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1 Introduction

Despite the central importance of risk preferences in economics and the potential for in-

surance to solve risk-driven poverty traps (Brick and Visser, 2015), our understanding of

the drivers of insurance demand remains incomplete. The welfare benefits of insurance ap-

pear to be particularly important in agriculture, where weather risk plays a dominant role

(Rosenzweig and Binswanger, 1992). New types of index insurance, in which payouts are

based on a pre-defined index (such as local rainfall), can provide insurance against aggre-

gate shocks without creating moral hazard (Barnett and Mahul, 2007). From a perspective

motivated by the Townsend (1994) model of village-level risk pooling, these products appear

ideal in that they insure precisely the correlated shock that cannot be smoothed by local

risk pooling mechanisms. Yet, when introduced in the field these products have almost uni-

versally met with disappointing demand (Cole et al., 2013) and several studies have found

that interlinking index insurance with credit products actually dampens the demand for

credit (Giné and Yang, 2009; Banerjee, Duflo, and Hornbeck, 2014). Low demand for these

apparently welfare-improving insurance contracts is puzzling, and so a deeper understanding

of consumer risk preferences is critical.

A well established feature of index insurance products is the issue of ‘basis risk’, which

arises because the index is only imperfectly correlated with the risk it is meant to protect

against (Barnett, Barrett, and Skees, 2008). Wrapped up in this omnibus term are a number

of distinct components which may have very different effects on demand. Insurance may be

imperfect because it is partial, meaning that payouts fail to cover the full value of losses.

Imperfect insurance can also be probabilistic, meaning that there are important shocks that

are imperfectly correlated with the index. While response to the former type of risk has

typically been found to be easily modelled in an expected utility (EU) framework (Camerer,

2004; Cohen and Einav, 2007; Barseghyan et al., 2013), a large empirical literature has

suggested a prominent role for behavioral drivers in depressing demand for probabilistic

insurance (Kahneman and Tversky, 1979; Tversky and Kahneman, 1992; Wakker, Thaler,

and Tversky, 1997). In particular, numerous experimental studies have suggested that people

over-weight the likelihood of small probabilities, and thus have utility which is concave in

probabilities (Yaari, 1987; Doherty and Eeckhoudt, 1995). Finally, demand is also likely

to interact in complex ways with the nature of complementary institutions such as pre-

existing informal risk pooling (Mobarak and Rosenzweig, 2014). Understanding the extent

to which the workhorse expected utility model does or does not explain demand for these

novel insurance products is a matter both of theoretical interest and of substantial policy

importance.
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In this paper we construct a unique empirical environment that gives us a money-metric

quantification of the extent to which insurance demand is driven by expected utility the-

ory. We conducted a set of controlled lab-in-the-field games with a very risk-exposed group:

cooperative-based smallholder coffee farmers in Guatemala. During the course of an incen-

tivized day-long exercise, we presented farmers with a way of visualizing the weather-driven

risks to their farms and recorded their willingness to pay (WTP) for an excess rainfall in-

dex insurance product across multiple scenarios.1 These tightly framed games provide a

straightforward way of observing how individuals weigh different outcomes in decision mak-

ing (Harrison and Ng, 2016).2 Truthful revelation of the WTP was incentivized with a

Becker-Degroot-Marschak mechanism, with the selection of one of the scenarios at the end

of the day to determine the compensation that each participant received.

An initial set of scenarios measuring WTP for partial insurance are used to estimate a

utility curve for every player. We can then use these utility curves to predict what WTP

should be in alternate scenarios where the risk and payout structures are more complex. We

utilize this tool to examine two central issues in insurance demand. First, how does demand

for insurance respond when the risk environment is multi-peril? Second, how does demand

respond when the product is provided in a manner intended to induce group risk pooling?

In the benchmark partial insurance game, we present seven scenarios that vary the

severity and the variance of the loss in the insured states of nature. These scenarios effectively

measure the marginal utility of income in a shock state as it becomes more severe, and

therefore provide a straightforward window to the shape of the utility curve across states of

nature. We confirm other studies in finding a low overall demand for index insurance; only

12% of our sample were willing to pay a price above the actuarially fair price in our base

scenario. We use a non-linear least squares optimization method to fit a two-parameter utility

function for each player on his stated WTP across these seven scenarios. The estimated

utility curves display an average coefficient of relative risk aversion of 5.8 and a modal utility

function that has very close to constant absolute risk aversion. Once we have a direct model

of utility curves, then we can predict an ‘EU-based’ WTP for an insurance in any other

risk scenario, assuming that the standard mechanics of concave utility are the only source of

demand for insurance. This dollar-denominated estimate of EU WTP from the benchmark

partial insurance game gives us a means to decompose the drivers of demand in alternate,

more complex risk scenarios.

1All probabilities in our games are explicitly defined, meaning that we study risk but not uncertainty
(Ellsberg, 1961).

2Our environment is not informative as to other behavioral features such as ambiguity aversion (Fox and
Tversky, 1995; Bryan, 2013) or the failure to reduce compound lotteries (Segal, 1990; Elabed and Carter,
2015).
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The first application of our estimated WTP is to the probabilistic insurance game, in

which we presented a set of scenarios varying the severity and probability of a shock that

occurs with no insurance payout. As predicted by a sizeable behavioral literature, this possi-

bility of contract failure causes a substantial drop in WTP. When we decompose the demand

into the component predicted by expected utility maximization and the ‘behavioral’ residual,

we find that the behavioral dampening in WTP responds strongly both to the probability

and the magnitude of the uninsured shock. Adding a 1 in 21 chance of a small uninsured

loss should have caused a $.43 decrease in WTP under our expected utility estimation but

actually resulted in a decrease of $4.13, implying that almost 90% of the response to a small

uninsured risk is behavioral. Once uninsured shocks become larger or more likely, the EU

drivers of demand dominate and the behavioral component is small. Thus, neither the pure

EU model nor the ‘Dual’ model that is linear in utility and non-linear in probabilities are

consistent with our results. Overall this group of Guatemalan coffee farmers appear to be-

have according to a prospect-style utility function that is concave both in probabilities and

in wealth.

This depressive effect of small uncovered risks implies that insurance demand could be

improved if the product was interlinked with local risk-pooling institutions that can smooth

smaller shocks. An obvious candidate for this pairing is the type of informal risk pooling

networks that play a particularly important role in developing-country contexts (de Janvry,

Dequiedt, and Sadoulet, 2014). Given the informational advantages of peers in providing

mutual insurance (Arnott and Stiglitz, 1991), the economies of scale in marketing micro-

financial services to groups (Hill, Hoddinott, and Kumar, 2013), and the success of other

institutional innovations such as microfinance at inducing mutual insurance (Feigenberg,

Field, and Pande, 2013), it appears attractive to design products that explicitly attempt

to trigger informal risk pooling so as to generate a complementary relationship with formal

insurance (Janssens and Kramer, 2016; Berg et al., 2017). However, it is far from clear

that a formal insurance product attempting to leveraging local group risk pooling is in fact

desirable to consumers. Relying on a group to conduct loss adjustment requires trust in the

fairness and transparency of the group (Cassar, Crowley, and Wydick, 2007), and is typically

enforceable only by a dynamic punishment mechanism that may make cooperation fragile

(Coate and Ravallion, 1993; Ligon, Thomas, and Worrall, 2002).3

In the final section of the paper we take our EU-based WTP estimates to the analysis

of demand for a group insurance product. We introduce a product that makes payouts

3A long literature has suggested that in the absence of a formal group dimension to insurance, individ-
ual insurance may have a tendency to crowd out informal risk pooling (this has been demonstrated both
theoretically (Attanasio and Rıos-Rull, 2000) as well as shown in empirical work from India (Mobarak and
Rosenzweig, 2014), China (Lin, Liu, and Meng, 2014), and Ethiopia (Dercon et al., 2014))
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to the cooperative, thereby providing the group with a chance to loss-adjust the remaining

idiosyncratic losses in the payout state. Because this mechanism addresses only the extent

to which insurance is partial (not probabilistic), it can straightforwardly be compared to the

game on which the WTP model was estimated. Our core question is the extent to which the

WTP for group insurance changes as the degree of loss adjustment conducted by the group

increases. Because we have already seen the response to risk protection in the context of

individual insurance, we can use our WTP estimates to cleanly identify the pure preference

for the group risk pooling mechanism. We then examine the drivers of the actual willingness

to pool risk on the part of the group, examining the extent to which issues such as mistrust

and dynamic inconsistency may limit risk sharing within the cooperative.

The analysis of group insurance is confirmatory in terms of basic mechanisms, but dis-

couraging in terms of the commercial viability of group insurance as a way to solve basis

risk. We find that individuals recognize and are willing to pay for the ability of the group to

pool idiosyncratic risk. On the other hand, they only expect their groups to conduct about

a quarter of the degree of risk sharing possible, and there is a secular dislike of the group

mechanism that roughly compensates in terms of WTP for the degree of pooling they expect

to occur. While group insurance is promising in that it holds out some ability to protect

against small uncovered risk, its implementation face many problems, including the threats

posed by dynamic inconsistency and group heterogeneity.

We contribute to the literature on behavior under uncertainty by providing a novel way

of estimating individual-specific utility curves and applying this technique to index insurance

demand in a context of multiperil risks and to group insurance. We find insurance demand

to be low overall, and even in the most straightforward case of partial insurance our results

suggest that a commercial product may not be viable in this context. Introducing even

a tiny uninsurable risk leads to a large drop in demand that appears to be driven by the

overweighting of small probabilities posited by prospect-style utility. While group insurance

might seem to be an attractive way of dealing with these small uncovered risks, in our context

the WTP for a group index insurance product is lower, all things equal, and participants are

not optimistic that groups will be successful in conducting risk pooling to any substantial

degree. Seen in a positive light, the large behavioral response to small uncovered risks implies

that apparently minor improvements in the ability of insurance indexes to capture loss events

could lead to large improvements in demand.

The remainder of the paper is organized as follows: Section 2 provides the background

and setting for the games, and a detailed description of the exercise. Section 3 uses the partial

insurance game to estimate the best-fit utility function for the data, a control structure that

is then used throughout the paper. Section 4 provides results on the probabilistic insurance
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game, Section 5 on the group insurance game, and Section 6 concludes.

2 Setting and Game Design

In early 2011 we conducted a cooperative survey of the coffee sector in Guatemala. That

survey attempted a census of every registered first-tier coffee cooperative in the country,

and included data on 120 cooperatives and a sample of their members. Coffee is by far the

most important export sector in Guatemala, but yield in the coffee sector is highly variable

with excess rainfall and hurricanes posing the primary source of weather risk exposure.4

For the exercise presented here, we began from this census and then selected from it the

71 cooperatives that reported being vulnerable to excess rainfall risk (the product that this

project is intended to pilot).

With this group of 71 flood-exposed cooperatives, we conducted a set of lab-in-the-

field games to understand the nature of index insurance demand. For each of the selected

cooperatives we attempted to draw in 10 individual members to participate (the actual

number that attended varies between 4 and 13, with 10 as the modal number). Invitations

to attend were sent to a randomly sampled group of cooperative members, but if on the day

of the exercise we did not have 10 members present then we filled in the remaining players

with any available cooperative members. Comparison of the game participants to the full

cooperative sample from our prior survey shows groups that are well-balanced on basic

demographics, but the game participants are more asset-rich than the average cooperative

member.5 Intensity of coffee production is similar across the two groups. This analysis

suggests that our experimental sample is broadly representative of cooperative membership.

2.1 Protocol

Our experiment consisted of a day of different games conducted with each cooperative,

typically taking place in the cooperative offices. The survey team that ran the games was

comprised of a presenter who ran the sessions and read the scripts, an enumerator who

would sit with the subjects and help them fill in their sheets if they required assistance (25%

of the respondents reported never having been to school), and two additional assistants. The

morning was dedicated to introduction and training. The afternoon included an explanation

4Work by Said, Afzal, and Turner (2015) suggests that risk-exposed groups may be more sensitive to risk
than those who are less exposed.

5Appendix Table A.2. Given that WTP for insurance is typically found to correlate positively with
wealth (Hill, Hoddinott, and Kumar, 2013), our average WTP may be somewhat overestimated relative to
the average cooperative member.
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of how participants would be compensated as well as the core set of 32 scenarios organized

into three games: on partial insurance, probabilistic insurance, and group insurance demand.

WTP was recorded for each player for every one of the scenarios throughout the day. Finally,

the payments to participants were made for one randomly selected exercise. Participants were

seated apart from each other and not allowed to communicate during the games. See on line

Appendix E for the full set of scripts used during the day’s exercise.

Upon arriving, subjects filled an intake survey asking a set of typical questions about

household composition, wealth, education, risk exposure of the farm, as well as a set of

behavioral questions focusing on risk aversion, ambiguity aversion, discounting, and present

bias. They received 10 Quetzales (Q) for their participation.6

We began the presentation by introducing the principles of an excess rainfall index insur-

ance product. A schematic showing the distribution of historical rainfall events over time was

used to explain the process through which index insurance pays out based on the local rain-

fall station observation.7 The scripts for this training emphasized the fact that the premium

and payout are uniform within a village despite the fact that losses may be heterogenous,

and are based only on the rainfall totals measured at the nearest monitoring station. We

then introduced the idea of group insurance, whereby participating group members receive

the payout collectively and decide to split the payouts however they want. It was made clear

that the benefit of this arrangement was the ability to share the unequal losses while the

problem is that this process of allocation may be contentious.

After this general introduction, farmers were introduced to the key visualization tool that

was used throughout the day to represent the frequency and severity of shocks that might

occur, and whether the shocks would be covered by the insurance. We arrived at this tool

after extensive field testing as the most straightforward way of presenting a visualization of

agricultural income in the different states of nature (no loss, drought loss, or excess rainfall

losses of different amounts) and the probability of each state, relative to the income in state

of normal rainfall (Q10,000). We refer to each of these visualizations as a ‘scenario’, and

we group scenarios together into ‘games’. Figure 1a displays an example of a scenario in

the partial insurance game. There are five possible states of nature: the full income under

normal rainfall is realized with a 17 out of 21 probability, a small uninsurable shock (Q1,000),

and three possible insurable shocks (Q3,000, Q5,000, or Q7,000). For each state we explain

the income the farmer would realize if insured, and if uninsured. The monetary amounts

involved in the scenarios were all framed to be consistent with the real profits and risks faced

6The exchange rate in 2012 was Q6.30= US$1
7The index is based on cumulative rainfall over the fruiting and flowering period for coffee as measured

at the nearest government-administered rainfall station.
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by typical smallholder coffee farmers in the Guatemalan context. All scenarios feature an

excess rainfall index insurance product paying out a given amount (Q1,400) in case of excess

rainfall losses, which always occurred with a 1 in 7 probability. The actuarially fair value of

the insurance is therefore constant at Q200 across scenarios. Farmers were asked to record

their WTP, i.e. the maximum price at which they would accept to buy the insurance, using

a grid with price increments of Q20, circling the number that most closely approximates

their WTP or writing it in if the number lies outside the range of values provided.

To incentivize truthful revelation of WTP, payouts were based on players’ purchase de-

cisions. The first time participants were shown this visualization, we conducted a trial run

of how their WTP would be linked to their purchase decision. Each farmer having recorded

his WTP, the presenter announced a price for the insurance (without disclosure of how it

was chosen for this part of the training), which defined who was insured. A random weather

event was drawn and each participant drew an associated loss from a deck of cards. Each

participant could then complete his form and figure out his net income, and comparison

was drawn between those that did and did not purchase the insurance. The exercise was

repeated with different possible weather cards. These explanations were followed by a short

quiz, with four questions relative to the payout in different cases of rainfall observations

and losses, and two questions on group insurance.8 Results on the basic concept of index

insurance were good, with 59% of subjects having all four answers correct and 84% having

at least three correct. On the group insurance 43% had both answers correct and 86% had

at least one correct answer.

Subjects were then notified that for the remainder of the day’s games, we would record

their WTP for each scenario, and then at the end of the day would randomly choose one

of the day’s scenarios to be the one on which payouts would be made. For this scenario,

we would randomly draw a price and a weather shock, and proceed as just explained. This

framed amount of earnings for the season would then converted to a real payment for the

day equal to 0.7% of the framed financial amount. As an example, an individual who would

8The questions were as follows: (i) Imagine that you have bought an insurance against excess rainfall.
The meteorological station does not register excess rainfall. Yet, you lost 25% of your harvest due to rain on
your plot. Will you receive a payout from the insurance? (ii) Imagine that two coffee producers, Raul and
Lucas, purchased the insurance against excess rainfall. The station registers excess rainfall. Raul lost Q2,000
and Lucas lost Q8,000 due to rain. Do you think that Raul will receive more than Lucas, less than Lucas,
or the same as Lucas? (iii) Imagine again that Raul and Lucas have purchased the insurance. The station
does not register excess rainfall. Raul did not loose any income, but Lucas lost Q3,000. How much will Raul
receive: Q0 or Q1,400? (iv) How much will Lucas receive: Q0 or Q1,400? (v) Imagine the company offers a
group insurance. What would be the price each individual would pay relative to the individual insurance:
more, less or the same? (vi) Imagine that you are member of a group of 10 members that purchased the
group insurance. In case of excess rainfall, the group will receive Q14,000. If there is excess rainfall, how
much would you receive: Q0, Q1,400, or ‘it depends on the decision of the group’?
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have lost half of a Q10,000 harvest due to excess rainfall in the selected scenario would be

paid .007*5,000=Q35 for the day (in addition to the participation payment) if WTP did

not exceed the premium price, and .007*(5,000+payout-premium) if WTP did exceed the

premium price. The maximum payment they could receive would be Q70, if there was no

bad weather shock and they had not purchased the insurance.

The heart of the day’s exercises was a sequence of three games, each one made up of

a series of scenarios.9 The first game was a set of partial insurance scenarios, where we

vary the severity and variance of the shocks occurring in the insured state (e.g., variation

around the scenario in Figure 1a). These scenarios are used to estimate individual-level

utility curves and hence to back out WTP for the other games. The second game presented

a set of probabilistic insurance scenarios, in which we introduced a drought risk that hurt

income but was not covered by the excess rainfall insurance, and we then vary the severity

and likelihood of this drought shock (as in Figure 1b). The third game presented a set of

group insurance scenarios (Figures 1c), where the payout was made at the group level and

the cooperative could then choose to conduct some loss adjustment to smooth idiosyncratic

variation.

Our experiment attempted to probe complex and unfamiliar issues in the course of a

single day. Because of this, we decided to design a protocol that is more heavy-handed than

is typical in laboratory experiments (the scripts for the exercise are included in their entirety

in the online Appendix E). Each scenario was prefaced by 3-4 sentences that present how

it differs from the previous scenario, and an explanation that points to a trade-off, given

both an argument while the insurance is valuable (or more valuable than in the previous

scenario), and one argument while it is not valuable (or less valuable than in the previous

scenario). All introductions are structured with ‘On the one hand ... On the other hand’.

In retrospect we feel it may be reasonable to question the balance of the presentation of the

scenarios in two out of the 32 cases presented (I2 and I8), one of which is given in the footnote

below, but overall we made every effort to ensure that the presentation of the changes across

scenarios was even-handed.10 The objective was to help the participants in their decision

process without introducing bias.

We report in Appendix C the analysis of three features of the games designed to test

the robustness of our results to study effects that might threaten internal validity. One is

9The scenarios will be described in detail as we proceed to analyze them, and a summary table of the
states of nature presented in each scenario is given in Appendix Table A.1

10The description for I2 reads: ”On the one hand, the insurance continues to pay the standard compensa-
tion of Q1,400, even though you suffer greater losses than you did previously in the face of excess rainfall. On
the other hand, the payout from the insurance is more useful in this scenario than the one before, because
it is more difficult to overcome your financial difficulties in years of excess rainfall. Comparing this scenario
to the previous one, what is the maximum price you would be willing to pay to purchase this insurance?”
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that values on the data entry form were randomized to lie between Q40 and Q320 or Q80

and Q360 to test for bracketing effects. Second, we randomized the order of the games and

sub-sets of scenarios to the maximum extent possible. And third, we tested for the framing

effect whereby all experiments are presented with monetary values that correspond to coffee

production experiences, but payment at stakes are an order of magnitude different.

2.2 Willingness to Pay

In all scenarios, there are three mutually exclusive states of nature: normal rainfall with no

loss, an exogenous set of (excess) rainfall states s ∈ R covered by the insurance, and a set of

states s ∈ D in which a (heavy rainfall or drought) shock occurs and the index does not trig-

ger, each of which occurs with a given probability.11 Referring to Figure 1, panel a represents

a ‘partial’ insurance scenario in which all severe shocks are at least partially covered by the

insurance. In panel b, this ‘probabilistic’ insurance scenario includes a potential insurable

loss of Q5,000 with probability 1/7 due to excess rainfall, a potential uninsurable drought

loss of Q8,000 with probability 1/7, and either normal or heavy rainfall with probability 5/7.

We separately denote the probability of states in which the insurance product will trigger as

πs, and states in which a shock occurs but the insurance does not trigger as ωs. Income is

denoted by K when there is no loss, Rs in state s ∈ R, and Ds in state s ∈ D. An individual

choosing insurance must pay the premium in any state, and if insurance is purchased and

the insured states occur then a payout is received. If c is the cost of insurance and P is the

payout, the payoff in state s ∈ R is Rs if uninsured and Rs− c+P if insured. For the set of

states s ∈ D payoffs are Ds if uninsured and Ds − c if insured. The state in which no shock

occurs and no payout occurs happens with frequency 1 −
∑

s∈R πs −
∑

s∈D ωs and induces

payoff K if uninsured and K − c if insured.12

Without insurance, an expected utility maximizer will have the following welfare:

EU0 =
∑
s∈R

πsu(Rs) +
∑
s∈D

ωsu(Ds) + (1−
∑
s∈R

πs −
∑
s∈D

ωs)u(K). (1)

With insurance, expected utility is:

EUI =
∑
s∈R

πsu(Rs + P − c) +
∑
s∈D

ωsu(Ds − c) + (1−
∑
s∈R

πs −
∑
s∈D

ωs)u(K − c). (2)

The WTP is the premium payment c that equalizes expected utility across these two options.

11The structure of the scenarios is represented in Appendix Figure A.1.
12For simplicity, we ignore in this formalization the small loss of $1,000 that may occur with heavy rainfall.
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While the index insurance literature has typically referred to all variation in income that

is not covered by the index as ‘basis risk’, there are sharply contrasting theoretical pre-

dictions surrounding increases in uncovered risk in insured states versus risk in uninsured

states. As the severity of shocks in insured states increases (holding the payout constant), ex-

pected utility theory predicts that insurance will become more valuable because its expected

marginal utility in the insured states rises. Thus, while the insurance product appears worse

in the sense that it covers a smaller fraction of the risk, it should in fact yield a higher WTP.

The experimental literature has typically found that demand for partial insurance conforms

relatively well to expected utility theory (Wakker, Thaler, and Tversky, 1997), and hence we

use the partial insurance game to estimate individual-specific utility curves.

Since the other games effectively represent a relabeling and a reweighting of the same

state space used to estimate the utility curves, we can predict what individuals should be

willing to pay in any scenario of the other games if the same function drove risk preferences.

The differences between this EU-predicted WTP and the actual, observed WTP provides

a very clean money-metric measurement of the extent to which demand in more complex

risk environments is ‘behavioral’. Specifically, we can also contrast the expected utility

environment (in which probabilities enter linearly), with prospect-style utility (Kahneman

and Tversky, 1979; Tversky and Kahneman, 1992). In that environment we replace the

objective probabilities πs with decision weights Ω(πs), which have been found empirically

to over-emphasize small probabilities and to underweight large probabilities.13 We confirm

that a non-linear weighting of probabilities in our case results in a dramatic over-reaction

to small multi-peril risks, and are able to characterize the magnitude of this response with

unusual clarity.

When we turn to group insurance demand, the estimation of expected utility WTP again

provides us with a benchmark that lets us decompose the various candidate explanations

for the demand responses to the collective nature of the group insurance product. We now

discuss in detail how the individual-specific utility curves are estimated.

3 Expected Utility and Demand for Partial Insurance

To estimate individual utility curves, we begin from the seven individual scenarios of the

partial insurance game, which vary the extent to which the insurance fully covers damages.

13We do not have the ability to test standard versus cumulative prospect theory, and hence do not empha-
size the difference between these two theories in our presentation Two other benchmark cases that we will
discuss are the ‘Dual’ model of Yaari (1987), in which the weights Ω are non-linear but the utility function
u(.) is linear, and the rank dependent expected utility theory of Quiggin (1982), in which only unlikely
outcomes that result in extreme changes in utility are overweighted.
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Their structure is similar to that of I6 represented in Figure 1a. Each of the scenario presents

an environment with five possible (mutually exclusive) states of nature: three states of

insurable (excess rainfall) risk with equal probability of occurrence π = 1/21 and income

Rs equal to R,R − σ, and R + σ, respectively, one state with uninsured (heavy rainfall)

shock with probability ω = 1/21 and income D = Q9,000, and one state without loss with

probability (1 − 3π − ω) and income K =Q10,000. In the first scenario I1, R = Q7,000

and σ =Q1,000, so that the insurable states correspond to incomes of Q8,000, Q7,000, and

Q6,000. In scenarios I2 and I3, we increase the severity of insured shocks (R= Q5,000 and

Q3,000, respectively) while keeping their distribution (σ =Q1,000) constant. In scenarios I4

to I7, we keep R = Q5,000 constant, and vary σ in multiple of Q1,000 from 0 to Q3,000.

Panel A of Table 1 reports these values.

Using these partial insurance scenarios, we measure how WTP changes with the severity

of the shock in the insured state, and hence provide a simple metric of the desire to move

income from good states to bad as the bad state gets worse or more frequent. Previous work

has suggested that partial insurance demand conforms relatively well to expected utility

theory (Wakker, Thaler, and Tversky, 1997),14 and so we also use the partial insurance

scenarios to estimate utility functions.

3.1 Evidence of risk aversion and prudence

We first model risk aversion and prudence in our experimental context, examining how the

demand for partial insurance responds to variation in risk. Under the expected utility model,

the WTP is solution of:

EU0 ≡
∑
s

πu(Rs) + ωu(D) + (1− 3π − ω)u(K) (3)

=
∑
s

πu(Rs + P − wtp) + ωu(D − wtp) + (1− 3π − ω)u(K − wtp) ≡ EUI

14The authors compare the WTP for three insurance contracts: A standard insurance with no deductible,
a 0.99 partial insurance (which pays 99% of any claim), and a 0.99 probabilistic insurance (which pays the
full claim 99% time). Under expected utility theory, the WTP for the partial and probabilistic insurance
should be approximately 99% of the WTP for the standard insurance. Yet, they find the median ratio of the
WTP for the probabilistic insurance to the standard insurance to be as low as 0.50, while it is 0.95 for the
partial insurance. This leads them to conclude that demand for partial insurance conforms relatively well
with expected utility, but not the demand for probabilistic insurance.
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Total differentiation of the solution equation gives:

dwtp

dR
=

1

EU ′I

∑
s

π [u′(Rs + P − wtp)− u′(Rs)] (4)

dwtp

dσ
=

1

EU ′I
π [−u′(R− σ + P − wtp) + u′(R + σ + P − wtp) + u′(R− σ)− u′(R + σ)]

≈ 1

EU ′I
π [u′′(R + P − wtp)− u′′(R)] 2σ

The first expression confirms that demand falls with the severity of the shock when utility

is concave. From the second expression, dwtp
dσ

= 0 if u′ is linear (i.e., u′′ is constant). But if

preferences exhibit prudence (u′′′ > 0), wtp increases with σ.

Panel A of Table 1 presents the average WTP across the partial insurance scenarios.

Column 1 shows that WTP increases as the severity of the shocks increases across scenarios

I1 to I3, indicating an overall risk aversion among all participants. WTP also increases as

the variance in losses increases across scenarios I4 to I7, suggesting the presence of an overall

prudence in preference. Hence the behavior of participants in the partial insurance game is

consistent with risk aversion and prudence under expected utility theory.

We now proceed to fit an EU demand model for each individual using these partial

insurance scenarios.

3.2 Estimating utility functions under EU

The objective of this section is to estimate a utility function for each player based on revealed

WTP for the incomplete insurance scheme in the seven partial insurance scenarios I1–I7.

This approach is in spirit similar to Currim and Sarin (1989) and Currim and Sarin (1992)

in which the authors calibrate individual behavioral models.

Preferences are represented by the following Power Risk Aversion utility function (Xie,

2000):

u(y; k, β) = −1

k
e−k

y1−β
1−β (5)

characterized by two parameters (k, β).

We simplify the expressions for EU given in (1) and (2) with a common notation for

all states of nature. Each scenario g presented to the players is characterized by a set of

probabilities pgx for the states of nature with income x and payout P g
x that the insurance will

pay if the player is insured (this includes 0 for the uninsured shocks). In a given scenario,

the expected utility with and without insurance for an individual with preference parameters

12



(k, β) are:

EU g
0 (k, β) ≡

∑
x

pgxu(x; k, β)

EU g
I (k, β, δ) ≡

∑
x

pgxu(x+ δP g
x − c; k, β)

where δ ∈ [0, 1] is a trust parameter that the agent places on the insurance payout. The

addition of the parameter δ is prompted by the fact that observed WTP was in most cases

inferior to the actuarially fair price, which is not conceivable with a standard utility function.

Our utility estimates are thus identified from variation between scenarios, but not by the

overall average expected WTP. The willingness to pay is the solution

wtp(g, θ) = (c : EU g
I − EU

g
0 = 0) (6)

where θ = (k, β, δ) denotes the vector of parameters of the model.

Despite having only three parameters, this setup is quite flexible. Absolute risk aversion

ARA = β 1
y

+ ky−β decreases with income for (β > 0 and k > −yβ−1) or (β < 0 and k <

−yβ−1), and increases with income otherwise. It converges to the CRRA function u(y) =

− 1
k
y−k with RRA = k + 1 when β → 1 , and is the CARA exponential utility u = − 1

k
e−ky

with absolute risk aversion k when β = 0. Absolute risk aversion is an increasing function

of k and a decreasing function of β, and so are prudence (u
′′′

u′′
) and temperance (−u′′′′

u′′′
).15

We proceed now with the estimation of a vector of parameters θ for each individual. We

assume that there is some additive measurement error on the willingness to pay, such that

the observed willingness to pay by a given individual wtpg is:

wtpg = wtp(g, θ) + εg g = 1, . . . , 7 (7)

We also assume the usual regularity conditions on the error εg such that our estimator

is consistent and efficient. Let X(θ)G×3 denote the matrix with characteristic element

∂wtp(g, θ)/∂θj, j = 1, 2, 3. For each individual, we use a non-linear least squares estimator:

θ̂ = arg min
θ∈Θ

G∑
g=1

(wtpg − wtp(g, θ))2 (8)

15The use of a three-parameter utility function to fit seven WTP data points means that R-squared is
very high, and concerns about mis-specification are further ameliorated by the fact that we never make
out-of-sample predictions because the scenarios in which we predict WTP are conducted over the same state
space as those with which we estimate utility curves.
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implying that θ̂ must satisfy the first order conditions

−2X(θ̂)T
(
wtp−wtp(g, θ̂)

)
= 0

Equation (8) describes a typical non-linear least squares problem, except that in addition

to being nonlinear, the function wtp(g, θ) is only defined implicitly by equation (6). Thus,

the derivatives with respect to θ that define the moment equations, and that are critical to

any gradient-based solution algorithm, require application of the implicit function theorem

at each trial value of θ.

3.3 Estimated preferences and predicted WTP

We start by estimating a unique utility function for all 674 players. Results for the parame-

ters, with robust standard errors clustered at the individual level in parentheses, are reported

in Table 2, col. 1. The utility function exhibits risk aversion and prudence, with absolute

risk aversion only slightly decreasing over the range of values of income, from 0.80 to 0.73,

implying that relative risk aversion increases very steeply from 1.6 (for the worst income

equal to 20% of the normal income) to 7.3 when there is no negative shock to income.

We next proceed with the estimation of θ for each individual player. Since we rely on

a very small number of observations for each player (at most 7, and less for the 61 players

that did not play all 7 scenarios), estimated parameters can take some extreme values.

We therefore report the median and the lowest and highest 5th percentile of the estimated

parameters in Table 2, col. 2-4. We see large variations in estimated parameters across

individuals, reflecting heterogeneity in preferences.16

The estimated utility functions are shown in Figure 2. Using these estimated parameters

we can compute for each individual predicted utility and all of its derivatives at any level of

income, and hence average risk aversion and prudence. Among all participants 76% exhibit

prudence and 10% have an almost quadratic utility function.

For each individual with parameter θ̂, we can compute the predicted WTP, ŵtp(g′, θ̂)

that the player ought to have for any scenario g′. As above, this is the solution to (6) for

that particular scenario characterized by pg
′
x , P

g′
x . The process converged for 621 players for

the first 3 scenarios and 666 players for all other scenarios.

Since measures of risk aversion and ŵtp will be used as regressors in the analysis of the

observed WTP, we will need some measure of precision on these predicted values to correct

the standard errors in the estimations. This is done by implementing a wild bootstrap

16The small number of observations imply that standard errors on parameters are extremely high, and the
quality of fit of the estimation, measured by SSR =

∑7
g=1 (wtpg − wtp(g, θ))2, very good.

14



of the whole procedure using the 6-point distribution proposed by Webb (2013).17 With

equal probability, the residual for each observation is multipled by ±
√

0.5, ±1, or ±
√

1.5.

For each replicate we then re-estimate the parameters, and in turn compute the predicted

ŵtp(g′, θ̂) and measure of risk aversion. The wild bootstrap here assumes that errors are

independent across observations, but allows them to be heteroskedastic and non-normal.

Notice that because it is computationally intensive to repeat the gradient-based search for

each bootstrap replicate, the bootstrap parameter estimates rely on a grid search method.

The bootstrapped values will be directly used in the estimations that use risk aversion or

ŵtp as regressors.

4 Demand for Probabilistic Insurance

With these explicit utility functions in hand we now proceed to the analysis of WTP for

a set of six probabilistic insurance scenarios.18 Their structure is similar to that of I13

represented in Figure 1b. Each of the scenario presents an environment with four possible

(mutually exclusive) states of nature: a state with a mild uninsurable shock (with Q1,000

loss and probability 1/21), a dominant state of no shock with high probability, a state of

insurable (excess rainfall) shock with probability π = 1/7 and income R = Q5,000, i.e., 50%

of potential income K, and a state of uninsurable ‘drought’ shock. The six scenarios vary the

probability and intensity of this drought risk. They began with a framing of a mild drought

risk, one that was both unlikely to occur (ω = 1/21) and small (loss equal to Q2,000, or 20%

of potential income). The magnitude of the drought-induced loss was then increased across

scenarios to 40% and 80% of potential income, and then three scenarios were played with the

uninsured losses at these same levels but with the probability of this shock being elevated

to 1/7. Panel B of Table 1 reports these values and Figure 1b shows I13, the most extreme

case of both frequent and severe drought risk. Critically, when the uninsured shock rises to

a loss of 80%, it will be the case that the purchase of index insurance will make outcomes in

the worst state of nature even worse.

Our goal is to decompose the demand for probabilistic insurance into an EU and a be-

havioral component, using the precise measure of what the WTP ‘should’ be if agents were

standard expected utility maximizers. This predicted dollar-value WTP under expected util-

17With fewer than 10 observations, the 6-point distribution by Webb is recommended over the more
common 2-point distribution (Cameron, Gelbach, and Miller, 2011).

18In essence, all insurance that covers specific sources of risk is probabilistic. The labeling of the uninsured
risk as drought was purposefully chosen to highlight this sort of uninsured risk, rather than those unrelated
to weather, or to a risk of non-compliance by the insurance company, which would involve other issues beside
the existence of uninsured states of the world.
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ity theory is computed for each participant using his/her own estimated vector of parameter

θ̂, as described in section 3.3. The difference between this amount and the observed WTP

provides a monetary estimate of the extent to which decreases in demand for probabilistic

insurance are driven by behavioral concerns.

4.1 Comparing the demand for probabilistic and partial insurance

With partial insurance, payout always occur in states of shocks and hence become even

more valuable when the severity of the shock increases, as we have shown in section 3.1. In

contrast, when the risk is uninsured the demand for insurance decreases with the severity

of the risk because the utility cost of paying premiums in the shock state goes up.19 We

verify these basic relationships in Table 3 by regressing WTP on the standard deviation of

residual risk after insurance. In order to assess whether there is a behavioral aspect to the

demand for probabilistic insurance, we run the regression for both the observed WTP and

the WTP predicted with the EU model. Column 1 shows that the predicted WTP displays

the expected relationships; a small uninsurable risk leads to a small decrease in predicted

WTP, and more severe shocks in insurable states drives up WTP while more severe shocks in

uninsurable states drive it down. Column 2 shows that, as a result, predicted WTP falls by

$3.59 when farmers face a mild drought risk, and by $18.80 when they face a risk so severe

as to make it possible that the worst state of nature is uninsured.

Columns 3 and 4 repeat the previous analysis but using the actual WTP observed across

scenarios. While the signs of the responses are consistent, the magnitudes display quite a

divergent pattern. Actual WTP proves to be very sensitive to small amounts of drought risk,

and then to display little additional sensitivity to the magnitude or likelihood of risk posed by

drought (column 4). This indicates that there is a secular dislike of probabilistic insurance

that manifests itself even when the actual probability of uninsurable risk is minimal. To

understand how actual and predicted WTP relate to each other, Column 5 runs a regression

explaining the former while including the latter as a control variable, and Column 6 uses the

simple difference between the two as dependent variable.

The patterns estimated in Table 3 are represented visually in Figure 3, reporting both

actual and predicted WTP as function of the residual variance in income after payouts would

have occurred. The ‘fitted’ curves are simple quadratic regressions relating the different

actual or predicted WTP for the partial or probabilistic insurance games, separately. The

clear story emerging from these two ways of analyzing the data is that there is a response to

19Since the insurance product is invariant across all scenarios, these two cases correspond to increasing an
uninsurable risk that is positively and negatively correlated with the insurable risk, respectively (Eeckhoudt,
Gollier, and Schlesinger, 1996; Gollier and Pratt, 1996).
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small uninsurable risk that cannot be squared with our expected utility predictions, and if

anything the surprise in the response to very large uninsurable risk (scenario I13) is that the

actual WTP displays less of a decrease than we might expect. Hence, we can conclude very

clearly that there is a behavioral dimension in demand that decreases as the probabilistic

nature of the insurance is magnified.

The literature on probabilistic insurance has compared the demand for insurance when

the payout is probabilistic with the standard case of full insurance (Camerer (2004). In

particular, Wakker, Thaler, and Tversky (1997) show that when the probability of contract

failure is small the WTP under EU should be roughly discounted by the probability of con-

tract failure. We conduct a different but closely related exercise, amplifying the probability

of an uninsurable loss (and thus shifting the underlying risk profile) while holding the in-

surance features fixed. We show in Appendix B that under EU the introduction of a small

uninsurable shock induces a reduction in WTP that is approximately proportional to the

probability ω of the shock, that is:

∆wtp ' [u′(K)− u′(K − wtp)] (K −D)

πu′(R− wtp+ P ) + (1− π)u′(K − wtp)
ω < 0

We can refer again to Table 1 to observe how demand is affected by a small probability

risk. Scenarios I4, I8, and I11 only differ in the drought risk, with no drought in I4, and

a small drought loss with probabilities 1/21 in I8 and 1/7 in I11. Column 2 shows that

predicted WTP falls from its value in I4 by $0.43 in I8, and by $1.24 in I11. Change in

WTP is thus proportional to the probability of uninsured risk as expected from theory when

utility is concave in income and probabilities enter linearly in the EU model. Column 1

shows the actual changes; here by contrast there is a strong response to a very small increase

in probability, and then a lower-than-proportional response to increasing the risk further.

WTP falls by $4.13, almost 10 times more than under EU, when the probability of drought

is set at 1/21, but the decrease in WTP only doubles to $8.50 when the probability of

drought is tripled from here. Increasing the magnitude of loss in uninsured states while

holding probabilities constant leads to a further decrease in WTP for insurance, a fact that

is consistent with concave utility. Consequently, the decision criterion must be concave in

income, but non-linear and concave in probabilities over the state space studied here. This

result is directly inconsistent with the ‘dual’ theory of Yaari (1987), and also with the rank

dependent expected utility theory of Quiggin (1982), since the distortion to decision making

(relative to EU) disappears as the magnitude of the low-probability shock increases. It is

only consistent with the prospect theory of Kahneman and Tversky (1979) and Tversky and

Kahneman (1992).
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4.2 Explaining the behavioral aversion to probabilistic insurance

A major advantage of our cardinal, money-metric measure of the behavioral component of

insurance demand is that we can take this as an outcome and explain the difference between

the predicted and actual WTP in the mild drought scenarios using a set of individual- and

farm-level covariates. The core question we try to answer is the following: is this non-EU

component of demand driven by behavioral attributes of the individual, or does it relate to

a real risk exposure in their farming activities that makes drought risk more salient?

To address this question, we bring to bear two sets of covariates. The first are behavioral

attributes of the individual, including risk aversion, ambiguity aversion, and an index of

trust. Ambiguity aversion was measured in the intake survey using four choices between an

urn with increasing known probability of winning and an urn with unknown probability of

winning. The trust index was built from four questions asking about the extent to which

individuals trust their fellow cooperative members.20 On the other hand risk aversion was not

elicited with typical survey questions but, to be more consistent with this exercise, computed

from the individual-specific utility function estimated as reported in section 3.3. To explain

actual risk exposure we rely on a set of survey questions as to what are the main risks facing

coffee output on subjects’ farms. We asked about excess rainfall, drought, strong wind, or

disease, and we characterize each risk as being relevant at all or being the dominant source

of risk for each farmer.

Table 4 presents the results of this analysis. Column 1 shows the simple means of each

right-hand side variable. Column 2 uses only the behavioral attributes, and finds that all

three of these variables have very strong relationships with the behavioral aversion to proba-

bilistic insurance in the direction that we would expect. The risk averse, for whom insurance

is more important overall, are less likely to see large drops in demand as a result of the small

drought risk. Similarly, those with a high trust index are less put off by the presence of

drought risk and maintain demand. The ambiguity averse, on the other hand show much

larger drops in demand when faced with the possibility of mild drought. This latter fact

is particularly relevant in that it suggests that the simple survey question eliciting ambi-

guity aversion does indeed capture relevant information in predicting economically relevant

parameters.21

20The questions ask whether the cooperative members trust each other, whether the interest of all mem-
bers are equally considered when decisions are made, whether rules are respected in decision making, and
whether decision making is transparent. For each of these questions, farmers could choose“Strongly dis-
agree”,“Disagree”,“Agree”,“Strongly Agree”, which we coded 1 to 4. The index is the normalized sum of
the 4 scores.

21To verify that the results are not simply driven by differential understanding of the game, we added
controls for the level of education and the result on the quiz of understanding of the rainfall insurance
administered to the farmers at the end of the training session. The results were essentially unaffected.
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Columns 3-5 of Table 4 include the actual risk exposure of the farmers to test whether

these can explain the over-reaction to small drought risks. Not only is drought exposure

insignificant in the first two specifications, and not only does a joint F-test of all four measures

of risk exposure prove insignificant both for ‘some’ and for ‘main’ risk, but the point estimates

on the behavioral parameters are almost completely unchanged. Even when we dummy out

each level of each risk we find the behavioral determinants of this over-reaction to be very

robust (column 5). Taken together, our results show very clearly that this over-response to

small risks is driven by the behavioral attributes of the decision-maker and is not driven by

the actual exposure to risk.

4.3 Risk aversion and demand for insurance against severe risk

We now focus on the response to the ‘worst state’ drought risk. These are scenarios I10

and I13, where the Q8,000 loss suffered in case of drought is more severe than the Q5,000

loss that would be inflicted by excess rainfall, implying that the worst state of nature is not

covered by the insurance, and is even made worse by the fact the the premium has to be paid

in this state. The literature on demand for index insurance has paid particular attention to

this specific type of contract non-performance as a candidate explanation for low demand

for index insurance. As shown by Clarke (2016), using an EU model, the possibility of the

worst state being uninsured can introduce non-monotonicity into the relationship between

risk aversion and insurance demand. The drop in WTP for insurance that features this worst

possibility should be particularly pronounced among those with high risk aversion. Similarly,

the Maximin Expected Utility framework used by Gilboa and Schmeidler (1989) and Bryan

(2013) evokes a pessimism in which decision-makers fixate on the worst thing that could

possibly happen in making insurance purchase decisions, another context in which the effect

of these extreme tail risks would be accentuated. Having established that our subjects do

not behave according to EU theory in the context of a probabilistic insurance, we revisit this

relationship between risk aversion and WTP in our game.

To investigate this, we use data from all the drought scenarios (I8 to I13) and I4, the

partial insurance scenario with the same insurable risk (but no drought), distinguishing

between the severe drought (I10 and I13) and mild drought for the other cases. We interact

dummies for mild drought and severe drought with the measure of risk aversion to study the

extent to which WTP drops differentially with the risk of severe drought for the most risk

averse.

Consistent with the argument in Clarke (2016), Column 1 of Table 5 shows that while

mild drought risk leads to differentially higher EU-based predicted WTP among the more
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risk averse, this relationship flips over with the severe drought, leading to a substantial

and differentially lower demand WTP among the more risk averse. In sharp contrast to

this, Column 2 illustrates that actual WTP does not differentially decrease in the most

severe drought scenarios for the most risk averse (the point estimate is even positive but not

significant), even though the premium must be paid in this state. Thus the non-monotonicity

in demand over risk aversion as the severity of uninsurable risk increases predicted in the

EU model is not observed in actual WTP.

In conclusion, while the overall aversion to insurance featuring large uninsurable risk is

largely in line with expected utility theory (Table 3), the mechanism of high risk aversion

leading to large drops in WTP does not appear to be the operative one.

5 Demand for Group Insurance

The premise of insuring groups (rather than individuals) is that superior information held

by group members allows payouts to be adjusted to reflect the actual losses experienced.

Because the smoothing opportunity in group index insurance only occurs in the context of

a payout, we only model this scenario in our game and study the way in which the group

mechanism can make index insurance less partial. In principle this can permit superior

smoothing, and index insurance for aggregate risk can be thought of as complementary to

group insurance for idiosyncratic risk (Dercon et al., 2014). Despite this potential, there are

important factors that work against group insurance. The group negotiation process is not

frictionless, and thus distrust or social costs may make group negotiation an unattractive

way to provide smoothing. Even groups that have the capacity to pool risk may fail to do so,

and the informality of the typical risk sharing contract means that issues of contract enforce-

ment and dynamic consistency will be important. Groups may struggle to maintain pooling

if the members’ risk exposures are too dissimilar. We now present the results of several

experimental scenarios intended to isolate the relative importance of these mechanisms.

The group game presents risk scenarios that are similar to those of the partial insurance

scenarios I5 to I7, where excess rainfall experienced at the group level may lead to three

possible levels of idiosyncratic losses leading to income of R,R − σ and R + σ, where R =

Q5,000 now represents the average income in the group. Take the example of G4 represented

in Figure 1.c, with σ = Q1,000: should there be excess rainfall, individuals within the same

group may experience losses of Q4,000, Q5,000 or Q6,000. Hence at the individual level,

the risk profile is the same as the individual scenario I5. However, in the group game,

should the group be insured, the group will receive an aggregate payout of Q1,400 times the

number of insured members. This aggregate payout can then be either equally shared among
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members, or attributed according to experienced losses. In a first set of scenarios, the degree

of sharing is pre-specified. In scenario G4-a, there is no sharing and each individual receives

Q1,400. In scenario G4-b, there is partial sharing and individuals who lost less (more)

receive somewhat less (more) than Q1,400, and in scenario G4-c, there is full sharing and

all individuals have after compensation the same average net loss of Q3,600. Similar group

scenarios with σ = Q2,000 (G5) and Q3,000 (G6) were also played. Notice that the ability

to loss adjust is capped by the size of the payout, so that ‘complete sharing’ is replaced by

‘maximum possible degree of loss adjustment’ in G5-c and G6-c; when insurance is partial

then the ability to loss adjust is similarly incomplete.

The group insurance game is played individually. The subject is asked what would be

his WTP for such an insurance. The game does not require any coordination with the other

participants, although it was clearly framed as a potential group insurance for the members

of the cooperative to which they all belong, meaning that whatever trust or reservation they

have with regard to their cooperative could influence their decision in the game.

The concept of the group insurance was extensively presented in the training session,

where we facilitated a discussion in which we explicitly presented the potential for group

loss adjustment through unequal sharing of the group payout. A short review preceded the

group game exercise.

5.1 The demand for group sharing and the role of trust

We begin our analysis of WTP with the results from these tightly framed scenarios in which

the within group loss adjustment was specified (scenarios G4-G6) The benchmark case in

which no loss adjustment is conducted is exactly comparable to the individual scenarios I5-I7,

meaning that the difference in WTP comes from a ‘pure’ preference for the group modality

itself. We again use the individual utility curves estimated from the partial insurance game

to compute predicted WTP.

Column 1 of Table 6 shows the predicted WTP for group insurance under the three

potential levels of risk pooling, as compared to the baseline individual insurance scenario,

for the scenarios of low variance (I5 and G4, with σ = Q1,000). By construction, the

predicted WTP in the ‘no loss adjustment’ scenario is identical to the individual scenario.

The third row of Column 1 shows that the maximal possible risk pooling achievable by the

group ought to increase WTP by $7.19. Column 2 shows the same estimation for actual

WTP, and provides three fundamental insights into the demand for group risk pooling. The

first row illustrates that when farmers are presented with a group index insurance product

(G4-a) that is precisely comparable to an individual equivalent (I5), WTP is $5.21 lower.
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This provides the pure preference for group insurance, demonstrating that all things equal

there is a dislike of the group modality and farmers would prefer to be insured individually.

We can also compare the changes in the WTP coefficients across the rows of Columns 1 and

2, and here we see that the increase in actual WTP for group insurance as loss adjustment

increases to its maximum is $6.07 (.86+5.21), while the predicted WTP increases by slightly

more than a dollar more than this. Hence, risk protection that arises from group loss

adjustment is slightly less attractive than risk protection that is provided by the insurance

company. Finally, while the group becomes more attractive as its degree of loss adjustment

increases, the secular dislike of the group mechanism is sufficiently strong that farmers are

basically indifferent between even the maximally risk pooling group insurance mechanism

and individual insurance. Column 3 pools all scenarios with low, medium, and high variances

in risk, and shows that this result is very stable even when we increase the degree of variance

in losses.

What is the origin of this dislike of group insurance? One obvious explanation is that

farmers simply do not understand the group game. To test this, we use the score that each

individual obtained on two questions relative to group insurance in the quiz taken at the end

of the training session. In Column 4 of Table 6, we interact this test score with a dummy for

the group scenarios. While individuals with better understanding of group insurance have a

higher (though not statistically significant) WTP, even those with the maximum test score

of 2 have a reduction in WTP of $4.65 (highly significant with a standard error of 0.67).

The next possible interpretation is that farmers do not trust their groups. To test this, we

exploit our trust index (described in footnote 20). In Column 5 of Table 6, we interact this

trust index with a dummy for the group scenarios. While high-trust individuals do indeed

have significantly higher demand for group insurance, the magnitude of this effect is small

(93 cents) and hence it would appear that distrust can account for at most about one fifth of

the secular dislike of the group mechanism. Column 6 shows that trust does not alter WTP

for the group modality as the level of environmental risk increases. Hence, while trust is not

inconsequential, it does not appear to explain the magnitude of the preference for individual

insurance.

5.2 How much risk will groups actually choose to share?

Having understood how much the groups are willing to pay for loss adjustment, we undertook

a number of additional experiments to try to unpack some of the most obvious threats

to successful group risk sharing, namely 1) how much loss adjustment they believe the

group would in fact conduct, 2) the vulnerability of risk pooling arrangements to ex-post
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renegotiation, and 3) the influence that heterogeneity within the group has on the ability to

pool risk. In other words, not how much loss adjustment they want, but now much do they

expect?

To measure the expected degree of loss adjustment, we presented participants with three

scenarios G1-G3, in which we asked WTP for a group insurance with exactly the same risk

context as G4-G6, but the degree of loss-adjustment left unstipulated. These scenarios were

played before any group scenario with stipulated sharing rules. Results are reported in Table

6. In column 7, we consider the scenarios with small variance in losses (I5, G1 and G4a-c

with σ = Q1,000). By comparing WTP in the G1 scenario to the G4 scenarios in which loss-

adjustment was stipulated, we can measure expectations over pooling in a very exact way.

The coefficient on this unstipulated scenario is -$3.62, relative to a coefficient of -$2.23 for a

group insurance with moderate pooling and of -$5.20 with no pooling. The implication is that

the cooperative members expect that their groups would conduct a fraction of the possible

degree of loss adjustment of idiosyncratic risk (corresponding to approximately a quarter of

the idiosyncratic risk). Column 8 extends the analysis to all three variance scenarios and

arrives at very similar conclusions. Finally, we can ask whether a lack of group trust effects

the extent of pooling that the members expect from the group. This is accomplished in

Column 9 by interacting group trust with a dummy for the scenario in which the sharing

rule was not stipulated; here we see an insignificant effect suggesting that trust is not the

driver of expected loss adjustment.

A second issue with group risk pooling is that the contract is not formalized and hence

pooling will only occur if those who have the capacity to pay do not seek to re-negotiate the

contract after shocks have been realized. To try to simulate this possibility in a laboratory

context, we conducted a sequenced ‘group deliberation exercise’ described in more detail

in Appendix D. We first asked players as individuals what degree of loss adjustment they

would prefer (1 = none, 2 = moderate, 3 = as much as possible) if they were obtaining

group insurance. We then asked them to discuss and decide upon this issue as a group, and

recorded the outcome. Finally, we attempted to mimic the incentive to renege on group risk

sharing by asking each individual to draw an actual rainfall shock (and thus a level of income)

and to vote again on the group risk pooling decision. On average, the participants report

wanting ‘moderate’ risk sharing (50% of potential), both before and after the weather draw,

individually and in group.22 Yet, even in this contrived environment in which individuals

are ask to state their preference twice over a very short period of time and with only a

small sum of money at stake, we find evidence that the ex-post incentive incompatibility

of risk pooling will prove problematic. Individuals who draw large negative shocks pivot to

22See Appendix Table D.1
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desire greater pooling, and those who draw small shocks desire less pooling. The magnitude

of the change in behavior provides some evidence for the extent to which the inability to

writing binding contracts will pose a constraint on pooling agreements that must be ex-post

incentive compatible.

Finally, we examined the issue that heterogeneity in expected risk exposure introduces

a redistributive element into group risk pooling contracts, since certain individuals can be

expected to be systematically making larger claims on the group than others. Our group

heterogeneity analysis, presented in Appendix Table D.2, finds that this is indeed a concern.

Simply framing the group as made up of heterogeneous agents causes WTP to drop by

$6.54, more than the overall drop from group relative to individual insurance. While WTP

changes in the expected direction depending on whether the farmer would on net be making

or receiving transfers through the group mechanism, the magnitudes we estimate suggest

that when pooling would induce transfers to other group members, WTP falls by only about

half as much as it would if the transfer were to the insurance company.

These results provide a mostly negative picture of the demand for group insurance. While

farmers do have a strong WTP for loss adjustment via the group mechanism and report

wanting to share idiosyncratic risk at 50% of potential, they only expect their groups to loss

adjust one quarter of the potential idiosyncratic variation. Given our evidence that both the

dynamic consistency of risk sharing and the heterogeneity of group members is a problem in

practice, the expectation that actual risk pooling will come in below the level desired may

be well justified.

6 Conclusion and Discussion

Using an artefactual field experiment, we investigate the demand for index insurance among

coffee farmers in Guatemala. Willingness to pay is in general lower than the actuarially fair

rate, which is an initial piece of evidence that partial insurance products do not generate the

kind of demand that we would expect from risk-averse agents if offered perfect insurance.

We use the lab context to decompose the potential reasons that insurance products may

meet with limited demand and to investigate one promising modality to stimulate demand:

cooperative-level loss adjustment combined with index insurance to the group.

Our study provides several novel perspectives on how people respond to risk. First,

we can explicitly estimate utility functions from the demand for risk reduction that we

believe is well explained by EU theory. This permits us to harness the EU model to predict

WTP in a wide variety of counterfactual scenarios, and provides an unusually direct way of

decomposing insurance demand. We confirm the very strong role that uninsurable sources
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of risk play in undermining WTP, and find the drivers of this response to be complex. When

the magnitude of uninsurable losses is high, EU responds strongly to the risk and behavioral

explanations appear to play very little role in driving the drop in demand. In contrast, even

very small and low-probability uninsurable risks have strong effects on WTP. In these cases

the EU model would predict only very modest shifts in WTP, and so we find that roughly

90% of the response to small uninsurable risk is behavioral. A prospect-style utility function

where the decision criterion is concave in both wealth and probabilities is consistent with

these results.

We verify the mechanisms underlying group insurance, but fail to provide much hope that

such products will prove commercially viable. Farmers understand the risk pooling benefits

of loss adjustment, and indeed they expect their cooperatives would provide about a quarter

of the possible degree of risk pooling. Despite this, there is a secular dislike of the group

mechanisms, increasing in the degree of distrust of the cooperative, that makes even a fully

loss-adjusted group insurance product only just equal to individual insurance. Given the

expected degree of loss adjustment, the average individual would prefer individual insurance

to group. Hence, while we verify that the underlying mechanisms that make group insurance

potentially attractive are indeed at play, in the end in this context they are insufficient to

compensate for the overall dislike of the group mechanism.

Taken together, these results suggest that micro-insurance suppliers bear a substantial

burden in terms of creating desirable insurance products and marketing them effectively. In-

dex insurers will struggle to generate demand in environments with multiple risks, and group

insurance does not appear to be an attractive way to overcome this hurdle. While insurance

demand would rise if climate change caused more severe or more variable shocks in the di-

mension captured by the index, even a very small increase in risks not covered by the index

prove highly detrimental to demand. As uninsured shocks become larger and more likely be-

havioral explanations become less important, but only because even Expected Utility models

predict such large decreases in WTP in these scenarios. This study therefore reinforces the

need to push index insurance products to cover multi-peril risks, as can be achieved with

more sophisticated indexes, or to find ways of directly indemnifying agricultural losses.
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Tables and Figures

Table 1: Summary Statistics on WTP by Game

Scenarios Description
Actual 

Willingness to Pay
Predicted EU 

Willingness to Pay
R (in Q) σ (in Q) (1) (2)

I1 Partial, small shock 7,000 1,000 24.38 22.73
I2 Partial, medium shock 5,000 1,000 29.51 29.92
I3 Partial, large shock 3,000 1,000 33.87 35.02
I4 Partial, base (no variability) 5,000 0 25.72 28.49
I5 Partial, some variability 5,000 1,000 29.10 29.41
I6 Partial, med variability 5,000 2,000 32.31 31.42
I7 Partial, large variability 5,000 3,000 35.58 33.40

ω D (in Q)
I4 No drought 0 25.72 28.49
I8 Drought, rare & small 1/21 8,000 21.59 28.05
I9 Drought, rare & med 1/21 6,000 18.71 26.48

I10 Drought, rare & worst 1/21 2,000 15.58 12.36
I11 Drought, freq & small 1/7 8,000 17.22 27.24
I12 Drought, freq & med 1/7 6,000 14.26 23.50
I13 Drought, freq & worst 1/7 2,000 11.72 9.86

WTP are in US$. The exchange rate in 2012 was  Q6.30= US$1

Panel A:  Partial Insurance Game

Panel B:  Probabilistic Insurance Game
Drought risk

Table 2: Estimated Parameters of Utility Functions

Overall utility Individual utilities
Parameters Coeff. (se) Median Lowest 5% Highest 5%

β̂ 0.042 (0.120) .720 -.959 3.64

k̂ 0.801 (0.194) .849 -4.033 50.500

δ̂ 0.156 (0.004) .217 .0737 1.0347
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Table 3: Willingness to Pay in the Probabilistic Game

Dependent Variable:  
WTP, US$

Difference
Actual WTP 

- Predicted WTP
(1) (2) (3) (4) (5) (6)

Any Drought -7.71*** -14.03***
(0.2240) (0.4160)

Residual SD of Income 
in Probabilistic Game -79.33*** -31.10***

(2.6280) (1.14)
Residual SD of Income 
in Partial Game 62.32*** 55.41***

(2.1190) (2.05)
Mild Drought -3.59*** -12.02*** -10.03*** -8.44***

(0.11) (0.38) (0.35) (0.34)
Drought Inducing the 
Worst Possible State -18.80*** -16.31*** -5.87*** 2.48***

(0.60) (0.45) (0.62) (0.58)

Predicted WTP 0.56***
(0.03)

Constant 31.91*** 30.00*** 31.73*** 30.03*** 13.36*** 0.05
(0.17) (0.12) (0.23) (0.19) (0.79) (0.17)

Observations 8,523 8,523 8,547 8,547 8,517 8,517
R-squared 0.795 0.771 0.74 0.704 0.775 0.41

Actual WTPPredicted WTP

*** p<0.01, ** p<0.05, * p<0.1.  Regressions are estimated using scenarios I1-I13. There are fixed effects at the 
individual level, and standard errors are clustered at the individual level.  In column (5), standard errors bootstrapped 
from 300 iterations in each of which risk aversion is re-calculated to account for the prediction error of the estimated 
right-hand side variable. 
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Table 4: Deviation from EU Behavior when Facing Small Uninsured Risk

Mean
(sd)
(1) (2) (3) (4) (5)

Behavioral Characteristics
Risk Aversion 5.76 -0.88*** -0.81** -0.86** -0.87**

(0.80) (0.36) (0.37) (0.37) (0.38)
Ambiguity Aversion  2.2 0.83*** 0.85*** 0.82*** 0.87***

(1.17) (0.30) (0.30) (0.30) (0.32)
Trust Index -0.01 -1.00*** -0.95*** -0.95*** -0.88***

(1.00) (0.30) (0.31) (0.30) (0.31)

Perceived Risk Exposure (Some Risk) (Some Risk) (Main Risk)
Excess Rainfall 0.91 -0.10 0.41 Dummy

(0.29) (1.15) (1.90) variables
Drought 0.17 -0.04 2.20 for each 

(0.38) (0.89) (2.48) level
Strong Wind 0.24 1.52* 3.66 of  each

(0.43) (0.79) (2.91) risk
Crop Disease 0.60 -0.94 0.71

(0.49) (0.71) (2.29)
Constant 11.65*** 11.50*** 11.02*** 16.14**

(2.47) (2.68) (3.08) (7.14)

Observations 644 644 644 644 644
R-squared 0.036 0.047 0.041 0.064
F_stat. for exposure to risk variables 1.737 0.782 1.089

Reduction in WTP under Mild Drought Risk
Mean value of (Predicted WTP - Actual WTP) in US$

*** p<0.01, ** p<0.05, * p<0.1.  Risk aversion is  the estimated average risk aversion based on the individual-
specific utility model.  Ambiguity aversion is an indicator from 1 to 5 based on the answers to choices between an 
urn with increasing known probability of winning and an urn with unknown probability of winning. Trust index is a 
normalized index of four questions related to trust in the coop. The risk variables are constructed from responses to 
the question: Does (Excess rainfall / Drought / Strong Wind / Diseases) represent a risk to your coffee production?  
Potential answers are: the highest risk, 2nd highest risk, 3rd highest risk, 4th highest risk, no risk.  In columns 1 and 
3, the risk variable is set to 0 if answer is no risk, 1 otherwise.  In column 4 the risk is set to 1 if it is the highest 
risk.  In column 5, there is one variable per type of risk and rank. Standard errors on behavioral characteristics 
bootstrapped from 300 iterations in each of which risk aversion is re-calculated to account for the prediction error 
of the estimated right-hand side variable. 
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Table 5: Willingness to Pay and Risk Aversion

Dependent Variable: 
Willingness to Pay, US$ Predicted WTP Actual WTP

(1) (2)
Risk aversion * Mild Drought 0.15* 0.33
 (0.10) (0.54)
Risk aversion * Severe Drought -6.83*** 0.7
 (0.93) (0.61)
Risk Aversion 0.99 1.73**

(0.67) (0.70)
Mild Drought -3.01*** -9.69***
 (0.58) (3.20)
Severe Drought 21.95*** -16.12***

(5.46) (3.61)
Constant 22.80*** 15.75***

(3.90) (3.85)

Observations 4662 4686
R-squared 0.319 0.142

*** p<0.01, ** p<0.05, * p<0.1.  Regressions are estimated using scenarios I4 and I8-I13.  
Standard errors bootstrapped from 300 iterations in each of which risk aversion is re-calculated 
to account for the prediction error of the estimated right-hand side variable. 
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Table 6: Willingness to Pay for Group Insurance

Dependent Variable: 
Willingness to Pay, US$

Understanding of 
Group Insurance

Predicted             
WTP

Actual            
WTP

Actual            
WTP

Actual            
WTP

Actual            
WTP

Actual            
WTP

Actual            
WTP

Actual            
WTP

Actual            
WTP

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Group with No Loss Adjustment 0 -5.21*** -5.45*** -6.95*** -5.52*** -5.52*** -5.20*** -5.20*** -5.27***

(0.00) (0.52) (0.47) (1.12) (0.47) (0.47) (0.50) (0.46) (0.46)
Group with Moderate Loss Adjustment 2.11*** -2.25*** -2.17*** -3.68*** -2.25*** -2.25*** -2.23*** -2.15*** -2.24***

(0.10) (0.53) (0.48) (1.11) (0.49) (0.49) (0.51) (0.48) (0.48)
Group with Maximal Loss Adjustment 7.19*** 0.86 0.06 -1.45 -0.05 -0.05 0.87 0.07 -0.04

(0.35) (0.56) (0.49) (1.12) (0.49) (0.49) (0.54) (0.48) (0.48)
Medium Variance (σ=2,000) in Loss 2.85*** 2.85*** 2.81*** 2.82*** 3.10*** 3.07***
 (0.16) (0.16) (0.16) (0.16) (0.16) (0.16)
High Variance (σ=3,000) in Loss 5.84*** 5.84*** 5.91*** 5.91*** 6.32*** 6.38***

(0.23) (0.23) (0.23) (0.23) (0.24) (0.25)
Test Score * Group Game 1.15

(0.75)
Trust in Group * Group Game 0.93* 0.90* 0.93*

(0.51) (0.52) (0.50)
Trust  *  Group * Moderate Loss Adjustment 0.1
 (0.22)
Trust  *  Group * Maximal Loss Adjustment 0.02
 (0.32)
Sharing Rule Not Stipulated -3.62** -2.89* -2.92*
 (1.42) (1.53) (1.55)
Trust  *  Group * Sharing Not Stipulated -0.72

(1.16)
Constant 29.62*** 29.27*** 29.50*** 29.56*** 29.43*** 29.43*** 29.22*** 29.21*** 29.18***

(0.11) (0.38) (0.34) (0.34) (0.35) (0.35) (0.44) (0.50) (0.52)

Observations 2664 2646 6610 6594 6463 6463 3306 8590 8413
R-squared 0.954 0.744 0.695 0.695 0.685 0.685 0.417 0.392 0.386

Scenarios used I5, G4abc I5, G4abc I5-I7, G4-G6 I5-I7, G4-G6 I5-I7, G4-G6 I5-I7, G4-G6 I5, G1, G4abc I5-I7, G1-G6 I5-I7, G1-G6
low variance low variance all variances all variances all variances all variances low variance all variances all variances

Trust in Group Amount of Loss Adjustment Expected from GroupAmount of Loss Adjustment Conducted by Group

*** p<0.01, ** p<0.05, * p<0.1.  Regressions include fixed effects at the individual level, and standard errors are clustered at the individual level.  
Note: Scenarios G1, G2, and G3 present the same risk profiles as I5, I6, and I7, respectively, as do G4, G5, and G6.  All scenarios have the same expected revenue R=Q5,000 but varying variance in loss 
(σ=1,000 in I5, G1, and G4; σ=2,000 in I6, G2, and G5, σ=3,000 in I6, G3, and G6).  In G1-G3, the rule of allocation of the group payout is not specified.  In G4, G5, and G6, the rule of allocation is specified 
with no loss adjustment (a), partial loss adjustment (b), or maximum loss adjustment (c) in the group.  Columns 1-2 only use the scenarios with low variance in loss, columns 3-6 use all three levels of loss 
variance.  Columns 7-9 also include the three scenarios G1-G3 in which the rule of allocation is not specified. The test score variable is equal to the number of correct answers on the two questions of 
understanding of group insurance.
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Figure 1: Examples of Representations Used in Games

a. ‘Partial’ Game (I6) b. ‘Probabilistic’ Game (I13)
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c. ‘Group’ Game (G4)
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Note: Columns represent different states of nature. On the left, the state of nature with no loss shows an
income of Q10,000, while the other columns represent states with losses ranging from Q1,000 to Q8,000.
Circles indicate frequencies, with 4 circles representing an event with probability of 1/21. The pictogram
(rain gauge or sun) and the color of the circles indicate weather events: white circle represent normal rainfall,
yellow circles heavy rainfall below the threshold for insurance payout, red circles excess rainfall covered by
the insurance, and grey circles incidence of drought. Panel a represents a scenario in which normal rainfall
occurs with probability 5/7, heavy rainfall with either no loss or Q1,000 loss with probability 1/7, and
excessive rainfall with losses of Q3,000, Q5,000, or Q7,000, each with probability of 1/21. In panel b, the
scenario includes a potential loss of Q5,000 with probability 1/7 due to excess rainfall, a potential drought
loss of Q8,000 with probability 1/7, and either normal or heavy rainfall with probability 5/7. Panel c shows a
group game scenario, with alternative rules of risk sharing. If the individual is insured, payment of premium
occurs in all states of nature, and the payout of Q1,400 occurs in states of excess rainfall in individual games
and of the indicated amount for the group risk pooling scenarios.
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Figure 2: Estimated Individual Utility Functions
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Note: Utility curves are shown for the different deciles of their distribution, when individuals are ranked
according to their risk aversion at the mid-point of the income range. The thick curve is the estimated
aggregate utility curve.

Figure 3: Actual versus Estimated WTP in Partial and Probabilistic Insurance Games
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