree Fahrenheit bins, 40–49, 50–59, 60–69, 70–79, 80–89, ≥90. This results in 3 trimesters ×
6 bins 5 18 count variables. We also control for ozone pollution (level). All pollution measurements are
averaged within each trimester of pregnancy.We represent an air quality alert with a dummy and sumwithin
each trimester. EPA violation dummy constructed based on 8-hour CO standard of 9 ppm, in force since
1971.

* p < .10.
** p < .05.
*** p < .01.
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specification in table 5 shows that exposure to in utero pollution significantly decreases
birth weight. The magnitude of these effects is amplified in the sibling FE framework,
which also finds modest and marginally significant effects on the probability of being
low birth weight (less than 2,500 grams). Similarly, in table 6 we find that pollution
exposure increases the probability of low gestational age (birth before 36 weeks), with
sibling FE estimates again larger than their OLS counterparts. This is in line with the
finding that smoking and other maternal stressors can lead to earlier delivery. While
these results suggest that some of the long-term effects seen are via the channel of
health at birth, it is important to note that these effects are much too small to explain
all of the relationship between pollution and scores. Indeed, point estimates from Bha-
radwaj et al. (2013) of the impact of birth weight on test scores imply that this channel
explains no more than 10% of the cognitive impacts due to pollution. We also wish to
point out that birth weight is a proxy measure of health at birth, but one that does not
Table 5. CO Effects on Birth Weight

Birth Weight Birth Weight
Low Birth
Weight

Low Birth
Weight

CO—trimester 1 –10.7* –18.1* –.00031 .0061
(6.24) (9.33) (.0027) (.0040)

CO—trimester 2 –13.9** –6.13 .0024 .0038
(6.67) (6.44) (.0029) (.0030)

CO—trimester 3 –12.6** –18.1*** .0028 .0062*
(5.58) (6.77) (.0033) (.0036)

Sibling FE No Yes No Yes
Air quality alerts Yes Yes Yes Yes

Observations 193,137 193,136 193,137 193,136
CO—whole pregnancy –37.2*** –42.3** .005 .016**

(12.960) (17.313) (.006) (.008)
This content d
All use subject to University o
ownloaded from 137
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Note. Standard errors are in parentheses, clustered on family and municipality (neighborhood). The
dependent variables are birth weight in grams and an indicator for birth weight below 2,500 g. All regres-
sions include year and month fixed effects interacted with monitor dummies. Demographic controls include
student gender, log of mother’s age, and dummies for mother’s education. Environmental controls include
second-degree polynomials in precipitation, fog, wind speed, and dew point for each trimester. Temperature
controls are constructed as follows: for each trimester, we count days for which maximum temperature falls
in each of six 10-degree Fehrenheit bins, 40–49, 50–59, 60–69, 70–79, 80–89, ≥90. This results in 3 tri-
mesters × 6 bins 5 18 count variables. We also control for ozone pollution (level). All pollution measure-
ments are averaged within each trimester of pregnancy. We represent an air quality alert with a dummy and
sum within each trimester. Observation counts differ slightly from test score regression tables, and differ
slightly across columns, because of small differences in completeness of test score and birth weight variables.
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** p < .05.
*** p < .01.
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capture all aspects of fetal health or nutrition (Almond and Currie 2011). Moreover,
maternal health stressors, such as pollution, can directly impact gene expression in the
fetus through epigenetic channels that negatively impact intellectual growth and ma-
turity (Petronis 2010).

4.1. Robustness Checks
As mentioned earlier, due to the high correlation between CO and PM10, our main
specifications do not control for PM10. Hence, replacing CO with PM10 should yield
qualitatively similar results. In table 7, we find that this is indeed the case. Across all
three of our specifications, we find that exposure to PM10 in utero is associated with
significant negative effects on fourth-grade math and language scores. An alternative
approach to addressing multiple pollutants is to aggregate them into a single index. In
this case, we use the US Environmental Protection Agency’s Air Quality Index (AQI),
which is constructed by taking the maximum over piecewise-linear transformations
All use
Table 6. CO Effects on Low Gestational Age

Low GA Low GA Low GA

CO—trimester 1 .0078*** .010*** .010***
(.0028) (.0027) (.0030)

CO—trimester 2 .014*** .0081** .0049
(.0033) (.0032) (.0035)

CO—trimester 3 .010*** .0092*** .0059**
(.0030) (.0027) (.0029)

Sibling FE No Yes Yes
Air quality alerts No No Yes

Observations 193,138 193,138 193,138
CO—whole pregnancy .032*** .028*** .021***

(.007) (.006) (.007)
This content downloaded
 subject to University of Chicago P
 from 137.110.033.0
ress Terms and Cond
09 on May 01, 2017 
itions (http://www.j
Note. Standard errors are in parentheses, clustered on family and municipality (neigh-
borhood). The dependent variable is an indicator for gestational age below 36 weeks. All
regressions include year and month fixed effects interacted with monitor dummies. Demo-
graphic controls include student gender, log of mother’s age, and dummies for mother’s ed-
ucation. Environmental controls include second-degree polynomials in precipitation, fog,
wind speed, and dew point for each trimester. Temperature controls are constructed as fol-
lows: for each trimester, we count days for which maximum temperature falls in each of
six 10-degree Fahrenheit bins, 40–49, 50–59, 60–69, 70–79, 80–89, ≥90. This results
in 3 trimesters × 6 bins 5 18 count variables. We also control for ozone pollution (level).
All pollution measurements are averaged within each trimester of pregnancy. We represent
an air quality alert with a dummy and sum within each trimester.

* p < .10.
** p < .05.
*** p < .01.
11:16:45 AM
ournals.uchicago.edu/t-and-c).
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of daily readings for all individual pollutants (EPA 2006; Mintz 2012). As can be seen
in table 8, higher AQI exposure in utero leads to lower test scores. While this approach
does not allow us to disentangle the effects of different pollutants, these results follow
the same patterns as prior tables—most of the effects are concentrated in the second
All us
Table 7. PM10 Effects on Scores

OLS Sib FE Sib FE

A. Math

PM10—trimester 1 –.0004 –.0002 –.0001
(.0005) (.0005) (.0006)

PM10—trimester 2 –.0006 –.0003 –.0003
(.0004) (.0005) (.0005)

PM10—trimester 3 –.0009* –.0010* –.0011*
(.0005) (.0005) (.0006)

PM10—whole pregnancy –.002 –.001 –.001
(.001) (.001) (.001)

B. Language

PM10—trimester 1 –.0010** –.0008 –.0008
(.0005) (.0005) (.0005)

PM10—trimester 2 –.0011** –.0006 –.0006
(.0005) (.0004) (.0004)

PM10—trimester 3 –.0013*** –.0013** –.0013**
(.0004) (.0006) (.0006)

Sibling FE No Yes Yes
Air quality alerts No No Yes

Observations 193,138 193,138 193,138
PM10—whole pregnancy –.003*** –.003*** –.003***

(.001) (.001) (.001)
This content downloaded f
e subject to University of Chicago Pre
rom 137.110.033.009
ss Terms and Condit
 on May 01, 2017 1
ions (http://www.jo
Note. Standard errors are in parentheses, clustered on family and municipality (neighbor-
hood). The dependent variable is the fourth-grade math/language SIMCE test score. All re-
gressions include year and month fixed effects interacted with monitor dummies. Demographic
controls include student gender, log of mother’s age, and dummies for mother’s education. En-
vironmental controls include second-degree polynomials in precipitation, fog, wind speed, and
dew point for each trimester. Temperature controls are constructed as follows: for each tri-
mester, we count days for which maximum temperature falls in each of six 10-degree Fahren-
heit bins, 40–49, 50–59, 60–69, 70–79, 80–89, ≥90. This results in 3 trimesters × 6 bins 5
18 count variables. We also control for ozone pollution (level). All pollution measurements
are averaged within each trimester of pregnancy.We represent an air quality alert with a dummy
and sum within each trimester.

* p < .10.
** p < .05.
*** p < .01.
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and third trimesters and the coefficients are larger after accounting for sibling fixed
effects.

Table 9 adds controls for family size at birth to our preferred specification. Because
we do not observe pre-1992 births, family size observed in our data will be weakly
All u
Table 8. AQI Effects on Scores

OLS Sib FE Sib FE

A. Math

AQI—trimester 1 –.0006 –.0006 –.0006
(.0008) (.0007) (.0008)

AQI—trimester 2 –.0022*** –.0010 –.0011
(.0006) (.0007) (.0007)

AQI—trimester 3 –.0011* –.0015* –.0017*
(.0006) (.0008) (.0009)

AQI—whole pregnancy –.004*** –.003 –.003
(.001) (.002) (.002)

B. Language

OLS Sib FE Sib FE
AQI—trimester 1 –.0015** –.0011 –.0011

(.0007) (.0009) (.0009)
AQI—trimester 2 –.0031*** –.0016*** –.0018***

(.0006) (.0006) (.0007)
AQI—trimester 3 –.0025*** –.0024*** –.0026**

(.0006) (.0009) (.0010)
Sibling FE No Yes Yes
Air quality alerts No No Yes

Observations 193,138 193,138 193,138
AQI—whole pregnancy –.007*** –.005** –.005**

(.001) (.002) (.002)
This content downloaded
se subject to University of Chicago P
 from 137.110.033.0
ress Terms and Cond
09 on May 01, 2017 1
itions (http://www.jo
Note. Standard errors are in parentheses, clustered on family and municipality (neighbor-
hood). The dependent variable is the fourth-grade math/language SIMCE test score. All re-
gressions include year and month fixed effects interacted with monitor dummies. Demographic
controls include student gender, log of mother’s age, and dummies for mother’s education. En-
vironmental controls include second-degree polynomials in precipitation, fog, wind speed, and
dew point for each trimester. Temperature controls are constructed as follows: for each trimes-
ter, we count days for which maximum temperature falls in each of six 10-degree Fahrenheit
bins, 40–49, 50–59, 60–69, 70–79, 80–89, ≥90. This results in 3 trimesters × 6 bins 5 18
count variables. All pollution measurements are averaged within each trimester of pregnancy.
We represent an air quality alert with a dummy and sum within each trimester. Per EPA guide-
lines, AQI is the maximum over piecewise linear transformations of CO, PM10, andO3 readings.

* p < .10.
** p < .05.
** p < .01.
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smaller than true family size at birth. Note that this is equivalent to a birth order con-
trol, again with the caveat that we observe only relative birth order within our data. Es-
timates from the specification with family size controls, implemented as a series of
dummy variables, are very similar to those from our preferred specification. Table 10
investigates the role of movers in our analysis. We define a mover dummy that equals 1
for a mother with births matched to two or more different monitors. Because our econ-
ometric analysis focuses on mothers with multiple births, we have a relatively large frac-
tion of movers in the sample at 10%. In our sample, just 3,374 children are born to
mover families in Las Condes. Because readings at the La Independencia and Parque
O’Higgins monitors are similar, in most cases the pollution exposure we assign to a fam-
ily does not change substantially as a result of the move. In table 10 the interactions of
the mover dummy with CO exposure are small and not statistically significant at con-
All us
Table 9. CO Effects on Math Scores, Family Size (Birth Order) Controls

OLS Sib FE Sib FE

CO—trimester 1 –.025 –.002 –.001
(.017) (.018) (.019)

CO—trimester 2 –.005 –.021 –.022
(.011) (.016) (.016)

CO—trimester 3 –.009 –.036** –.038**
(.013) (.015) (.015)

Sibling FE No Yes Yes
Air quality alerts No No Yes

Observations 193,138 193,138 193,138
CO—whole pregnancy –.038 –.059* –.061*

(.028) (.034) (.035)
This content downloaded f
e subject to University of Chicago Pr
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ess Terms and Condi
9 on May 01, 2017 11
tions (http://www.jou
Note. Standard errors are in parentheses, clustered on family and municipality (neigh-
borhood). The dependent variable is the fourth-grade math SIMCE test score. All regres-
sions include year and month fixed effects interacted with monitor dummies. Demographic
controls include student gender, log of mother’s age, and dummies for mother’s education. En-
vironmental controls include second-degree polynomials in precipitation, fog, wind speed, and
dew point for each trimester. Temperature controls are constructed as follows: for each tri-
mester, we count days for which maximum temperature falls in each of six 10-degree Fahren-
heit bins, 40–49, 50–59, 60–69, 70–79, 80–89, ≥90. This results in 3 trimesters × 6 bins5
18 count variables. We also control for ozone pollution (level). All pollution measurements
are averaged within each trimester of pregnancy.We represent an air quality alert with a dummy
and sum within each trimester. Family size controls are a set of dummies based on the running
count of births (from one to six) to the same mother in our data. This count is an imperfect
proxy, weakly less than true family size at the time of a birth we observe. Within the constraints
imposed by our data, family size at birth and birth order are identical.

* p < .10.
** p < .05.
*** p < .01.
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ventional levels. The sums of exposure coefficients for movers and nonmovers are nearly
identical. This suggests that moves do not create a correlation between our CO expo-
sure measures and time-varying unobservable determinants of test scores.

Table 11 shows that CO exposure in trimesters prior to conception does not play a
role in determining test scores. This is important and reassuring, as it shows that our
All use s
Table 10. CO Effects on Math Scores, Interacted with Moving

OLS Sib FE Sib FE

CO—trimester 1 –.029 –.000 .001
(.019) (.018) (.019)

CO—trimester 2 –.001 –.020 –.021
(.011) (.016) (.016)

CO—trimester 3 –.007 –.035** –.037**
(.013) (.015) (.015)

CO—trimester 1 × mover .053* –.010 –.010
(.027) (.014) (.014)

CO—trimester 2 × mover –.000 –.008 –.008
(.016) (.017) (.017)

CO—trimester 3 × mover .041* .018 .018
(.022) (.012) (.012)

Sibling FE No Yes Yes
Air quality alerts No No Yes

Observations 193,138 193,138 193,138
CO—whole pregnancy –.037 –.055 –.058

(.027) (.034) (.036)
CO—whole pregnancy, mover .056 –.054 –.057

(.041) (.038) (.039)
This content downloaded from 1
ubject to University of Chicago Press Te
37.110.033.009 
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Note. Standard errors are in parentheses, clustered on family and municipality
(neighborhood). The dependent variable is the fourth-grade math SIMCE test score.
All regressions include year and month fixed effects interacted with monitor dummies.
Demographic controls include student gender, log of mother’s age, and dummies for
mother’s education. Environmental controls include second-degree polynomials in pre-
cipitation, fog, wind speed, and dew point for each trimester. Temperature controls are
constructed as follows: for each trimester, we count days for which maximum tempera-
ture falls in each of six 10-degree Fahrenheit bins, 40–49, 50–59, 60–69, 70–79, 80–89,
≥90. This results in 3 trimesters × 6 bins5 18 count variables.We also control for ozone
pollution (level). All pollution measurements are averaged within each trimester of preg-
nancy. We represent an air quality alert with a dummy and sum within each trimester.
The movers dummy equals 1 for mothers matched to two or more pollution monitors.

* p < .10.
** p < .05.
*** p < .01.
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time dummies and other controls are effective in capturing serial correlation in pollu-
tion exposure. Table 12 shows that in years after birth, the effect of pollution is not
generally statistically significant; however, the standard errors are too large to conclude
whether postnatal exposure can truly be harmful or not. Future research on this topic
would be useful to shed light on the importance of postnatal exposure, the role of
avoidance behaviors undertaken by parents after birth has occurred, and its impacts
on human capital production.27 Finally, table 13 presents falsification tests, modeling
predetermined variables as functions of CO exposure. Estimated effects on mother’s
27. W
mesters
nitude (
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Table 11. CO Effects on Math Scores, Placebo Trimesters

OLS Sib FE Sib FE

CO—trimester –3 .021 .014 .016
(.022) (.022) (.021)

CO—trimester –2 .021 –.019 –.013
(.025) (.029) (.029)

CO—trimester –1 .045* –.008 –.010
(.024) (.035) (.037)

Sibling FE No Yes Yes
Air quality alerts No No Yes
Observations 171,946 154,744 154,744
e also measure postnatal expos
1 to 6. The effects in the sibling
results available upon request).
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09 on May 01, 2017
ditions (http://www.
Note. Standard errors are in parentheses, clustered on family and municipality
(neighborhood). The dependent variable is the fourth-grade math SIMCE test score.
All regressions include year and month fixed effects interacted with monitor dummies.
Demographic controls include student gender, log of mother’s age, and dummies for
mother’s education. Environmental controls include second-degree polynomials in pre-
cipitation, fog, wind speed, and dew point for each trimester. Temperature controls are
constructed as follows: for each trimester, we count days for which maximum temper-
ature falls in each of six 10-degree Fahrenheit bins, 40–49, 50–59, 60–69, 70–79, 80–
89, ≥90. This results in 3 trimesters × 6 bins5 18 count variables. We also control for
ozone pollution (level). All pollution measurements are averaged within each trimester
of pregnancy. We represent an air quality alert with a dummy and sum within each tri-
mester. Sample size is smaller than for our primary estimates because pollution data do
not extend far enough back in time to construct placebo trimesters for some early births.

* p < .10.
** p < .05.
*** p < .01.
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age, father’s age, and mother’s education are near zero and statistically insignificant,
revealing no evidence of bias from gross misspecification.
5. CONCLUSION

In this paper, we merge data from the Chilean ministries of health and education with
pollution and meteorological data to assess the impact of fetal air pollution exposure
on human capital outcomes later in life. Data on air quality alerts and the use of sib-
ling fixed effects estimation allow us to address several potentially important concerns
about endogenous exposure to poor environmental quality. We find a strong and ro-
bust negative effect from fetal exposure to CO on math and language skills. Our re-
sults are also in line with the scientific literature suggesting the importance of the first
and third trimesters in fetal brain development. Our richest model specification sug-
gests that a 1 standard deviation increase in CO exposure during the third trimester of
All use s
Table 12. CO Effects on Math Scores, Postnatal Years

OLS Sib FE Sib FE

CO—year 1 .032 .007 .008
(.034) (.042) (.043)

CO—year 2 .040 .094** .087**
(.045) (.044) (.044)

CO—year 3 –.091 –.048 –.055
(.060) (.069) (.068)

CO—year 4 .061 .038 .026
(.159) (.142) (.142)

Sibling FE No Yes Yes
Air quality alerts No No Yes
Observations 193,138 193,138 193,138
This content downlo
ubject to University of Chic
aded from 137.110.03
ago Press Terms and C
3.009 on May 01, 2017
onditions (http://www.
Note. Standard errors are in parentheses, clustered on family and municipality
(neighborhood). The dependent variable is the fourth-grade math SIMCE test score.
All regressions include year and month fixed effects interacted with monitor dummies.
Demographic controls include student gender, log of mother’s age, and dummies for
mother’s education. Environmental controls include second-degree polynomials in pre-
cipitation, fog, wind speed, and dew point for each trimester or year. Temperature con-
trols are constructed as follows: for each trimester or year, we count days for which max-
imum temperature falls in each of six 10-degree Fahrenheit bins, 40–49, 50–59, 60–69,
70–79, 80–89, ≥90. This results in (3 trimesters × 6 bins) 1 (4 years × 6 bins) 5 42
count variables. We also control for ozone pollution (level). All pollution measurements
are averaged within each trimester or year of pregnancy. We represent an air quality
alert with a dummy and sum within each trimester or year.

* p < .10.
** p < .05.
*** p < .01.
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pregnancy is associated with a 0.036 standard deviation decrease in fourth-grade math
test scores and a 0.042 standard deviation decrease in fourth-grade language test
scores. Given the inherent challenges associated with improving education outcomes,
these impacts are sizable—roughly one-fifth the magnitude of successful interventions
that directly target educational performance in developing countries ( JPAL 2014).

Since school performance is an important driver of employment and wage out-
comes later in life (Chetty et al. 2011; Currie and Thomas 2012), the legacy of these
acute pollution exposures in utero can be long-lasting and economically significant. In
developing countries where pollution levels tend to be higher, those impacts may be
particularly large. In that regard, the dramatic transformation of air quality in Chile
from the early 1990s to the mid-2000s is instructive. During this period, which can
All use s
Table 13. Falsification Tests

Father’s Age Mother’s Age
Low Mother’s
Education

CO—trimester 1 .024 –.021 .0019
(.052) (.015) (.0033)

CO—trimester 2 –.0013 –.022 .0012
(.045) (.014) (.0027)

CO—trimester 3 –.033 –.011 –.0037
(.033) (.013) (.0037)

Sibling FE Yes Yes Yes
Air quality alerts Yes Yes Yes

Observations 193,138 193,138 193,138
CO—whole pregnancy –.011 –.054 –.001

(.098) (.029) (.007)
This content downloa
ubject to University of Chicag
ded from 137.110
o Press Terms and
.033.009 on May 01
 Conditions (http:/
Note. Standard errors are in parentheses, clustered on family and municipality
(neighborhood). The dependent variable is given in the column heading. All regressions
include year and month fixed effects interacted with monitor dummies. Demographic
controls include student gender, log of mother’s age (omitted in col. 2), and dummies
for mother’s education (omitted in col. 3). Environmental controls include second-
degree polynomials in precipitation, fog, wind speed, and dew point for each trimester.
Temperature controls are constructed as follows: for each trimester, we count days for
which maximum temperature falls in each of six 10-degree Fahrenheit bins, 40–49, 50–
59, 60–69, 70–79, 80–89, ≥90. This results in 3 trimesters × 6 bins 5 18 count var-
iables. We also control for ozone pollution (level). All pollution measurements are
averaged within each trimester of pregnancy. We represent an air quality alert with a
dummy and sum within each trimester.

* p < .10.
** p < .05.
*** p < .01.
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be viewed as a transition from typical developing country urban pollution levels to lev-
els that are closer to those found in typical developed country cities, average CO levels
in Santiago dropped by more than 50%. A back-of-the-envelope calculation using our
estimated human capital effects and estimates on the returns to test scores from the
United States (Blau and Kahn 2005) suggests that, ceteris paribus, this drop could
account for as much as $1,000 in additional lifetime earnings per child born under the
cleaner regime. During our sample period on average 100,000 children are born every
year in Santiago, suggesting a lifetime increase of US$100 million per cohort.28 It is
important to realize that most of the costs of pollution exposure might be borne by the
less fortunate. Such results may help explain patterns of wealth accumulation around the
world, where the poor tend to live in neighborhoods with low environmental quality,
which diminishes cognitive attainment and thus limits opportunities to rise out of pov-
erty. The sizable nonpecuniary benefits from education (Oreopoulos and Salvanes
2011) only serve to magnify these welfare impacts.

Our empirical results are also of direct importance for policy makers. Carbon mon-
oxide is directly regulated throughout the developed and an increasing share of the
developing world. Nearly all of these regulations are based on the benefits associated
with reductions in pollution-related health problems, mortality, and hospitaliza-
tions.29 Our results suggest that such an approach underestimates regulatory benefits
for at least two reasons. First, it completely ignores the human capital effects, which
have been largely invisible but may well rival the more dramatic health effects in mag-
nitude since they affect a much broader swath of the population. Second, it fails to
account for the costs of short- and long-run avoidance behaviors for which we find
evidence. While our empirical framework does not allow us to assess the magnitude
of these costs, they have been found to be substantial in other settings (Graff Zivin
28. This number is calculated as follows. The change in average CO levels between 1992 and
2002 is equivalent to a 1 standard deviation change in CO pollution levels. Using our sibling FE
results for math performance in the third trimester (this is conservative, as the improvement we
imagine will apply for the entirety of the pregnancy, rather than a specific trimester) implies that
this change in pollution levels generates a 0.036 SD improvement in test scores. Blau and Kahn
(2005) find that a 1 SD change in US adult test scores averaged across math and verbal reasoning
yields a 16.36% change in adult earnings after controlling for education levels (see table 2, col. 4,
in Blau and Kahn 2005). Applying this relationship betweenUS adult test scores and earnings to
Chilean children yields an annual wage increase of 0.58%. Finally, we apply this figure to average
adult wages in Chile (around US$11,000) and discount at a 5% rate over 30 years.

29. Two examples of such work in the context of Santiago, Chile, are worth mentioning. The
first is Dessus and O’Connon (2003), who examine the welfare implications of climate policy in
Santiago by including health costs. The second is the work of Figueroa et al. (2013), who esti-
mate the benefits due to reduced pollution in Santiago due to better public transit infrastructure.
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et al. 2011). The degree to which these “additional” benefits imply stricter regulation
will, of course, depend upon the costs and effectiveness of pollution reduction.30

While this paper provides new evidence in support of the fetal origins hypothesis
and its lasting legacy on human capital formation, many questions remain unanswered.
From a scientific perspective, the mechanisms behind these impacts remain murky.
Our evidence suggests that birth weight and gestational age are important channels
for these impacts, but they offer only a partial explanation. In the realm of human
behavior, much more work is needed to understand the role that households play in
shaping outcomes. The effects we measure are net of any parental investments that take
place between birth and test taking. The scale of these investments as well as their costs
and effectiveness are largely unknown. Do they vary by identifiable household charac-
teristics or over the life cycle of a child? A deeper understanding of the persistence of
these effects within and across generations is of paramount importance. Together these
comprise a future research agenda.
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