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The Effect of Pollution on Worker Productivity:  
Evidence from Call Center Workers in China†

By Tom Y. Chang, Joshua Graff Zivin, Tal Gross, and Matthew Neidell*

We investigate the effect of pollution on worker productivity in the 
service sector by focusing on two call centers in China. Using pre-
cise measures of each worker’s daily output linked to daily measures 
of pollution and meteorology, we find that higher levels of air pollu-
tion decrease worker productivity. These results manifest themselves 
at levels of pollution commonly found in large cities throughout the 
developing and developed world. (JEL J24, L84, O13, P23, P28, 
Q51, Q53)

A growing body of evidence finds that pollution can reduce the productivity of work-
ers in physically demanding occupations (Graff Zivin and Neidell 2012; Chang et 

al. 2014; Hanna and Oliva 2015; Archsmith, Heyes, and Saberian 2018; He, Liu, and 
Salvo 2016; Adhvaryu, Kala, and Nyshadham 2016; and Fu, Viard, and Zhang 2017)1. 
Nevertheless, the importance of these occupations to aggregate economic performance 
in modern economies, where the service and knowledge sectors account for the major-
ity of economic output, is quite modest. Thus, understanding whether pollution limits 
productivity in higher skilled, cognitively demanding professions is a question of tre-
mendous economic importance. In this paper, we provide the first examination of the 
effect of pollution on workers whose primary tasks require cognitive rather than physical  
performance.

In particular, we investigate the effect of pollution on call center workers using 
a unique panel dataset on the daily productivity of employees at a firm with offices 
in Shanghai and Nantong, China. Worker output at the call centers are routinely 

1 The Archsmith, Heyes, and Saberian (2018) study of baseball umpires is particularly interesting in the context 
of our study. While it is a physically demanding occupation, cognitive performance (e.g., calling balls and strikes) 
plays a significant role in worker productivity. 
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 monitored, providing precise measures of each worker’s daily output (Bloom et al. 
2015). This setting is important for several reasons.

First, while the prior literature has focused on manual labor that requires moderate 
to substantial physical exertion, the workers in our sample perform “desk jobs” that 
require minimal physical effort. As such, the mechanism by which pollution might 
affect productivity is likely to differ significantly. In addition, because the work 
environment is both indoors and climate controlled, it suggests that any impact is 
driven largely by particulate matter (PM) pollution, which easily penetrates indoors 
(Thatcher and Layton 1995, Vette et al. 2001) and is prevalent in our study areas. 
Exposure to PM pollution can potentially impair productivity through changes in 
cardiovascular and lung functioning (Seaton et al. 1995); irritation of the ear, nose, 
throat, and lungs (Pope 2000); as well as through direct impacts on cognitive per-
formance (Ebenstein, Lavy, and Roth 2014).

Moreover, China is a large economy whose dramatic growth over the past several 
decades has been accompanied by equally dramatic increases in pollution. By many 
metrics, China’s environmental quality ranks among the lowest in the world, rivaled 
only by major metropolitan areas in India that have witnessed a similar decline in 
air quality due to increased industrialization and urbanization. An effect on worker 
productivity would suggest that China’s prioritization of industrial expansion over 
environmental protection throughout the past few decades may have undermined 
some of the economic growth its policies were designed to achieve. The importance 
of strong environmental institutions to foster economic prosperity has implications 
for a wide range of countries that have yet to manage the pollution problems associ-
ated with urbanization and industrialization.

The call center we study is Ctrip, China’s largest travel agency. Several aspects 
of the firm’s operations allow us to credibly isolate the causal effect of pollution on 
the marginal product of labor. First, the workers have little discretion over their labor 
supply, a claim we confirm directly. This is important because such discretion could 
bias our productivity estimates due to changes in labor composition. If only the most 
productive workers come to work on polluted days, for example, we would under-
estimate the productivity effects of pollution. Second, daily variation in pollution in 
Shanghai and Nantong is plausibly unrelated to the firm’s output. The firm serves 
clients throughout China, and, thus, demand for the firm’s services on any given day 
is likely unrelated to local pollution on that particular day. Moreover, because calls 
are routed at random to the two locations, we can test directly whether such aggre-
gate-level correlation is driving our results.

Finally, a brief pilot program at Ctrip allows us to probe the influence of one 
potential confounder: traffic. Traffic is a potentially important confounder because it 
generates pollution and can directly reduce productivity by both creating emotional 
stress and making employees late for work. We study a randomized experiment at 
Ctrip that allowed some employees to work from home for part of our study period. 
That experiment enables us to examine directly the importance of traffic in explain-
ing our results.

Our analysis reveals a statistically significant, negative impact of pollution on 
the productivity of workers at the firm. A 10-unit increase in the air pollution index 
(API) decreases the number of daily calls handled by a worker by 0.35 percent on 
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average.2 Productivity declines are largely linearly increasing in pollution levels, 
with statistically significant results emerging at an API above 100 for some mea-
sures of productivity and 150 for all of them. These estimates are robust to the 
inclusion of meteorology controls, worker-specific fixed effects, and a number of 
robustness checks that support the contention that we are estimating causal effects. 
Furthermore, when we decompose this effect, we find that the decrease in calls 
comes from an increase in the amount of time spent on breaks rather than from 
changes in the duration of phone calls, a finding consistent with Bloom et al. (2015), 
who found that breaks were the most malleable aspect of productivity at this firm.

These findings build on a small but growing literature that uses high-frequency 
worker-level data to examine the impact of air pollution on worker productivity. He, 
Liu, and Salvo (2016) focuses on two textile factories in China and finds no effect of 
contemporaneous pollution on worker productivity. Adhvaryu, Kala, and Nyshadham 
(2014) studies a garment factory in India and finds significant negative effects of pol-
lution on workers’ productivity. In the United States, Graff Zivin and Neidell (2012) 
and Chang et al. (2016) find significant negative effects of pollution on the productiv-
ity of farm workers and factory workers, respectively. Below we compare the magni-
tudes of these estimates and discuss some of the reasons they may differ.

That we find significant effects that consistently manifest themselves at an API of 
150 also underscores that these impacts are not isolated to the most polluted cities 
in the developing world. Major metropolitan areas around the world, most of which 
employ considerably more nonmanual labor, exceed that level with varying degrees 
of frequency. For example, Los Angeles, California, experienced 13 days with API 
greater than 150 in 2014, and Phoenix, Arizona, experienced 33 such days, with 
nearly half of those exceeding an air quality index of 200.3

The remainder of our paper is organized as follows. In the next section, we dis-
cuss the air quality index used to measure pollution in China and the potential mech-
anisms through which particulate matter—the principal driver of that index—can 
generate impacts on labor productivity. In Section III, we describe the remainder of 
the data used for our analysis, and, in Section IV, we present our empirical strategy. 
Our results are presented in Section V, and Section VI concludes.

I. Background on Pollution

China, like most countries, releases a daily API, which is a composite measure 
of pollution that ranks air quality based on its associated health risks as a means to 
facilitate comprehensibility by the public. The index is cardinal, with higher val-
ues indicating poorer air quality. Index values less than 100 are generally deemed 
acceptable, those between 100 and 150 are labeled unhealthy for sensitive groups, 

2 While API is calculated by determining the maximum value for a nonlinear transformation of three separate 
pollutants (PM10, NO2, and SO2), as detailed in the next section, particulate matter is almost always the driver of 
API in our sample. More specifically, for the subset of data for which the driving pollutant is reported, particulate 
matter is the determining pollutant 99.2 percent of the time, and 100 percent of the time for days with an API greater 
than 100.

3 The index uses a nonlinear pollutant-specific formula to convert each pollutant into a metric meant to capture 
its relative health risk to the public. The reported index is based on the highest value amongst all indexed pollutants 
on a given day. See the EPA Air Quality Index Report: http://www3.epa.gov/airdata/ad_rep_aqi.html. 

http://www3.epa.gov/airdata/ad_rep_aqi.html.
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and impacts on the general population begin to emerge at levels greater than 150. 
The API in China converts concentrations of three criteria air pollutants into a single 
index, using an algorithm developed by the US Environmental Protection Agency 
(EPA 2006). The pollutant that has the highest index, referred to as the primary pol-
lutant, determines the API on a given day. In our dataset, for API levels of greater 
than 50, particulate matter smaller than 10 μg/m3 in diameter (PM10) is the primary 
pollutant over 99 percent of the time.4 As such, we devote the rest of this section to 
providing a basic scientific background on particulate matter pollution.

Particulate matter consists of airborne solid and liquid particles that range consid-
erably in size. PM is typically divided into fine PM, which includes all particles with 
a diameter of less than 2.5 μg/m3, and coarse PM, which includes all particles with 
a diameter between 2.5 and 10 μg/m3.5 Coarse PM penetrate into the lungs, while 
fine PM passes beyond the lung barrier to enter the bloodstream. Particles originate 
from a variety of sources and are largely the result of fossil fuel combustion, partic-
ularly when gases from power plants, industries, and automobiles interact. Given its 
diminutive size, PM can remain suspended in the air for extended periods of time 
and travel lengthy distances.

A large body of epidemiological and toxicological literature suggests that expo-
sure to PM harms health (see EPA 2004 for a comprehensive review). These risks 
arise primarily from changes in pulmonary and cardiovascular functioning (Seaton 
et al. 1995). Although extreme exposures (or more modest levels for sensitive pop-
ulations) can be debilitating, even relatively modest levels of exposure may have 
an impact on worker productivity due to changes in blood pressure; irritation in the 
ear, nose, throat, and lungs; and mild headaches (Ghio et al. 2000, Pope 2000, and 
Sorenson et al. 2003). Symptoms can arise in as little as a few hours after exposure, 
but effects may also be triggered after several days of elevated exposure, particularly 
for people with existing cardiovascular and respiratory conditions.

Particles at the finer end of the spectrum are a particularly important concern for 
two reasons. First, the diminutive size of fine PM allows it to easily penetrate build-
ings (Ozkaynak et al. 1996, Vette et al. 2001), making exposure difficult to avoid, 
even for office workers. Second, fine PM is small enough to be absorbed into the 
bloodstream and even travels along the axons of the olfactory and trigeminal nerves 
into the central nervous system (CNS), where it can become embedded deep within 
the brain stem (Oberdörster et al. 2004). This, in turn, can cause inflammation of 
the CNS, cortical stress, and cerebrovascular damage (Peters et al. 2006). Greater 
exposure to fine particles is associated with lower intelligence and diminished per-
formance over a range of cognitive domains (Suglia et al. 2008, Power et al. 2011, 
and Weuve et al. 2012). Consistent with this epidemiological evidence, a recent 
study of Israeli teenagers found that students perform worse on high-stakes exams 
on days with higher PM levels (Ebenstein, Lavy, and Roth 2014).

4 A primary pollutant is not reported when air quality is measured as “good’’ (i.e., API levels of 0 to 50).
5 Importantly, the API measure during our study period does not separately measure fine and coarse PM, but 

rather a single measure for particulate matter smaller than 10 μg/m3 in diameter (PM10). While we cannot separate 
out the effects of fine and coarse PM, given the fact that we examine productivity in an indoor, climate controlled 
environment where only fine PM can easily penetrate, we believe that it is these fine particulates that are driving 
our results.
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While the more dramatic health effects due to pollution exposure may lead to 
changes in labor supply, milder impairment of respiratory, cardiovascular, and 
cognitive function may reduce productivity on the intensive margin. Focus, con-
centration, and critical thinking are all essential components of office-based job 
performance and depend heavily on a well-functioning brain and CNS. The goal of 
our analysis is to estimate the effect of pollution on the marginal product of labor, 
independent of any possible effects on the extensive margin of labor supply. Given 
the ubiquity of office work and the value it adds to global economic output, the wel-
fare implications of any link between pollution and productivity in this setting are 
potentially enormous.

II. Data

Our data on worker productivity come from Ctrip International, China’s largest 
travel agency. Ctrip’s primary line of business involves making travel arrangements 
for clients. It earns revenue through commissions from hotels, airlines, and tour 
operators. In contrast to US and European-based agencies that operate in markets 
with deep internet penetration, Ctrip conducted much of its business on the tele-
phone during our study period. The firm was listed on the NASDAQ stock exchange 
in 2003 and its market capitalization was more than $15 billion by the end of 2015.

Our analysis is focused on Ctrip’s call center workers in Shanghai and Nantong 
who book travel for clients throughout China.6 The offices are located in large cli-
mate controlled buildings, and are filled with cubicles and modern telecommuni-
cations and computing hardware. Equipment and staffing practices are identical at 
both offices, and both sets of workers follow the same procedural guidelines. A cen-
tral server automatically routes customer calls and assignments to workers logged 
into the system, based on a computerized call-queuing system.

All workers in our sample receive compensation based partly on productivity. 
This productivity-based pay is primarily a function of call and order volumes, with 
additional adjustments made for call quality. As a result, Ctrip records various mea-
sures of the daily on-the-job performance of each of its call center workers. Most 
relevant for our analysis are three measures: number of phone calls handled per 
shift, number of minutes spent on the phone, and number of minutes logged in to the 
call center’s computer system (i.e., the number of minutes within the workday that 
workers are available to handle calls).7 We also use data on worker absences and 
hours worked to assess potential changes in labor supply. Our data span the period 
from January 1, 2010 to December 9, 2012, with different coverage periods for the 
two offices.8

An additional feature of our data is that, during part of our study period, Ctrip 
performed a controlled experiment to analyze whether working from home affected 

6 Nantong is approximately 100 kilometers north of Shanghai.
7 Call quality was assessed based on a 1 percent sample of recorded call transcripts that were audited and scored 

by an external review team. Unfortunately, we do not have access to this data.
8 The difference in data coverage periods is due to a combination of pollution data availability and the time cov-

erage of the productivity data provided by the firm. The Shanghai data sample runs from January 1, 2010 to August 
14, 2011. The Nantong sample runs from September 1, 2011 to December 9, 2012.
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worker performance. Approximately 250 employees from the Shanghai office 
worked from home during part of our study period, with a comparably sized control 
group. The experiment ran from December 6, 2010 until August 14, 2011, during 
which time the home-based workers were provided with the necessary equipment 
to allow them to perform their usual work responsibilities in a manner identical to 
that at the office. In Section IV, we exploit this experiment to test whether pollution 
affects workers even when they do not commute to the office. More details on call 
center operations and the work-from-home experiment can be found in Bloom et al. 
(2015).

Our daily pollution data are obtained from the China National Environmental 
Monitoring Center (CNEMC), which is affiliated with the Ministry of Environmental 
Protection of China. These data provide a measure of pollution that is based on the 
average API score across all monitors within a city. During our study period there 
were ten operating national pollution monitors in Shanghai and five in Nantong. 
Daily API measures are calculated in four steps: a 24-hour average pollution concen-
tration is calculated at the station level; a city average is calculated from the station 
averages; the city average is converted to API based on pollutant-specific formulas; 
and finally, the overall API is defined as the max of individual pollutant APIs.9 While 
we do not observe individual pollutant levels, we do know which pollutant is respon-
sible for a given day’s API for a subset of our data—for the Shanghai sample on days 
when API > 50. During our sample period, PM10 was the responsible pollutant on all 
but three days, and on all days with API levels of greater than 100.

Nonetheless, two features of this pollution data make it less than ideal for our 
purposes. First, these citywide measures of air quality provide an imperfect mea-
sure of pollution inside each call center. If this measurement error is classical, it 
will bias our estimated effect of pollution toward zero. Second, the pollutant most 
likely to impact workers in our setting, PM2.5, was not directly measured during this 
time period. Instead, we must rely on a proxy variable: measures of PM10, which 
includes measures of both particles smaller than 2.5 microns in diameter as well as 
those between 2.5 and 10 microns. As such, our findings cannot definitively attribute 
our measured effects to a particular pollutant.

Although discrepancies between CNEMC and data from the US embassy in 
Beijing have called into question the reliability of the CNEMC, recent work finds 
no evidence of manipulation in our study regions (Ghanem and Zhang 2014). To 
the extent that it may still exist, such manipulation should be unrelated to demand 
for travel services. As can be seen in Figure 1, the distribution of pollution in both 
Shanghai and Nantong are continuously distributed, with no evidence of displace-
ment around important cutoffs, such as when the API reaches 100.

Table 1 presents simple descriptive statistics for our sample. The average API in 
the merged sample is 66, with an average value of 65 in Shanghai and 69 in Nantong. 
In comparison, the median air quality index in New York City was 55 in 2014, 

9 Since citywide measures of pollution are likely to be a noisy measure of the exposure of individual workers in 
our sample, our estimates may be biased downward.
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Figure 1. Histograms of Pollution

Notes: These figures present the distribution of API observed on workdays in our data. See text for details.

Table 1—Sample Statistics

Overall Shanghai Nantong
(1) (2) (3)

Panel A. Environmental data
Air pollution index (API) 65.7 64.8 68.6

(41.4) (44.7) (29.0)
Temperature 66.9 69.5 58.7

(18.0) (17.8) (16.3)
API by bin:

API 0–50 36.9 36.7 37.7
(8.9) (8.8) (9.3)

API 50–100 68.7 68.4 69.7
(13.2) (12.9) (13.9)

API 100–150 121.2 121.2 121.1
(13.1) (12.1) (14.7)

API 150–200 161.9 162.3 160.5
(11.0) (12.4) (2.1)

API 200+ 404.3 404.3 –
(110.8) (110.8)

Panel B. Worker-Day level data
Number of worker-days 359,013 112,678 246,335
Calls 70.9 64.1 74.0

(45.1) (47.0) (43.9)
Logged-in minutes 413.3 441.5 400.4

(167.6) (164.5) (167.4)
Minutes on phone 222.5 182.1 241.0

(144.8) (142.2) (142.2)
Minutes per call 3.0 2.4 3.2

(1.2) (1.1) (1.2)

Notes: We measure temperature in degrees Fahrenheit. Standard deviations are in parentheses.
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although events in the far right tail are much more common in our study sample.10 
Our study includes 393 workers from Shanghai and 4,499 workers from Nantong, 
with this difference due to distinct sampling frames for workers across facilities as 
well as differences in the availability of environmental data. The Shanghai sample 
follows the subset of workers who participated in the work-from-home experiment 
from January 1, 2010 to August 14, 2011, while the Nantong sample includes all 
worker observations from September 1, 2011 to December 9, 2012. Importantly, 
one of the inclusion criteria for the work-from-home experiment was having at least 
six months tenure with the firm. Thus, the Shanghai sample, but not the Nantong 
sample, leaves out workers with short tenure at the firm. As a result, the number of 
worker-day observations between the two locations is more balanced than the num-
ber of workers at each office might suggest. Similarly, the difference in coverage 
periods for the two cities explains the weather differences between the two samples: 
the worker-days covered in Nantong are more likely to have occurred during winter 
than those in Shanghai.

Figure 2 describes the distribution of worker productivity. Panel A plots the dis-
tribution of calls per day, which appears to be normally distributed. On a typical day, 
workers handle an average of 66 calls. Panel B describes the average productivity 
across workers. There are two peaks in the data corresponding to two distinct types 
of worker tasks.11 As we describe below, Figure 4 shows that the impacts across pro-
ductivity quantiles is essentially flat, suggesting that all worker types are impacted 
similarly by pollution.

10 Figures are derived from the EPA Air Quality Index Report, which can be found at: http://www3.epa.gov/
airdata/ad_rep_aqi.html. Last accessed on February 9, 2016. 

11 There are two types of workers: workers that call customers directly, and workers that take calls from cus-
tomers. The workers that take calls from customers make relatively few calls per day, whereas the workers that 
make calls to customers make many calls per day. Those two groups lead to the “bimodal” distribution in panel B 
of Figure 2. Unfortunately, we only observe worker type for a subset of Shanghai workers. For those workers, we 
have confirmed that the overall productivity effects of pollution are similar. For the full sample, the fact that the 
overall results are robust to including worker fixed effects suggests that not observing worker type does not bias 
our estimates.
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III. Econometric Model

Our goal is to estimate the effect of pollution on worker productivity. We estimate 
the following hybrid production function:

(1) log(  y ijt   ) = β ×   API jt    +   X  jt  ′   γ +   δ t    +   α i    +   ε ijt   .

The outcome   y ijt    is the measure of daily productivity for each worker, either total 
number of calls per shift or the number of minutes logged in to the call center’s com-
puter system. Because workers clock out of the system when they are not available to 
field calls, this latter measure captures the length of a worker’s breaks taken during 
the workday. The variable API is a daily average measure of the air pollution index 
in city j, where β captures the effect of API on our two measures of productivity. 
Although we specify API linearly here, we also include specifications with a series 
of API indicator variables to capture potential nonlinear effects of pollution on the 
outcome of interest. The vector   X t    includes temperature, the only other covariate we 
consistently observe at both locations. The parameter δ includes day-of-week and 
year-month indicator variables to account for trends within the week and over time. 
The variable   α i    is a worker-specific fixed effect for those specifications that rely only 
on within-worker variation in pollution exposure to identify impacts on productiv-
ity. Because the error term ε likely exhibits autocorrelation between observations 
based on the same worker or for all workers on the same day of PM measurement, 
we allow for two-way clustering (Cameron, Gelbach, and Miller 2011) along those 
dimensions.

There are several challenges to uncovering a causal effect of pollution on worker 
productivity. First, individuals can sort into locations based on the amount of pollu-
tion in that area, leading to nonrandom assignment of pollution. Moreover, within 
a location, an individual’s labor supply might change in response to pollution. 
Although the high-frequency-panel nature of our data allows us to overcome the 
issue of geographic selection—workers are unlikely to sort on daily fluctuations in 
pollution levels—sample selection due to pollution-induced changes in labor sup-
ply remains a potential concern. For example, workers who are most susceptible 
to pollution may be those least likely to work on more polluted days, thus biasing 
our estimates of worker productivity if the most susceptible workers also differ in 
their average level of productivity. Similar concerns regarding worker composition 
apply if the most susceptible workers shorten their workday in response to pollution. 
Because workers have very few sick days and limited discretion over their work 
hours, we suspect that extensive-margin responses of this sort are unlikely in our 
sample. We explicitly test this claim by examining whether API relates to the prob-
ability of working and the number of hours worked (using the regression equation 
above) and find no effect of API levels on either measure of labor supply.

Another threat to identification lies in the existence of a local factor that both 
creates local pollution and has a direct effect on worker productivity. Indeed, if 
firms are directly responsible for much of the local air pollution, a naïve analy-
sis may erroneously conclude that pollution increases productivity. Although this 
may be a substantial concern for pollution-intensive firms, such as those engaged in 
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heavy manufacturing, this type of direct linkage between firm-level pollution and 
 productivity is unlikely at the call center that we study or the service sector, more 
generally.

Of course, indirect linkages also can confound inference in this type of analysis. 
While it is impossible to rule out all potential factors that may generate a spurious 
relationship between pollution and productivity, the most salient concern relates 
to vehicular traffic. The transportation sector is a major contributor to urban air 
pollution (Fenger 1999), and increases in roadway congestion can simultaneously 
increase air pollution and commute time for workers.

As described earlier, our analysis of extensive-margin changes in hours 
worked does not find any evidence for commute-related changes in the length 
of the workday. Productivity changes on the intensive margin remain a concern 
if the stress and aggravation from an arduous commute alter performance on the 
job. To test whether such a traffic channel confounds the results, we exploit a 
unique feature of our data. For part of the period for which we have data, a sub-
set of workers was randomly assigned to work from home (Bloom et al. 2015). 
Because employees who worked at home had no commute, their productivity 
should be unaffected by traffic, thus allowing us to isolate the pollution impacts of  
interest.

A final concern regarding identification relates to demand-mediated effects. If 
higher levels of pollution are the result of increased economic activity and travel 
is a normal good, higher pollution levels could lead to greater demand for Ctrip’s 
services. To the extent that worker slack exists, such changes in demand could 
conceivably lead to changes in worker productivity. As the largest travel agency in 
China, Ctrip draws its clients from a broad geographic base both across mainland 
China and internationally. This fact greatly minimizes concerns that our measured 
impacts of local air pollution on productivity are driven by demand-side factors. 
To further bolster this claim, we also test whether a common demand-level shock 
is driving our results by regressing productivity in Shanghai on Nantong pollution 
and vice versa, as well as the effect of Beijing pollution—the most polluted city in 
China—on productivity in Shanghai and Nantong.

IV. Empirical Results

This section presents our empirical results. We begin by exploring the impacts of 
pollution on the extensive margin through changes in labor supply. This is followed 
by an analysis of the effect of pollution on the intensive margin through changes in 
productivity as well as a decomposition of this effect. Finally, we present a series of 
robustness checks.

A. The Extensive Margin: Labor Supply

Our first task is to assess whether pollution affects labor supply in this setting. 
Table 2 presents these results. The first column of panel A presents results from 
a regression in which the dependent variable is an indicator variable for whether 
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a worker comes to work on a given day. To address planned vacations, we drop 
absence spells of more than five consecutive days from the  sample.12 We find a 
small, statistically insignificant relationship between pollution and the probability 
of working, shown in column 1 of Table 2. The third column of panel A repeats the 
analysis with a focus on shift length for the subsample of workers on which we have 
detailed timestamp records.13 We find a similarly insignificant effect of pollution 

12 We have 359,013 observations of days when a worker works. When we include days for which an active 
worker does not work (excluding absence spells of longer than five days), that number increases to 528,001 days. 

13 Because we have “timeclock” data for only a subset of our sample, the number of observations drops to 
171,713 when examining shift length. We also drop worker-day observations for which the implied shift length is 
implausible: less than 15 minutes, longer than 12 hours, or shorter than the recorded amount of time spent on the 
phone for that shift.

Table 2—Effect of Pollution on Call Center Labor Supply

Dependent variable: Worked that day Hours worked

(1) (2) (3) (4)

Panel A. Linear
API/10 −0.0004 −0.0004 −0.0004 −0.0007

[0.0009] [0.0009] [0.0047] [0.0046]
Temperature −0.001 −0.001 0.0058 0.0057

[0.0028] [0.0026] [0.0091] [0.0088]
Temperature squared/1,000  0.0118  0.0116  −0.0305 −0.0300

[0.0201] [0.0187] [0.0771] [0.0739]

R2 0.029 0.074 0.046 0.115
Observations 528,001 528,001 171,713 171,713
Worker fixed effects ✓ ✓

Panel B. Nonlinear
API 50–100 0.0112 0.0100 0.0055 0.0054

[0.0076] [0.0074] [0.0053] [0.0051]
API 100–150 −0.0013 −0.0017 0.0049 0.0043

[0.0137] [0.0135] [0.0073] [0.0071]
API 150–200 −0.0121 −0.0111 −0.001 −0.0006

[0.0141] [0.0128] [0.0094] [0.0089]
API 200+ −0.0249 −0.0238 −0.0183 −0.0206

[0.0229] [0.0229] [0.0340] [0.0330]
Temperature 2.9620 2.4158 3.2119 0.0006

[1.2183] [1.0740] [1.1987] [0.0012]
Temperature squared/1,000 0.0096 0.0097 −0.0040 −0.0038

[0.0199]  [0.0185] [0.0106] [0.0101]
R2 0.029 0.074 0.032 0.101

Observations 528,001 528,001 171,713 171,713
Worker fixed effects   ✓ ✓

Notes: Columns 1 and 2 present linear probability models; columns 3 and 4 present regres-
sion estimates when the logarithm of hours worked is the outcome of interest. Standard errors 
in brackets are clustered on date and worker. The sample consists of worker-day observations 
in both the Shanghai and Nantong offices. All regressions include year-month-specific fixed 
effects and a control for the day of the week. 
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on hours worked. Both coefficients remain largely unchanged by the addition of 
worker-specific fixed effects, presented in columns 2 and 4 of Table 2, respectively.

We can also rule out very small effects based on these estimates. For example, 
the lower 95 percent confidence interval for the probability of working is 0.17 per-
cent, while the estimate for hours worked (in the fixed effects specification) implies 
a 0.5-minute decrease in time at the office. Both estimates are sufficiently small 
that we are confident that we can conclude that labor supply is unaffected by air 
pollution.

Panel B of Table 1 repeats this exercise with indicator variables for API between 
50 and 100, 100 and 150, 150 and 200, and 200 plus (with API less than 50 as the 
reference group). That specification explores potential nonlinear effects of pollution 
on labor supply. As in the linear case, we find no evidence of pollution impacts on 
the extensive margin.

This absence of an effect on labor supply is consistent with the institutional reali-
ties of the Ctrip workplace, as described earlier. It also implies that our estimates of 
the effect of pollution on productivity that follow are not affected by sample-selection 
bias.

B. The Intensive Margin: Worker Productivity

Table 3 presents estimates of our main regression specification.14 The first col-
umn of panel A suggests that a 10-unit increase in API decreases the number of 
calls per shift by 0.35 percent, an effect statistically significant at the 1 percent 
level. Adding worker-specific fixed effects, shown in column 2, does not apprecia-
bly change our estimate. Columns 3 and 4 present estimates of the same regression, 
but with the logarithm of minutes logged in per shift as the dependent variable. 
Similar to the effect on the number of phone calls, we find that minutes logged in 
decreases in response to pollution. Column 3 implies that a 10-unit change in API 
reduces minutes logged in by 0.25 percent, a finding that is statistically significant 
and robust to the inclusion of worker-specific fixed effects.15

Panel B of Table 3 repeats this analysis using the same flexible specification of 
API as in the previous table. Across columns we find a similar pattern of coefficients. 
Specifically, we find that productivity monotonically decreases in pollution levels, 
with statistical significance emerging for minutes logged in at API levels exceeding 
100, and near statistical significance for impacts on the number of calls. All results 
are statistically and economically significant for pollution levels exceeding 150. To 
compare to the linear estimates, we plot the nonlinear coefficients alongside the 
linear effects calculated for the midpoint of each bin, shown in Figure 3, based on 
the cross-sectional estimates for the number of calls. As evident in the figure, the 
more-flexible estimates align quite closely with the linear estimates. The divergence 
in the highest bin reflects that the linear estimate is based on an API of 225, while 

14 The decrease in sample size in Table 3 relative to the extensive-margin regressions in columns 1 and 2 of 
Table 2 is due to the fact that the extensive-margin regressions include worker-day observations for days on which 
the worker does not work (i.e., the average worker works just under five days a week).

15 Including a control for trends (linear, quadratic, and cubic) does not materially affect these results (results 
not shown).
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the bin includes all API measures above 200. In general, these estimates suggest an 
approximately linear effect of pollution on worker productivity.

Based on the results in Table 3, it is unclear whether the decline in the number of 
calls handled by workers over the course of their shift is driven exclusively by the 
observed reductions in the amount of time logged into the call system or the dura-
tion of those calls. Table 4 presents results that decompose these two channels. The 
first column examines the impact of pollution on the total amount of minutes spent 
on the phone per shift. Column 3 examines the impact of pollution on the amount of 
time spent on each call. The effect of pollution on time on the phone appears to be 
driven entirely by time logged in and thus the availability of workers to handle calls; 
time spent on each call is unaffected by pollution. These results are robust to the 
inclusion of worker-specific fixed effects (columns 2 and 4 of Table 4) and follow 
a similarly nonlinear pattern as those presented in Table 3. Thus, it appears that the 
productivity effects of pollution revealed in Table 3 are driven by workers taking 
more frequent or longer breaks. This finding is consistent with the results of Bloom 

Table 3—Effect of Pollution on Call Center Productivity

Dependent variable: Number of calls Minutes logged in

(1) (2) (3) (4)

Panel A. Linear
API/10 −0.0035 −0.0029 −0.0025 −0.0021

[0.0013] [0.0012] [0.0010] [0.0009]
Temperature 0.0008 0.0017 0.0025 0.0031

[0.0030] [0.0023] [0.0020] [0.0018]
Temperature squared/1,000 −0.0029 −0.0021 −0.0124 −0.0173

[0.0230] [0.0172] [0.0150] [0.0132]

R2 0.136 0.592 0.087 0.238
Observations 359,013 359,013 359,013 359,013
Worker fixed effects ✓ ✓

Panel B. Nonlinear
API 50–100 −0.0049 −0.0027 −0.0126 −0.0100

[0.0124] [0.0104] [0.0072] [0.0066]
API 100–150 −0.0301 −0.0283 −0.0285 −0.0228

[0.0188] [0.0173] [0.0131] [0.0125]
API 150–200 −0.0550 −0.0486 −0.0733 −0.0646

[0.0143] [0.0165] [0.0150] [0.0142]
API 200+ −0.1452 −0.0919 −0.0374 −0.0417

[0.0116] [0.0258] [0.0165] [0.0159]
Temperature 0.0007 0.0016 0.0023 0.003

[0.0031] [0.0022] [0.0020] [0.0018]
Temperature squared/1,000 −0.0036 −0.0024 −0.0108 −0.0162

[0.0220] [0.0170] [0.0148] [0.0130]

R2 0.136 0.592 0.088 0.238
Observations 359,013 359,013 359,013 359,013
Worker fixed effects   ✓ ✓

Notes: The logarithm of the indicated dependent variable is the outcome of interest. Standard errors in brackets are 
clustered on date and worker. The sample consists of worker-day observations in both the Shanghai and Nantong 
offices. All regressions include year-month-specific fixed effects and a control for the day of the week.
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et al. (2015), who found that breaks were the most affected aspect of productivity in 
this study population.

To test whether the effect of pollution is heterogeneous in baseline worker pro-
ductivity, we estimate our equation for the two main productivity outcomes using 
quantile regressions. The coefficients from these regressions along with their 95 per-
cent confidence intervals are shown in Figure 4. The figure clearly shows that, with 
the exception of the lowest decile, which has by far the largest confidence interval, 
the coefficients are nearly identical across quantiles for both our main measures of 
productivity. These results indicate that the effect of air pollution on productivity is 
remarkably stable across workers, equally affecting both low and high productivity 
types and thus workers performing different tasks for the firm (e.g., accepting versus 
placing calls) who vary in their average levels of productivity.

While all of the analyses thus far have assumed a contemporaneous effect of 
pollution on worker productivity, the effect of pollution may accrue over time. As 
such, we explore a more dynamic regression specification in which we also include 
lagged measures of pollution. We also include a lead of pollution in this specifica-
tion as a falsification test; future pollution should not affect current productivity. 
The results from this exercise are summarized in Figure 5, which presents estimates 
from a regression of calls per day (panel A) and total minutes logged in (panel B) 
on contemporaneous pollution, three lags, and one lead, while controlling for all of 
the covariates included in our main regressions above. The effect from contempo-
raneous pollution is statistically significant and larger than the effect from the lags, 
with only the three-day lag on total minutes on the phone significant at the 5 percent 
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Figure 3. Comparison of Nonlinear and Linear Point Estimates

Notes: This figure compares implied estimates from the two specifications in the first column of Table 3. The out-
come of interest is the logarithm of the number of calls by day. The square markers plot “nonlinear” point estimates 
from a regression in which we indicate API using mutually exclusive and exhaustive indicator functions. The circle 
markers plot point estimates from a regression in which we control for API with a single scalar variable. The shaded 
region plots 95 percent confidence intervals for the linear estimation, and the brackets plot 95 percent confidence 
intervals for the nonlinear specification. See text for details.
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level. Since all other lagged effects are small and statistically insignificant, we view 
this evidence as supportive of the notion that pollution effects are rather  immediate. 
Reassuringly, the coefficient on future pollution is statistically insignificant and 
smaller in magnitude than the contemporaneous coefficient.

C. Robustness Checks

As discussed in the previous section, two remaining concerns could threaten the 
internal validity of the analysis. First, traffic may be a source of both air pollution 
and a factor that affects worker productivity. Second, the impacts that we find on 
worker productivity may be the result of changes in the demand for Ctrip services. 
Since Ctrip serves clients across China, this is tantamount to a concern that local 
pollution near the call center is correlated with national pollution levels that shape 
aggregate demand for travel. We discuss each of these in turn.

In order to assess the role of traffic, we analyze the effect of air pollution on work-
ers that participated in a randomized control trial to test the effects of working from 

Table 4—Decomposition of the Effect of Pollution on Productivity

Dependent variable: Minutes on phone Minutes per phone call

  (1) (2) (3) (4)
Panel A. Linear
API/10 −0.0036 −0.0028 0.0000 0.0001

[0.0015] [0.0013] [0.0006] [0.0005]
Temperature −0.0006 −0.0001 −0.0014 −0.0018

[0.0034] [0.0025] [0.0010] [0.0007]
Temperature squared/1,000  −0.0001  0.0067  0.0028  0.0088

[0.0241]  [0.0184] [0.0079] [0.0056]

R2 0.220 0.731 0.253 0.670
Observations 359,013 359,013 359,013 359,013
Worker fixed effects ✓ ✓

Panel B. Nonlinear
API 50–100 −0.0033 −0.0042 0.0016 −0.0015

[0.0148] [0.0117] [0.0078] [0.0061]
API 100–150 −0.033 −0.0305 −0.0029 −0.0022

[0.0217] [0.0189] [0.0077] [0.0052]
API 150–200 −0.0409 −0.0412 0.0141 0.0074

[0.0174] [0.0197] [0.0102] [0.0083]
API 200+ −0.1418 −0.0747 0.0033 0.0172

[0.0212] [0.0356] [0.0200] [0.0160]
Temperature −0.0007 −0.0002 −0.0014 −0.0018

[0.0034] [0.0025] [0.0010] [0.0007]
Temperature squared/1,000 −0.0008 0.007 0.0028 0.0094

[0.0243] [0.0185] [0.0080] [0.0057]

R2 0.220 0.731 0.253 0.670
Observations 359,013 359,013 359,013 359,013
Worker fixed effects ✓ ✓

Notes: The logarithm of the indicated dependent variable is the outcome of interest. Standard 
errors in brackets are clustered on date and worker. The sample consists of worker-day obser-
vations in both the Shanghai and Nantong offices. All regressions include year-month-specific 
fixed effects and a control for the day of the week.
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home. That experiment allows us to measure the impact of pollution on workers 
who worked from home (and therefore did not have to commute to work) compared 
to the control group (those who volunteered for the experiment but worked from 
the office) for the duration of the experimental period (December 6, 2010 through 
August 14, 2011). Table 5 presents the results of this analysis. Columns 1 and 2 
present the effect of pollution on the logarithm of the number of phone calls taken 
by workers who worked from the office and at home, respectively. In both cases, the 
coefficient is negative and statistically significant at conventional levels, and com-
parable to estimates in Table 2. Columns 3 and 4 of Table 5 present the effect of pol-
lution on the logarithm of minutes logged in to the system for workers who worked 
from the office and their homes, respectively. The coefficient is again  negative, but 
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Figure 5. Effect of Pollution over Time

Notes: These figures present point estimates from a regression of the logarithm of the given outcome on the con-
temporaneous air pollution index, the index over the past three days, and the index the next day. The regression 
includes controls for year-month, day of week, hotel-worker status, temperature, and temperature squared. See text 
for details.
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Figure 4. Quantile Regression Results

Notes: These figures present quantile estimates for the logarithm of the given outcomes on a linear control for API. 
The quantile regressions include controls for year-month, day of week, hotel-worker status, temperature, and tem-
perature squared. The dashed lines plot 95 percent confidence intervals that are clustered on date and worker.
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in this case neither is statistically significant at conventional levels, likely a reflec-
tion of our greatly reduced sample during this experimental period.16 That the point 
estimates for the workers in the office are not statistically significantly different 
from those that work at home suggests that traffic is unlikely to be a source of con-
founding for the productivity effects described in the previous section.17

Table 6 explores the possibility that the observed effect of pollution is driven 
by demand-side factors. To test for such a possibility, we repeat our main analysis 
with controls for the API in the other city: we add data on the pollution in Nantong 
for Shanghai workers and pollution in Shanghai for Nantong workers. Thus, the 
coefficient on other API will reflect the degree to which Nantong pollution affects 
productivity in Shanghai, and vice versa. A priori, we would not expect to see a 
statistically significant effect from pollution in a different location unless they were 
driven by a common factor correlated with aggregate demand. As an additional test 
of demand side factors, we also include data on the API from Beijing. In all cases, we 
find that the coefficient for pollution from a different location is much smaller and 
statistically insignificant, while the coefficient for own-location pollution remains 
statistically significant and largely unchanged.

Since calls are randomly routed to each location, we should not expect to see sig-
nificant differences by location. Reassuringly, Table 6 suggests qualitatively similar 
results: no effect of pollution on labor supply, and a negative relationship between 
pollution and productivity. While the point estimates on productivity appear slightly 
larger for the Nantong sample, they remain statistically indistinguishable from those 
in Shanghai, providing additional support for our pooling strategy.

16 Note that the increase in standard errors for the analysis on this subset of workers is likely due to a combina-
tion of the much smaller sample size and an increase in classical measurement error. Given the long commutes of 
many of the workers, their amount of pollution exposure may be measured with more error (see Bloom et al. 2015 
for details regarding the characteristics of the workers in the Working From Home experiment)

17 Including worker fixed effects does not meaningfully affect the results (Appendix Table A1). 

Table 5—Effect of Pollution on Workers Working from Home

Dependent variable: Number of calls Minutes logged in

Location Work Home Work Home
  (1) (2) (3) (4)
API/10 −0.0057 −0.0031 −0.0022 −0.0004

[0.0016] [0.0009] [0.0012] [0.0007]
Temperature 0.0086 0.0100 −0.0011 −0.0034

[0.0023] [0.0032] [0.0015] [0.0019]
Temperature squared/1,000 −0.0418 −0.0578  0.0055 0.0236

[0.0150] [0.0154] [0.0104] [0.0132]

R2 0.348 0.209 0.090 0.026
Observations 11,897 14,886 11,892 14,800

Notes: The logarithm of the indicated dependent variable is the outcome of interest. Standard errors in brackets are 
clustered on date and worker. The sample consists of worker-day observations in both the Shanghai and Nantong 
offices. All regressions include year-month-specific fixed effects and a control for the day of the week.
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Table 7 repeats our core analysis separately by city.18 Since calls are randomly 
routed to each location, we should not expect to see significant differences by 

18 Including worker fixed effects does not meaningfully change the results (Appendix Table A2).

Table 7—Results Separately by City

  (1) (2) (3) (4) (5) (6)

Dependent variable: Worked Hours Calls Minutes logged Calls Minutes 
logged

Baseline specification ✓ ✓ ✓ ✓
Time-series specification ✓ ✓

Panel A. Shanghai
API/10 −0.0004 −0.0069 −0.0026 −0.0010 −0.0021 −0.0007

[0.0005] [0.0046] [0.0004] [0.0004] [0.0007] [0.0004]

R2 0.043 0.051 0.236 0.040 0.378 0.488
Observations 171,978 34,511 112,678 112,678 589 589

Panel B. Nantong
API/10 0.0001 0.0024 −0.0041 −0.0038 −0.0022 −0.0024

[0.0016] [0.0065] [0.0022] [0.0017] [0.0016] [0.0010]

R2 0.025 0.041 0.085 0.079 0.679 0.914
Observations 356,023 137,202 246,335 246,335 189 189

Notes: Column 1 presents linear probability models; in columns 2 through 4, the logarithm of the indicated depen-
dent variable is the outcome of interest. Standard errors in brackets are clustered on date and worker. All regressions 
include year-month-specific fixed effects and a control for the day of the week. The baseline specification is one in 
which every observation is a worker-day; the time-series specification consists of one cell mean for each city-day.

Table 6—Effect of Pollution in Other Cities

Dependent variable: Number of calls Minutes logged in
  (1) (2) (3) (4)

API/10 −0.0032 −0.0030 −0.0023 −0.0022
[0.0015] [0.0012] [0.0012] [0.0009]

Other city’s API 0.0003 0.0006
[0.0015] [0.0010]

Beijing API −0.0009 −0.0011
[0.0013] [0.0008]

Temperature 0.0036 0.0025 0.0035 0.0041
[0.0032] [0.0025] [0.0027] [0.0020]

Temperature squared/1,000 −0.0289 −0.0072 −0.0196 −0.0232
[0.0264] [0.0182] [0.0214] [0.0137]

R2 0.541 0.592 0.230 0.238
Observations 292,174 359,013 292,174 359,013

Notes: The logarithm of the indicated dependent variable is the outcome of interest. Standard 
errors in brackets are clustered on date and worker. The sample consists of worker-day obser-
vations in both the Shanghai and Nantong offices. All regressions include year-month-specific 
fixed effects, worker-specific fixed effects, and a control for the day of the week. “Other city’s 
API” refers to Nantong API for Shanghai workers and Shanghai API for Nantong workers. 
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 location. Reassuringly, Table 7 suggests qualitatively similar results: no effect of 
pollution on labor supply, and a negative relationship between pollution and pro-
ductivity. While the point estimates on productivity appear slightly larger for the 
Nantong sample, they remain statistically indistinguishable from those in Shanghai, 
providing additional support for our pooling strategy.

Finally, in Table 8, we further explore the impact of meteorology on our base-
line results, shown in column 1. In column 2, we present results that do not control 
for temperature, while in column 3 we show results that replace the quadratic in 
temperature with indicator functions for temperature ranges (Fahrenheit) below 40 
degrees, 40 to 50 degrees, 50 to 60 degrees, 60 to 70 degrees, 70 to 80 degrees, and 
above 80 degrees. Columns 4 and 5 of Table 8 repeat this exercise, but focus on 
precipitation. Unfortunately, such data are only available for Shanghai, so we only 
show results focusing on workers in that city. As with outdoor temperature, exclud-
ing controls for precipitation (column 4) yields nearly identical results to including 
it (column 5). Together, these results suggest that, as expected, outdoor climatic 
conditions do not affect workers in an indoor, climate-controlled environment.

V. Conclusion

In this paper, we analyze the relationship between air pollution and the produc-
tivity of individual workers at a large call center in China. We find that a 10-unit 
increase in the air pollution index decreases the number of daily calls handled by a 
worker by 0.35 percent. Our analysis also suggests that these productivity losses are 
largely linearly increasing in pollution levels. To our knowledge, this is the first evi-
dence that the negative impacts of pollution on worker productivity extend to labor 
markets beyond those centered on physically demanding labor.

Table 8—Robustness Tests

Baseline 
results

No temperature 
controls

Flexible 
temperature controls

Shanghai 
baseline results

Shanghai with 
precipitation controls

  (1) (2) (3) (4) (5)
Panel A. Dependent variable: Logarithm of number of calls
API/10 −0.0035 −0.0035 −0.0033 −0.0026 −0.0027

[0.0013] [0.0013] [0.0013] [0.0004] [0.0004]

R2 0.136 0.136 0.136 0.236 0.236
Observations 359,013 359,013 359,013 112,678 112,678

Panel B. Dependent variable: Logarithm of minutes logged in
API/10 −0.0025 −0.0023 −0.0023 −0.0010 −0.0010

[0.0010] [0.0010] [0.0010] [0.0004] [0.0005]

R2 0.087 0.087 0.088 0.040 0.041
Observations 359,013 359,013 359,013 112,678 112,678

Notes: Standard errors in brackets are clustered on date and worker. The sample consists of worker-day observa-
tions in both the Shanghai and Nantong offices. All regressions include year-month-specific fixed effects and a 
control for the day of the week. Regressions presented in columns 1, 4, and 5 include controls for temperature and 
squared temperature; the regression presented in column 3 includes 6 indicator functions for temperature ranges 
below 40 degrees, 40 to 50 degrees, 50 to 60 degrees, 60 to 70 degrees, 70 to 80 degrees, and above 80 degrees (all 
in Fahrenheit).
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To place these results in context, it is instructive to compare them to estimates 
found in prior research that focused on other economic sectors. The estimates from 
column 1 of Table 3 imply an elasticity of 0.023. He, Liu, and Salvo (2016) studies 
Chinese textile factories and finds much smaller elasticities—0.0025 for PM2.5 and 
0.005 for SO2—which are indistinguishable from zero. In contrast, Adhvaryu, Kala, 
and Nyshadham (2014) finds an elasticity of 0.052 for garment factory workers in 
India, or more than double our estimate. Prior work in the United States has found 
an elasticity of 0.08 for manufacturing (Chang et al. 2016) and 0.26 for outdoor agri-
cultural work (Graff Zivin and Neidell 2012), both significantly larger than what we 
find here. Several factors likely contribute to these differences in magnitude. First, 
the studies examine different pollutants, which generate productivity effects through 
distinct biological mechanisms. Second, the physical demands of each occupation 
vary, and laboratory evidence indicates that increased respiratory rates associated 
with physical activity can exacerbate the effects of pollution (Lippmann et al. 2003). 
Finally, measurement error may also play an important role. With the exception of 
Adhvaryu, Kala, and Nyshadham (2014), none of the papers have a direct measure 
of pollution at the work site, but instead rely on data from outdoor pollution moni-
toring stations or satellite data that vary in their spatial resolution and proximity to 
the work site. As such, understanding the scope of applicability of these results is an 
important area for future research.

While our point estimates are generally smaller than those for other sectors, the 
impacts for China and other rapidly industrializing countries with sizable service 
sectors and persistent pollution problems are profound. That statistically significant 
effects emerge in some dimensions when the API exceeds 100 and for all outcome 
measures at an API of 150 suggests that this may not simply be an issue for the 
world’s most polluted cities, since such levels obtain with some frequency in urban 
environments around the world. Given the size of the service and knowledge sectors 
in the developed world, and the relatively high levels of labor productivity within 
them, even very small impacts from pollution could aggregate to rather substantial 
economic damages.19 As such, understanding the scope of applicability of these 
results is an important area for future research.

While call center work is mental rather than physical work, it is important to 
emphasize that it remains a semiskilled occupation. If our measured productivity 
impacts are the result of diminished cognitive function, the negative impacts of pol-
lution may well be larger for high-skilled occupations that form the backbone of the 
service and information economy. The development of suitable measures of produc-
tivity in those occupations and assessing its relationship with environmental quality 
represents a fruitful area for future research.

19 A simple back-of-the-envelope calculation may be useful to get a sense of the potential scale of the overall 
impact. The coefficient from our simple linear specification in column 1 of Table 3 implies that a 10-unit change in 
the API translates into a 0.35 percent change in daily productivity. Under the very strong simplifying assumption 
that this effect applies to all service sector workers in China, an across the board 10-unit reduction in national 
pollution levels would increase the monetized value of worker productivity by more than $2.2 billion per year in 
US dollars. In the United States, Los Angeles, California, experienced 90 days in 2014 where the air quality index 
exceeded the EPA standard. If all of those days were brought into regulatory compliance, service sector productivity 
in the county of Los Angeles would have been $374 million larger.
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