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Fixed effects regressions are a straightforward way of estimating marginal effects when we sus-

pect that unexplained, time-invariant components are common to members of a given group.

Measuring each variable in deviations from group means, sometimes called the within trans-

formation1, provides consistent results when additive unobserved fixed effects are present,

even if these fixed effects are correlated with other observed explanatory variables. The

intuitive meaning of the coefficients measured by the within estimator is ‘how much does a

one-unit change in X, relative to the group mean, push the outcome Y away from the group

mean’? In a model where the DGP is linear, redefining the variables in this way is innocuous

and allows us to estimate consistent marginal parameters under unobserved heterogeneity.

What, however, happens when we wish to ask non-linear questions of data in which fixed

effects are present? The purpose of this paper is to illustrate that a basic tension exists

between the standard interpretation of ‘within-group variation’ in fixed effects regression

and the concept of estimating non-linear effects. A strict definition of within variation would

imply that the marginal parameter on a certain deviation from the group mean is invariant

to the value of the group mean itself. If we are using our data to look for a global non-linear

relationship over the distribution of a covariate, however, this definition cannot be satisfied.

The marginal effects of a relationship which is globally quadratic in X must depend on the

non-demeaned value of X, and so inherently cannot be identified in deviations from a group

mean. For this reason, pure within variation could not be used to identify a DGP in which

Y is a globally non-linear function of the value of X.

Does this imply that fixed effects models are therefore unable to measure global non-

linearities? The answer to this question is no, and the somewhat surprising reason is that

quadratic fixed effects models in fact include a component of between variation in their

identification. This arises because the standard application includes X2 as an explanatory

variable in a fixed effects model, meaning that the variable is first squared and then demeaned

(see Behrman & Deolalikar (1993), Hummels & Levinsohn (1995), Lafontaine & Shaw (1999),

and Crossley et al. (2001) for examples from the applied literature). We illustrate that

the demeaned squared variable is itself a function of the group mean, and so a standard

quadratic fixed effects model uses a source of variation which is not strictly ‘within’. In

this way quadratic fixed effects models successfully recover a global non-linear relationship

precisely because the group mean is indirectly included.

A different way of thinking about non-linear relationships using within variation is to

ask whether the data display a quadratic relationship in deviations from the group mean.

1See for example (Wooldridge 2002, p.267).
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Such curvature, which we refer to as ‘within non-linearity’, would be invariant to the value

of the mean. A natural way to measure within non-linearity is to use a quadratic in the

within variation, which entails first demeaning the covariate and then squaring it, rather

than squaring then demeaning. This within-unit non-linearity would have a centering point

for each fixed effect, whereas global non-linearity has only a single centering point across the

whole distribution of the explanatory variable. Conceptually, the distinction is the following:

are the non-linearities in the data found in deviations from the mean of the fixed-effect group

to which an observation belongs, or in deviations from the mean of the sample as a whole?

While the difference between these two terms arises from a somewhat arcane property of

quadratic functions, it is a relatively simple matter to include explanatory variables which

allow us simultaneously to test for both effects.

Figure 1 illustrates the difference between these two different forms of non-linearity.

Global non-linearity implies that the rate of change in the outcome Y varies as one moves

along some independent variable X, while within non-linearity implies that it depends only

on the movement of X away from the within-group mean of X.

In what follows we illustrate a number of applied examples in which the two forms of

non-linearity are conceptually distinct and so the ability to identify them separately is of

empirical interest.

Planning Horizons

Farmers make planting decisions to maximize yields given their local climate, which is known

prior to planting. Specific realizations of weather in a given planting cycle, however, are

stochastic and ex post to planting decisions (Schlenker 2006). We could use panel data with

weather realizations on the right-hand side to explain yields. In this case the ‘global’ non-

linearity explains how optimized yields change as the predictable, average weather (climate)

changes. Within non-linearities, on the other hand, are caused by unexpected variations

around the local mean temperature, and so represent weather shocks. In this case global

concavity measures the curvature in optimal crop yields as we move across climatic zones,

whereas within concavity reveals the yield response of crops already in the ground to unan-

ticipated yearly weather shocks. In a simulation of the impact of global warming where we

expect both the mean and the variance of temperature to increase, these effects are distinct

and both are important.
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Collective Decisionmaking

Imagine analyzing an individual-level household survey where fixed effects are implemented

at the household level, using a quadratic in income to explain the savings rate. The quadratic

tests whether the marginal propensity to save changes with income. If there is global concav-

ity in this relationship, then individuals’ marginal savings rates will decrease as the absolute

level of income increases, regardless of whether income is above or below the household

mean. To the extent that individual savings decisions are related to relative position within

the household income distribution, however, we expect to see a non-linearity which is cen-

tered on the household mean rather than the population mean. In this case, a low-income

individual in a household displays different savings behavior than a high-income individ-

ual in the same household, and so savings rates are likely to display nonlinearities within

groups as well, potentially, as between units. When we include income linearly it is irrelevant

whether the comparison point is the household or population mean, but for the quadratic

term this distinction becomes important. In this case, then, within convexity measures how

the marginal propensity to save changes in relation to household mean income, and global

convexity picks up non-linearities across the whole income distribution.

Relativistic Preferences

Take the use of race dummies in a standard Mincerian wage regression. If a quadratic on

education is included, this implies that all racial groups have a single centering point for

any non-linearities. However, if members of a group are judged by the discriminatory labor

market in relative terms, this is not where we should look for a non-linearity. In practice,

if a black individual has a level of education which is above the black mean but below the

white mean, how is their relative educational attainment judged? If their wage reflects their

education relative to the population mean, we would observe any non-linearities in a global

form. If, however, members of a group are rewarded by the market relative to the mean

within their respective groups, then non-linearities would be present within units. Again the

distinction is only relevant for a non-linear model. Here, within convexity measures whether

there are increasing returns to being more educated than the average member of your group,

and global convexity measures increasing returns to education for any individual at any level

of education.
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Panel Estimation of Kuznets Relationships

It has been argued that the recent development of detailed panel datasets on inequality

(Anand & Kanbur 1993, Ram 1997) and on industrial pollutants (Antweiler et al. 1998)

allow for the Kuznets Hypothesis (KH) to be tested as the author intended it, namely in a

dynamic context. Such tests naturally consist of using fixed effects to eliminate the unob-

served heterogeneity which might bias the cross-section, together with a quadratic in income

per capita or capital/labor ratios. Since this hypothesis posits a single, global inverted-U

shape it is correct to use a global quadratic as the test. It is entirely possible, however, that

within non-linearity exists in the data as well. Short-term rigidities or capacity constraints

in the economy may mean that the outcome is non-linear in growth observed in a manner

that is related strictly to deviations from the country-level mean. In this case inequality

(for the standard KH) or emissions (for the environmental KH) will display non-linearities

which are not related to the level of GDP at which the growth occurs. Interestingly, we can

think of a story (for example, if rapid expansion causes countries to resort to dirtier sources

of energy) wherein the sign of this within non-linearity (convexity) is opposite to the global

concavity suggested by the KH. In what follows, we show that tests for global concavity will

be biased if we fail to account for this other form of non-linearity in the data.

The remainder of the paper is organized as follows. First, we demonstrate algebraically

that a quadratic term in the fixed effects estimator captures non-linearity between units.

We suggest a natural way of estimating non-linearity within units, and a hybrid estimator

that can measure both forms of non-linearity simultaneously. We conclude with Monte

Carlo simulations to illustrate under what circumstances a misspecified model will still give

consistent estimates.

1 Model

To state the problem more formally, let xit in group i in period t be a covariate drawn from

a distribution with group mean µi. Let us suppose that the true data-generating process can

be written as follows:

yit = β1xit + β2x
2
it + β3(xit − µi)

2 + ci + εit (1)

This equation allows for three separate mechanisms through which yit can exhibit a non-

linear relationship with xit.
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The first is that the fixed effects (ci) themselves may be non-linear in the covariate, or

that the conditional mean outcome across units is convex (or concave) in the distribution

of x. This could be verified by running the dummy-variable fixed effect regression and then

plotting the coefficients on the dummies against the mean value of x for each group. Given,

however, that the purpose of using the within transformation is precisely to remove ci from

outcomes, we assume that this convexity is not of interest to researchers using fixed effects

and so we do not discuss it further.

The two forms of non-linearity that are relevant with the use of fixed effects are the

global non-linearity that comes from a quadratic in xit and the within non-linearity that

comes from a quadratic in (xit − µi). If β3 = 0 in (1) than the model reverts to the case of

a quadratic functional form with fixed effects that has been estimated by previous authors

in the literature and which we label the ‘global’ model. On the other hand, if β2 = 0, only

deviations from group mean enter the specification and we label the model as ‘within’ model

accordingly. Finally, the “hybrid” model allows both β2 and β3 to be nonzero.

Consider the standard estimate of the ‘global’ model:

yit = b1xit + b2x
2
it + ci + eit (2)

The key insight into the difference between global and within non-linearity comes from

the fact that equation (2) first squares the covariate and then demeans it. Recall that

µi = E[xit|i], which can be estimated by x̄i = 1
T

∑T
t=1 xit. To fix notation, let ẍit = xit − x̄i

and x2
i = 1

T

∑T
t=1 x2

it. The quantity which we arrive at by squaring and then demeaning,

which we denote by ẋ2
it, can be written as x2

it − x2
i . From here we can add and subtract the

group mean to get: ẋ2
it = [xit − x̄i + x̄i]

2 − x2
i = ẍ2

it + 2ẍitx̄i + [x̄i]
2 − x2

i . In other words, the

canonical use of non-linear fixed effects given by (2) does not measure non-linearity within

units, as the terminology used to describe the estimator might suggest, because ẋ2
it is in

general not equal to ẍ2
it. Further, we see that by squaring the covariate before demeaning it,

we re-introduce a function of the mean of the covariate into the identification.

So what does the standard non-linear fixed effects estimator measure? A simple way to

see this is to use our DGP to write out the mean of the outcome for each fixed effect unit.

Taking averages over group i we get

ȳi = β1x̄i + β2x2
it + β3(xit − µi)2 + ci + ε̄i (3)

First noting that (xit − µi)
2 − (xit − µi)2 = x2

it − 2xitµi + µ2
i − 1

T

∑T
t=1 [x2

it − 2xitµi + µ2
i ] =
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x2
it − 2xitµi + µ2

i − x2
i + 2x̄iµi − µ2

i = ẋ2
it − 2ẍitµi we can subtract (3) from (1) to give an

explicit representation of both the global and the within variation in the conditional mean

as:2

E[ÿit|xit] = β1ẍit + β2ẋ
2
it + β3

[
ẍ2

it − ẍ2
i

]
(4)

= [β1 − 2β3µi] ẍit + [β2 + β3] ẋ
2
it (5)

= [β1 + 2β2µi] ẍit + [β2 + β3] ẍ
2
it + [β2 + β3]

[
[x̄i]

2 − x2
i

]
(6)

Several important features of the applied use of non-linear functional forms with fixed effects

are apparent from these expressions. Equation (4) gives the correctly specified model to

measure both within and global non-linearities simultaneously. When these two forms of

non-linearity take the additively separable form given in (1), one has to include two squared

terms: the demeaned squared variable to measure ‘global’ non-linearities and the squared

demeaned variable to measure ‘within-group’ non-linearities. We label this the the ‘hybrid

estimator’.

Equations (5) and (6) illustrate the consequences of using a misspecified model, wherein

only one form of the non-linearity is included as an explanatory variable when in fact both

are present in the DGP. Equation (5) shows that if we attempt to estimate equation (2)

in the presence of within-group non-linearities, bias can enter not only the estimate of the

quadratic term but the linear term as well. Squaring-then-demeaning is the correct way to

recover global non-linearity only if there is no within-group non-linearity present in the data,

in which case β3 = 0, and so we recover b1 = β1 and b2 = β2.

Equation (6) illustrates the reverse problem, and shows that an estimating equation which

includes only within-group non-linearity will be misspecified unless β2 = 0, i.e., there is no

global non-linearity in the DGP. If β2 6= 0, both linear and quadratic terms are potentially

biased.

2 Monte-Carlo Simulations

The previous section defined the traditional ‘global’ form of non-linearity, a ‘within’ model

that only relies on deviations from the group mean, and a ‘hybrid’ model that allows for both

sort of quadratic relationship. If the true Data Generating Process (DGP) is from either

2We present the asymptotic case where the number of observations per group goes towards infinity and
hence x̄i = µi. In finite samples x̄i 6= µi which will induce attenuation bias on the within term, but this bias
decreases in the number of observations per group.
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model and a different model besides the hybrid is estimated, the regression is misspecified

and the coefficient estimates might hence be biased. The goal of this section is to show how

these coefficients will be biased and outline a special case where some of the coefficients are

still unbiased even if an inaccurate model is estimated.

In each of the following graphs of Figure 2 we use a DGP that is a convex combination

of the ‘global’ and the ‘within’ quadratic term:

yit = 3xit − αx2
it + 2(1− α)(xit − µi)

2 + ci + εit (7)

where α ∈ [0, 1] is plotted on the x-axis. The extreme cases are α = 1 where the DGP has

only a ‘global’ quadratic component and α = 0 where the DGP has only a ‘within’ quadratic

component. For all intermediate values, the true DGP is a linear combination of both. We

purposefully pick a low variance σε so we can detect bias, and a larger number of observations

per group (1000) so the group means x̄i are estimated with high precision.3 We use ten fixed

effect groups in all of our simulations.4

While we vary the DGP in each plot along the x-axis, the model specification in the

estimation is held constant for each plot. The left column uses a traditional ‘global’ quadratic

functional form yit = b1xit + b2x
2
it + ci + eit and the lines in each graph display the bias (in

percent) for the coefficient estimates of b1 and b2. Accordingly, if α = 1, the model only

includes a ‘between’ quadratic term in the DGP and hence the model is correctly specified and

there is no bias in the estimation. Similarly, the second column uses a ‘within’ model yit =

b1xit +b2(xit− x̄i)
2 +ci +eit in the estimation, which is correctly specified for the special case

where α = 0. The third column uses a hybrid estimator yit = b1xit+b2x
2
it+b3(xit−x̄i)

2+ci+eit

that correctly identifies both parameters.

The rows distinguish whether the variance over all group members is constant across

groups, e.g., if the support/range of variations around a group mean is constant for all

groups and the individual xit are randomly drawn. Intuitively, if the variance among all

group members increases systematically in the group mean x̄i in the presence of ‘within-

group’ non-linear effects, part of that ‘within-group’ variation gets picked up as global non-

linearity.

The first row shows that if the variance of the xit in a group is constant across all groups,

3The smaller the number of observations per group, the larger the potential estimation error of the group
mean x̄i, which will induce attenuation bias for the ‘within’ term.

4The 10 groups i = 1...10 are uniform random draws from the interval [20(i−1), 20(i−1)+10] in case the
variance of the xit is constant across groups. In case the variance of xit increases in x̄i, the xit are uniform
random draws from the interval [20(i−1), 20(i−1)+20i]. The standard deviation of the errors is σε = 0.01.
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then the ‘global’ model in the first column will still give an unbiased estimate of the ‘global’

nonlinearity β2 even if within-group non-linearities are present, while the linear term β1 is

biased. All studies that we are aware of that previously used fixed effects with quadratic

functional forms used a ‘global’ model: Behrman & Deolalikar (1993) use quadratics in

schooling and education to explain log wages and hours worked, Lafontaine & Shaw (1999)

use quadratics in number of outlets and years franchising, with FE for each franchise to

explain royalty rates and franchise fees, and Crossley et al. (2001) use quadratics in years

since migration to explain likelihood that immigrants receive public benefits with dummies

for the arrival/year cohorts. Given any ‘within-group’ non-linearities, linear and quadratic

estimation of these effects would in general be biased.

A quadratic term is often added as a ‘robustness check’ on the linear term. Yet, the

linear term is itself biased in the presence of within non-linearities in a traditional model of

global non-linearity. If the variance is not constant across groups, not only the linear term

but also the global quadratic terms are biased by the mis-specification of estimating a global

model only.

A pure ‘within-group’ model, on the other hand, will give biased estimates of both the

linear and quadratic term even if the variance over xit within a group is constant across all

groups.

The hybrid estimator is consistent for all data-generating processes. Since we purposefully

pick a small variance σε, the estimated coefficients are hardly different from the true values

and the computed bias is indistinguishable from zero. The difference between estimated

coefficients and true parameter values of the DGP in the first two columns hence represent

mis-specification bias and are not due to noise in the estimation.

3 Conclusions

Even though fixed effects or dummy variables are often combined with quadratic terms, we

show in this paper that the resulting coefficients have to be interpreted with some care. It

is common to equate the use of fixed effects with the notion that all identification comes

from ‘within’ variation, i.e., the variation of a variable around its mean. However, the

standard use of quadratics with fixed effects uses group means to identify a global non-linear

(quadratic) relationship. This is not the same as non-linearities in deviations from group

means. While the use of fixed effects are equivalent to a joint demeaning of the dependent and

all independent variables, the problem arises from the fact the demeaned squared variable
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is not the same as the square of the demeaned variable. We therefore generalize previous

models by including both a demeaned squared term (labelled ‘global’ quadratic term) and

the square of the demeaned variable (labelled ‘within-group’ quadratic term).

We use several examples to motivate the economic intuition behind these distinct forms

of non-linearity. While the exact interpretation of each form of non-linearity will depend on

the context, both non-linearities are likely to be present jointly in many cases. We propose a

hybrid estimator with two quadratic terms that allows us to make the distinction an empirical

one, because it consistently estimates both forms of non-linearities.

Finally we show with the help of Monte Carlo simulations that the hybrid estimator gives

consistent estimates for either form of non-linearity, but only for certain case will a traditional

‘global’ model give consistent estimates in case there are within-group non-linearities.
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Figure 1: “Global” and “Within” Quadratic Forms
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Notes: Both graphs display the case of fixed effects with two disjoint groups. The left graph assumes a global
quadratic form, while the right graph assumes a constant quadratic functional form around the mean of each
group (‘within’). The use of fixed effects amounts to a joint demeaning of the dependent and independent
variable, as indicated by the dotted axes that pass through the mean of both variables for each group. The
stars indicate individual observations. In case of the ‘within’ quadratic functional form, a given deviation ∆x

from the mean of the independent variable results in the same impact ∆y, i.e., only the ‘within’ variation
in a group identifies the coefficient. However, note that for the case of the ‘global’ quadratic functional
form, a given deviation ∆x from the mean of the independent variable results in different impacts ∆y that
dependent on the absolute value of x. Hence both the variation within and between groups are responsible
for the identification.
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Figure 2: Bias for Convex Combinations of “Global” and “Within” DGP
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Notes: All plots use a spectrum of data generating processes yit = 3xit−αx2
it + 2(1−α)(xit− x̄i)2 + ci + εit

that are convex combinations of ‘global’ and ‘within-group’ quadratic functional forms, where α ∈ (0, 1)
varies along the x-axis. The first column uses the standard ‘global’ quadratic estimator, the second column
a ‘within-group’ quadratic estimator, and the third column a “hybrid” estimator. The first column assumes
that the variance of the xit for each group i is constant across al groups, while the second row assumes that
the variance of the xit within each group is increasing in x̄i.
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