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1 Introduction

Given the pervasive role that risk plays in farming, improvements in the design of agricultural

insurance promise to offer large potential welfare benefits. New types of index insurance, in

which pay-outs are based on a pre-defined index (such as local rainfall), can provide insur-

ance against aggregate shocks without creating moral hazard (Barnett and Mahul, 2007).

From a perspective motivated by the Townsend (1994) model of village-level risk pooling,

these products appear ideal in that they insure precisely the correlated shock that cannot be

smoothed locally. Yet, almost universally these products have met with disappointing de-

mand when introduced in the field (Cole et al., 2013). Uptake rates in pure index insurance

products have typically been very low, and several studies have found that interlinking in-

dex insurance with credit products actually dampens the demand for credit (Giné and Yang,

2009; Banerjee, Duflo, and Hornbeck, 2014). Low demand is the obstacle to these apparently

welfare-improving contracts, and so a deeper understanding of consumer risk preferences is

critical.

Despite the central importance of risk preferences in economics and the potential for

insurance to solve risk-driven poverty traps (Brick and Visser, 2015), our understanding

of the drivers of insurance demand remains incomplete. In explaining the puzzle of low

adoption, the literature on index insurance in developing countries has focused primarily

on the issues of ‘basis risk’ in the index (Barnett, Barrett, and Skees, 2008), and on the

extent to which ambiguity or compound risk aversion may affect demand (Bryan, 2010;

Elabed and Carter, 2015; Barham et al., 2014). At the same time, the broader empirical

literature on insurance demand has been focused on comparing the predictions of prospect

theory (Kahneman and Tversky, 1979) to those of expected utility theory (Camerer, 2004;

Cohen and Einav, 2007; Barseghyan et al., 2013). In this paper we bring the lens of prospect

theory to bear on index insurance demand, and demonstrate that the over-weighting of

small probabilities (Tversky and Kahneman, 1992) leads to a decrease in the demand for

index insurance in multi-peril environments that is an order of magnitude larger than can

be explained by expected utility theory alone.

We contrast models of decision making under uncertainty using a set of controlled lab-

in-the-field experiments conducted with a very risk-exposed group: cooperative-based small-

holder coffee farmers in Guatemala. During the course of an incentivized day-long exercise,

we presented farmers with a way of visualizing the weather-driven risks to their farms and

recorded their willingness to pay (WTP) for an excess rainfall index insurance product across

multiple scenarios. The payout and payout probability of the insurance was held constant,

while attributes of the risk environment and the group contractual structure shifted. The
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games were designed to isolate conditions in which the different utility models have testably

distinct implications, and hence to discover which model of utility is most consistent with

stated demand for index insurance.1

Our objective is to test three central theoretical propositions in the nature of demand for

index insurance. First, a large behavioral literature has suggested that the over-weighting

of small probabilities can explain the dramatic decrease in demand that is observed when

insurance is probabilistic (may not pay out when a shock occurs) versus partial (may not fully

pay out when losses occur). To make this distinction as sharp as possible, we first estimate

explicit utility functions for every player using WTP across a set of seven games featuring

partial insurance, where the literature says that expected utility fits observed demand well

(Wakker, Thaler, and Tversky, 1997). We then take these utility functions to a set of six

games in which we introduce the possibility of a drought risk not covered by excess rainfall

insurance. We can predict the WTP that should have been observed in the drought scenarios

under expected utility. This allows us to put a precise dollar value on the magnitude of the

behavioral response to the possibility of contract non-performance, and to examine the extent

to which the response is linear in probabilities (Yaari, 1987; Doherty and Eeckhoudt, 1995).

Secondly, an influential paper by Clarke (2011) has suggested that low demand for index

insurance can be ascribed to the non-monotonicity of demand with respect to risk aversion

in the face of basis risk. If it is possible for the worst state of nature to occur without a

payout, then it is possible that insurance moves income from bad states to good states, and

the most risk-averse will be most sensitive to this possibility. Within our probabilistic risk

games we include scenarios in which the most severe shocks can occur without payout. We

can examine the heterogeneity of WTP by risk aversion, comparing the predicted WTP from

our expected utility model to the actual, observed WTP, and examine the extent to which

extreme risk aversion in combination with extreme uncovered risk conspire to drive down

demand for index insurance.

Finally, we take advantage of the cooperativized structure of our farmer population to

examine a promising potential means to solve the problem of uninsured risk; namely a group

insurance product in which idiosyncratic risk is pooled (Dercon et al., 2014). If a group has

low information costs and the ability to dynamically enforce contracts, internal loss adjust-

ment emerges as a welfare-enhancing contract relative to individual index insurance held by

all members (Dercon et al., 2006). Given that indexes are likely to do well at predicting the

1All probabilities in our games are explicitly defined, meaning that we study risk but not uncertainty
(Ellsberg, 1961). These tightly framed games provide a context that provides a very straightforward way of
thinking about how individuals weigh different outcomes in decision making, but they are not informative
as to the related issues of ambiguity aversion (Fox and Tversky, 1995; Bryan, 2010) or the failure to reduce
compound lotteries (Segal, 1990; Elabed and Carter, 2015)
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group-level shock and poorly at predicting the individual variation, the combination of group

index insurance with local loss adjustment could provide relatively comprehensive protec-

tion. However, the delegation of loss adjustment to the group induces difficult questions of

dynamic enforcement (Ligon, Thomas, and Worrall, 2002). Do people expect their groups

to be effective at conducting this loss adjustment, and are there other costs to the collective

modality that make group insurance unattractive?

To study the benefits of group insurance, we presented the logic and details of a group

insurance product to members of the cooperative, and measure WTP under a number of

different scenarios. We vary contract parameters to allow us to understand four distinct

dimensions of group incentives. First, is there a willingness to pay for protection from the

kinds of idiosyncratic risk that local risk pooling can achieve? Second, do people in fact

expect their groups would conduct any risk pooling? Third, how fragile is demand for

risk pooling if members are unequally exposed to risk, and so pooling becomes a transfer

mechanism? Finally, contracts that are welfare improving ex ante may prove to not to be

Pareto optimal once shocks have been realized, and hence risk pooling can collapse because

it is not ex post incentive compatible.

Our results provide important insights into the underlying structure of utility under risk.

We confirm the low overall demand for index insurance; only 12% of our sample were willing

to pay a price above actuarially in our base scenario. When we estimate utility curves we find

an average coefficient of relative risk aversion of 5.8 and a modal utility function that has very

close to constant absolute risk aversion. When we take these predicted individual utilities to

the case of probabilistic insurance, we find results consistent with the behavioral literature:

expected utility models dramatically underestimate the negative effect of small probabilistic

risks on insurance demand. Adding a 1 in 21 chance of a small uninsured loss would have

caused a $.43 decrease in WTP under our expected utility estimation but actually resulted in

a decrease of $4.13, implying that almost 90% of the response to highlighting the possibility of

small droughts is behavioral. The magnitude of this distortion decreases as the probability

of loss increases, and importantly the distortion disappears as the magnitude of the loss

increases, a result that is inconsistent with any constant weight for a given probability.

Thus, neither the pure EU model nor the ‘Dual’ model that is linear in utility and non-linear

in probabilities are consistent with our results. The behavioral welfare function among this

group of Guatemalan coffee farmers is concave both in probabilities and in wealth.

The severe drought shocks also prove revealing as to the utility structure of insurance

demand. On the one hand, we find very strong decreases in WTP when the uninsured shock

is the worst state of the world in both the actual WTP and in the WTP predicted from the

EU model. This confirms that the utility function is sufficiently curved as to make individuals
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more averse to paying premiums in states with lower income. Actual WTP, on the other

hand, proves to show no correlation between risk aversion and the decrease in WTP in these

extreme states. So while we confirm the overall finding of low WTP in the face of extreme

basis risk, the mechanism does not appear to the one posited in the literature focusing on

very high risk aversion.

The analysis of group insurance confirms some of basic premises of collective insurance;

namely we find that individuals recognize and are willing to pay for the ability of the group

to pool idiosyncratic risk. On the other hand, they only expect their groups to conduct

about a quarter of the degree of risk sharing possible, and there is a secular dislike of the

group mechanism that roughly compensates for the degree of pooling they expect to occur.

Heterogeneity is detrimental to the functioning of group insurance, although the elasticity

of demand with respect to the expected transfer to other group members is half of what

would be actuarially fair, implying that members display some willingness to redistribute

income through risk pooling. By eliciting demand for pooling before and after the drawing

of a random weather shock we demonstrate that indeed the ex ante desire for pooling is

undermined by issues of ex post incentive compatibility.

This study provides important insights into the specific features that drive low demand

for index-based insurance products. Demand can thrive when the index is calibrated to pick

up loss events with a probability very close to one, even if the magnitude of payouts does

not match the magnitude of losses well. If, on the other hand, index insurance is extended

into environments with complex multi-peril risks, it will struggle to generate demand. The

implication is that index insurance will be best extended into environments that have severe

but uni-dimensional risk, and that if the structure of risk is complex then indexes must

be constructed to match this complexity. Despite the tremendous interest in using index

insurance to protect vulnerable farmers from the effects of global warming, our results suggest

that the emergence of new and unpredictable risks to yield will undermine demand for

insurance products that protect against a narrower set of risks.

The remainder of the paper is organized as follows: Section 2 provides the background

and setting for the games, and a detailed description of the exercise. Section 3 uses the partial

insurance games to estimate the best-fit utility function for the data, a control structure that

is then used throughout the paper. Section 4 provides results on the probabilistic insurance

games, Section 5 on the group insurance games, and Section 6 concludes.
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2 Setting and Game Design

Coffee is by far the most important export sector in Guatemala, and yield in the coffee sector

is quite variable with excess rainfall and hurricanes posing the primary source of weather risk

exposure2. In early 2010 we conducted a cooperative survey of the coffee sector in Guatemala.

That survey attempted a census of every registered first-tier coffee cooperative in the country,

and included data on 1,440 individuals from 120 cooperatives. For this exercise, we then

selected from that population the 71 cooperatives that reported being vulnerable to excess

rainfall risk (the product that this project is intended to pilot) and devised a set of games

to understand the nature of index insurance demand. For each of the selected cooperatives

we then attempted to draw in 10 individual members to participate in the day of laboratory

experiments (the actual number that attended varies between 4 and 13, with 10 as the modal

number).

Subjects in the study were presented with a sequence of scenarios, each featuring a care-

fully designed graphic illustrating the probability distributions in the insured and uninsured

states in order to help the subjects visualize potential outcomes. All scenarios feature an

excess rainfall index insurance product paying out a given amount in case of excess rainfall

losses. The index is based on cumulative rainfall over the fruiting and flowering period for

coffee as measured at the nearest government-administered rainfall station. This insurance

product is partial for two reasons. First, the rainfall index is imperfectly correlated with

yields on farmers’ plots, thus providing some risk that is covered by the insurance product

and some that is not (often referred to as basis risk in this literature). Furthermore the pay-

out is calibrated to cover average input cost and not losses. For each scenario we hold the

basic attributes of the insurance itself constant (likelihood of payout, size of payout), and so

all variation in the stated WTP across games arises from variation in the nature of the risk

and from the specific modality used for the group insurance. The demands are incentivized

by paying out experimental ‘yields’ that are 1/100th of the outcomes in a randomly chosen

group of scenarios.

The games were typically played in the cooperative offices. The survey team that ran the

games was comprised of a presenter who ran the sessions and read the scripts, an enumerator

who would sit with the subjects and help them to fill in their sheets if they required assistance

(25% of the respondents reported never having been to school), and two additional assistants.

Upon arriving, subjects were walked through an intake survey asking a set of typical

questions about household composition, wealth, education, risk exposure of the farm, as well

2Work by Said, Afzal, and Turner (2015) suggests that risk-exposed groups may be more sensitive to risk
than those who are less exposed.
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as a set of behavioral questions focusing on risk aversion, ambiguity aversion, discounting,

and present bias. The first and last exercises of the day were a marketing exercise that

measured the WTP for a real commercial product on their own farm, using an index based

on rainfall at the nearest rainfall station.

The remainder of the exercises are based on a tightly framed risk distribution, and consist

of a series of 32 games grouped into eight exercises each of which focuses on a different issue.

The heart of the variation across games was presented by a set of flip charts that pictured

the distribution of possible outcomes in as clear and realistic a fashion as possible. These

graphics had quantities that were carefully calibrated based on information about average

yields and typical losses from the baseline household survey, and we repeatedly field tested

the graphics to find the most intuitive way of presenting the variation in risk across games.

Examples are given in Figure 1. The states of nature are represented by columns, with little

circles indicating the probability of occurrence. In the ‘Risk’ game in panel a, for example,

normal rainfall occurs with probability 5/7, heavy rainfall with either no loss or Q1,000 loss

with probability 1/7, and excessive rainfall with losses of Q3,000, Q5,000, or Q7,000, each

with probability 1/21. The ‘Severe Drought’ game of panel b features a risk of a severe

drought entailing a loss of Q8,000 with probability 1/7. If the individual is insured, payment

of premium (cuota) occurs in all states of nature, and the payout of Q1,400 occurs in states

of excess rainfall. For each exercise subjects were asked to record their willingness to pay

for the product, with the actuarially fair price remaining fixed at 200 Quetzales ($31.73).

The structure of the games is represented in Figure 2. In all scenarios, there is a set of

states s ∈ R in which a (excess rainfall) shock occurs and a payout is received if the subject

is insured; the probability of each of these states is πs. If Rs is the return in state s, c is

the cost of insurance, and P is the payout, the payoff is Rs if uninsured and Rs − c + P if

insured. There is a set of states s ∈ D in which a (heavy rainfall or drought) shock occurs

and no payout is received; the probability of each of these states is ωs and payoffs are Ds if

uninsured and Ds − c if insured. Then there is the state in which no shock occurs and no

payout occurs; this will happen with frequency 1 −
∑

s∈R πs −
∑

s∈D ωs and induces payoff

K if uninsured and K − c if insured.

Without insurance, an expected utility maximizer will have the following welfare:

EU0 =
∑
s∈R

πsu(Rs) +
∑
s∈D

ωsu(Ds) + (1−
∑
s∈R

πs −
∑
s∈D

ωs)u(K). (1)

With insurance, expected utility is:

EUI =
∑
s∈R

πsu(Rs + P − c) +
∑
s∈D

ωsu(Ds − c) + (1−
∑
s∈R

πs −
∑
s∈D

ωs)u(K − c). (2)
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The WTP is the premium payment c that equalizes expected utility across these two options.

While the index insurance literature has typically referred to all variation in income that

is not covered by the index as ‘basis risk’, there are sharply contrasting theoretical pre-

dictions surrounding increases in uncovered risk in insured states versus risk in uninsured

states. As the severity of shocks in insured states increases (holding the payout constant),

expected utility theory predicts that insurance will become more valuable because its ex-

pected marginal utility in the insured states rises. Thus, while the insurance product appears

worse in the sense that it covers a smaller fraction of the risk, it should in fact yield a higher

WTP. By contrast, increasing severity of shocks in the uninsured states increases the utility

cost of paying the premium and should cause WTP to fall.

We can also contrast the expected utility environment, in which probabilities enter lin-

early, with the behavioral environment of prospect theory (Kahneman and Tversky, 1979;

Tversky and Kahneman, 1992). In that environment we replace the objective probabilities

πs with decision weights Ω(πs), which have been found empirically to over-emphasize small

probabilities and to underweight large probabilities.3 Two other benchmark cases that we

will discuss are the ‘Dual’ model of Yaari (1987), in which the weights Ω are non-linear but

the utility function u(.) is linear, and the rank dependent expected utility theory of Quig-

gin (1982), in which only unlikely outcomes that result in extreme changes in utility are

overweighted. We return to a discussion of these cases in the results section.

2.1 Summary of Games

Risk Games. We begin by analyzing a set of experiments in which πs and Rs were varied

(I1-I7). These games vary the probability and severity of losses while keeping the insurance

product fixed, and hence provide a very simple environment in which to understand marginal

utility: what is people’s willingness to pay to transfer income from good states to bad ones

as bad states become worse?

Drought Games. We then move to a set of games that vary ωs and Ds (I8-I13). These

provide variation in the likelihood and severity of an uninsured shock to income. The com-

parison between the response we would have predicted based on an expected utility model

and the actual observed willingness to pay provides us with a measure of the extent to which

the subject behavior follows prospect theory rather than expected utility.

Real Value Games. A fundamental question is the appropriateness of laboratory-style

experiments to study insurance demand. There are important ways in which the usual

analogy of lab behavior to real-world actions breaks down in the study of insurance. Firstly,

3We do not have the ability to test standard versus cumulative prospect theory, and hence do not em-
phasize the difference between these two theories in our presentation
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to understand insurance we must understand the effects of very large swings in income, and

these cannot be replicated in the lab. Secondly, the core utility motivation of insurance

is based on downside risk, and this cannot ethically be recreated in the lab (one can alter

payouts but cannot confiscate income from experimental subjects). To understand the extent

to which the framing of the games around large losses was indeed driving the observed

behavior in the game, for three games we stripped off the framing completely and elicited

WTP to insure the small upside risk induced by the actual payments in the experiments

(I14-I16).

Group Sharing Games. Next, we exploit the group structure of our environment to test

the extent to which the groups can perform risk pooling and remove some of the idiosyncratic

variation that exists across states of nature within R (G1-G6). Using the same risk scenarios

as in the risk games I5-I7, we can cleanly identify their differential WTP for risk reductions

when achieved through the group mechanism, as well as the amount of pooling that they

expect their group to achieve. We conduct a semi-structured group deliberation exercise in

which the groups discuss how they would conduct within-group loss adjustment in practice,

and analyze the process and outcome of this deliberation using group-level characteristics

(G12)

Group Heterogeneity Games. If some group members are chronically more exposed

to downside shocks, then a pooling mechanism will involve an element of expected wealth

transfer. How destructive is this form of inequality to the willingness to participate in a

group pooling mechanism, and how asymmetric is this effect depending on whether one is

the winner or the loser in this transfer are explored in these games (G7-G11).

A complete presentation of the different risk scenarios is given in Appendix A; scripts

and graphics for each of the games are given in the online appendix, and more detail on each

game is provided as it is discussed in the text.

To protect the study against ordering effects and framing effects, we randomized two

dimensions of the way in which the study is conducted. First, the brackets for the WTP

worksheets were randomized at the cooperative level; half of the respondents spent the day

using sheets that presented values between 40 and 320 Quetzales, and the other half between

80 and 360. This lets us examine the extent to which the framing of the price altered the

resulting WTP. Secondly, we randomized the order of the games to the maximum extent

possible. While the marketing exercises were always first and last, the ‘real values’ previous

to last, and the ‘deliberation’ round last within the group games, we randomized the ordering

of the individual (I) and group (G) games, as well as the ordering of the games within the risk

games set (I1-I7), as well as the ordering of group with rule (G4-G6) and group heterogeneity

(G7-G11) games, leading to 8 possible ordering cells for the day’s games (Appendix C Table
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1).

Appendix C Table 2 presents the results of an analysis of these ordering effects. The price

bracketing did not lead to large variation in WTP (the $6.35 difference between the ‘high’

and ‘low’ brackets led to an insignificant $1.90 difference in average WTP), but the game

ordering did have significant effects. Using fixed effects for games to identify the ordering

parameter only off of the randomized games, we find that having a game come later in the

day by one exercise lowered WTP by $.53 per exercise. By contrast, players like whichever of

the (Group, Individual) games they saw second, and so the overall sign on the group versus

individual choice depends on the order in which the game was played. Because the order of

the games was randomized we ignore this issue moving forward.

3 Expected Utility and Demand for Partial Insurance

3.1 Evidence of risk aversion and prudence

We first provide evidence that players on average exhibit risk aversion and prudence by ex-

amining how the demand for partial insurance responds to variation in risk in the risk games.

These games all include three states of insurable risk with equal probability of occurrence π

and income Rs equal to R,R − σ, and R + σ, respectively, one state with uninsured shock

with probability ω and income D, and one state without shock with probability (1−3π−ω)

and income K. Under the expected utility model, the WTP is solution of:

EU0 ≡
∑
s

πu(Rs) + ωu(D) + (1− 3π − ω)u(K)

=
∑
s

πu(Rs + P − wtp) + ωu(D − wtp) + (1− 3π − ω)u(K − wtp) ≡ EUI

In the first three games we increase the severity of insured shocks (R) while keeping their

distribution (σ) constant. In games I4 to I7, we keep R constant, and vary σ in multiple of

Q1,000 from 0 to Q3,000.

Total differentiation of the solution equation gives:

dwtp

dR
=

1

EU ′I

∑
s

π [u′(Rs + P − wtp)− u′(Rs)]

dwtp

dσ
=

1

EU ′I
π [−u′(R− σ + P − wtp) + u′(R + σ + P − wtp) + u′(R− σ)− u′(R + σ)]

≈ 1

EU ′I
π [u′′(R + P − wtp)− u′′(R)] 2σ
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The first expression confirms that demand falls with the severity of the shock when utility

is concave. From the second expression, dwtp
dσ

= 0 if u′ is linear (i.e., u′′ is constant). But if

preferences also exhibit prudence (u′′′ > 0), wtp increases with σ.

Panel A of Table 1 presents the average WTP across the risk games. Column 1 shows

that WTP increases as the severity of the shocks increases across games I1 to I3, indicating

an overall risk aversion among all participants. WTP also increases as the variance in losses

increases across games I4 to I7, suggesting the presence of an overall prudence in preference.

Hence the behavior of participants in the risk games is consistent with risk aversion and

prudence under expected utility theory.

As the literature has suggested that partial insurance demand conforms relatively well to

expected utility theory (Kahneman and Tversky, 1979; Wakker, Thaler, and Tversky, 1997),

we now proceed to fit an EU demand model for each individual using these risk games.

3.2 Estimating utility functions under EU

The objective of this section is to estimate a utility function for each player based on revealed

willingness to pay for the incomplete insurance scheme in the seven individual games I1–I7.

Preferences are characterized by the following utility function:

u(y; k, β) = −1

k
e−k

y1−β
1−β (3)

Despite having only two parameters, this utility function is quite flexible. Absolute risk

aversion ARA = β 1
y

+ ky−β decreases with income for (β > 0 and k > −yβ−1) or (β <

0 and k < −yβ−1), and increases with income otherwise. It converges to the CRRA function

u(y) = − 1
k
y−k with RRA = k + 1 when β → 1 , and is the CARA exponential utility

u = − 1
k
e−ky with absolute risk aversion k when β = 0. Absolute risk aversion is an increasing

function of k and (empirically) a decreasing function of β, and so are prudence (u
′′′

u′′
) and

temperance (−u′′′′

u′′′
).

We simplify the expressions for EU given in (1) and (2) with a common notation for

all states of nature. Each game g presented to the players is characterized by a set of

probabilities pgx for the states of nature with income x and payout P g
x that the insurance will

pay if the player is insured (this includes 0 for the uninsured shocks). In a given game, the

expected utility with and without insurance for an individual with preference parameters
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(k, β) are:

EU g
0 (k, β) ≡

∑
x

pgxu(x; k, β)

EU g
I (k, β, δ) ≡

∑
x

pgxu(x+ δP g
x − c; k, β)

where δ ∈ [0, 1] is a trust parameter that the agent places on the insurance payout. The

addition of the parameter δ is prompted by the fact that observed willingness to pay was in

most cases inferior to the fair price, which is not conceivable with a standard utility function.

Our utility estimates are thus identified from variation between games, but not by the overall

average expected WTP. The willingness to pay is the solution

wtp(g, θ) = (c : EU g
I − EU

g
0 = 0) (4)

where θ = (k, β, δ) denotes the vector of parameters of the model.

3.3 Econometric method

We proceed now with the estimation of a vector of parameters θ for each individual. We

assume that there is some additive measurement error on the willingness to pay, such that

the observed willingness to pay by a given individual wtpg is:

wtpg = wtp(g, θ) + εg g = 1, . . . , 7 (5)

We also assume the usual regularity conditions on the error εg such that our estimator

is consistent and efficient. Let X(θ)G×3 denote the matrix with characteristic element

∂wtp(g, θ)/∂θj, j = 1, 2, 3. For each individual, we use a non-linear least squares estimator:

θ̂ = arg min
θ∈Θ

G∑
g=1

(wtpg − wtp(g, θ))2 (6)

implying that θ̂ must satisfy the first order conditions

−2X(θ̂)T
(
wtp−wtp(g, θ̂)

)
= 0

Equation (6) describes a typical non-linear least squares problem, except that in addition

to being nonlinear, the function wtp(g, θ) is only defined implicitly by equation (4). Thus,

the derivatives with respect to θ that define the moment equations, and that are critical to
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any gradient-based solution algorithm, require application of the implicit function theorem

at each trial value of θ.

3.4 Estimated preferences and predicted WTP

We start by estimating a unique utility function for all 674 players. Results for the pa-

rameters, with robust standard errors clustered at the individual level in parentheses, are

reported in Table 2, col. 1. The utility function exhibits risk aversion and some prudence,

with absolute risk aversion only slightly decreasing over the range of values of income, from

0.80 to 0.73, implying that relative risk aversion increases very steeply from 1.6 (for the

worst income equal to 20% of the normal income) to 7.3 when there is no negative shock to

income.

We next proceed with the estimation of θ for each individual player. Since we rely on a

very small number of observations for each player (at most 7, and less for the 61 players that

did not play all 7 games), estimated parameters can take some extreme values. We therefore

report the median and the lowest and highest 5th percentile of the estimated parameters

in Table 2, col. 2-4. We see large variations in estimated parameters across individuals,

reflecting heterogeneity in preferences.4

The estimated utility functions are shown in Figure 3. Using these estimated parameters

we can compute for each individual predicted utility and all of its derivatives at any level of

income. Among all participants 76% exhibit prudence and 10% have an almost quadratic

utility function.

For each individual with parameter θ̂, we can compute the predicted WTP, ŵtp(g′, θ̂)

that the player ought to have for any game g′. As above, this is the solution to (4) for that

particular game characterized by pg
′
x , P

g′
x . The process converged for 621 players for the first

3 games and 666 players for all other games.

Since measures of risk aversion and ŵtp will be used as regressors in the analysis of the

observed WTP in games, we will need some measure of precision on these predicted values

to correct the standard errors in the estimations. This is done by implementing a wild

bootstrap using the 6-point distribution proposed by Webb (2013).5 With equal probability,

the residual for each observation is multipled by ±
√

0.5, ±1, or ±
√

1.5. For each replicate

we then re-estimate the parameters, and in turn compute the predicted ŵtp(g′, θ̂). The wild

bootstrap here assumes that errors are independent across observations, but allows them

4The small number of observations imply that standard errors on parameters are extremely high, and the
quality of fit of the estimation, measured by SSRi,q =

∑7
g=1 (wtpg − wtp(g, θq))

2
, very good.

5With fewer than 10 observations, the 6-point distribution by Webb is recommended over the more
common 2-point distribution (Cameron, Gelbach, and Miller, 2011).

12



to be heteroskedastic and non-normal. Notice that because it is computationally intensive

to repeat the gradient-based search for each bootstrap replicate, the bootstrap parameter

estimates rely on a grid search method. The bootstrapped values will be directly used in the

estimations that use risk aversion or ŵtp as regressors.

4 Demand for Probabilistic Insurance

With these explicit utility functions in hand we now proceed to the analysis of WTP for

probabilistic insurance, where a large behavioral literature has suggested that the possibility

of contract non-performance has a larger effect on dampening demand that we would expect.

It is difficult to validate these statements without a precise measure of what the WTP

‘should’ be if agents were standard expected utility maximizers. With a WTP predicted off of

individually estimated utility curves we have a straightforward solution to this problem. The

estimated demand is a dollar-value WTP under expected utility theory, and the difference

between this amount and the observed WTP provides a monetary estimate of the extent

to which decreases in demand for probabilistic insurance are driven by behavioral concerns.

This context is particularly straightforward because all probabilities are objectively known,

and because the drought games simply relabel and re-weight the same outcome space that

was used to estimate WTP.

4.1 Comparing the demand for probabilistic and partial insurance

To investigate how this source of uninsured risk drives demand, we include a state of loss

not protected by the insurance, which we label ‘drought’, and vary both the severity and

the probability of the drought loss. Because these scenarios feature variation in the proba-

bility that the insurance contract fails to perform, they correspond to varying probabilistic

insurance, while the previous scenarios isolated the differences in WTP that arise from the

extent to which the insurance is partial.

The drought games all include one state of insurable excess rainfall with probability

π = 1/7 and income R = 50% of potential income K, one state of uninsurable drought

shock with probability ω and income D, in addition to the small risk of heavy rainfall and

the remaining state of no shock. The non-drought states are the same as implemented in

one of the risk game (I4), which can serve as reference for the demand for insurance in

absence of uninsurable states. The six drought games vary the probability and intensity

of the drought risk, while maintaining constant the probability and intensity of the excess

rainfall risk. They began with a framing of a mild drought risk, one which was both unlikely
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to occur (ω = 1/21) and small (loss equal to 20% of potential income). The magnitude of

the drought-induced loss was then increased to 40% and 80% of potential income, and the

likelihood of the risk was increased to 1/7, for each shock magnitude level. Critically, at

the potential 80% loss the drought-induced outcome becomes the worst outcome that can

obtain. This has strong negative effects on predicted WTP (because the product has the

possibility of moving income from worse states to better states where marginal utility of

income is lowest).

Both partial insurance and probabilistic insurance are incomplete in the sense that they

leave the insured person with a residual variance in income even after payouts have occurred.

An increase in risk however affects the demand for insurance in a fundamentally different

way. With partial insurance, transfers always occur in states of shocks and hence become

even more valuable when the severity of the shock increases, as we have shown in section

3.1. In contrast, when the risk is uninsurable, the demand for insurance decreases with the

severity of the risk, as the marginal utility cost of paying the premium increases. Since the

insurance product is invariant across all games, these two cases correspond to increasing an

uninsurable risk that is positively and negatively correlated with the insured risk, respectively

(Eeckhoudt, Gollier, and Schlesinger, 1996; Gollier and Pratt, 1996).

We verify these basic relationships in Table 3 by regressing WTP on the standard devia-

tion of residual risk after insurance. In order to assess whether there is a behavioral aspect

to the demand for probabilistic risk, we run the regression for both the observed WTP and

the WTP predicted with the EU model. Column 1 shows that the predicted WTP displays

the expected relationships; a small probabilistic risk leads to a small decrease in predicted

WTP, and more severe shocks in insured states drives up WTP while shocks in uninsured

states drive it down. Column 2 shows that, as a result, predicted WTP falls by $3.59 when

farmers face a mild drought risk, and by $18.80 when they face a risk so severe as to make

it possible that the worst state of nature is uninsured.

Columns 3 and 4 repeat the previous analysis but using the actual WTP observed across

games. While the signs of the responses are consistent, the magnitudes display quite a

distinct pattern. Actual WTP proves to be very sensitive to small amounts of drought

risk, and then to display little additional sensitivity to the magnitude or likelihood of risk

posed by drought (column 4). This indicates that there is a secular dislike of probabilistic

insurance that manifests itself even when the actual probability of contract non-performance

is minimal. To understand how actual and predicted WTP relate to each other, Column 5

runs a regression explaining the former while including the latter as a control variable, and

Column 6 uses the simple difference between the two as dependent variable.

The patterns estimated in Table 3 are represented visually in Figure 4. The clear story
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emerging from these two ways of analyzing the data is that there is a response to small prob-

abilistic risk that cannot be squared with our expected utility predictions, and if anything

the surprise in the response to very large probabilistic risk is that the actual WTP displays

less of a decrease than we might expect. Hence, we can conclude very clearly that there is

a behavioral puzzle in demand that decreases as the probabilistic nature of the insurance is

magnified.

The literature on probabilistic insurance has compared the demand for insurance when

the payout is probabilistic with the standard case of full insurance (Camerer (2004). In

particular, Wakker, Thaler, and Tversky (1997) show that when the probability of contract

failure is small the WTP under EU should be roughly discounted by the probability of con-

tract failure. We conduct a different but closely related exercise, amplifying the probability

of an uninsured loss (and thus shifting the underlying risk profile) while holding the insur-

ance features fixed. We show in Appendix B that under EU the introduction of a small

uninsurable shock induces a reduction in WTP that is approximately proportional to the

probability ω of the shock, that is:

∆wtp ' [u′(K)− u′(K − wtp)] (K −D)

πu′(R− wtp+ P ) + (1− π)u′(K − wtp)
ω < 0

We can refer again to Table 1 to observe how demand is affected by a small probability

risk. Games I4, I8, and I11 only differ in the drought risk, with no drought in I4, and a small

drought risk with probabilities 1/21 in I8 and 1/7 in I11. Column 2 shows that predicted

WTP falls from its value in I4 by $0.43 in I8, and by $1.24 in I11. Change in WTP is

thus proportional to the probability of uninsured risk as expected from theory when utility

is concave in income and probabilities are weighted linearly in the EU model. Column 1

shows the actual changes; here by contrast there is a strong response to a very small increase

in probabilities, and then a lower-than-proportional response to increasing the risk further.

WTP falls by $4.13, almost 10 times more than under EU, when the probability of drought

is set at 1/21, but the decrease in WTP only doubles to $8.50 when the probability of

drought is tripled from here. Increasing the magnitude of loss in uninsured states while

holding probabilities constant leads to a further decrease in WTP for insurance, a fact that

is consistent with concave utility. Consequently, the decision criterion must be concave in

income, but non-linear and concave in probabilities over the state space studied here. This

result is directly inconsistent with the ‘dual’ theory of Yaari (1987), and also with the rank

dependent expected utility theory of Quiggin (1982), since the distortion to decisionmaking

(relative to EU) disappears as the magnitude of the low-probability shock increases.

15



4.2 Explaining the behavioral aversion to probabilistic insurance

The primary violation of expected utility theory uncovered above is the excessive response

to very small drought risks. We can form a very straightforward monetary measure of this

excess response by taking the difference between the predicted and actual WTP in the mild

drought scenarios. Then taking this as a dependent variable, we can seek to understand the

determinants of the behavioral over-response to mild drought risk. The core question we

try to answer is the following: is this excess response a function of behavioral attributes of

the individual, or does it relate to a real risk exposure in their farming activities that makes

drought risk more salient or dissuasive for farmers so exposed?

To address this question, we bring to bear two sets of covariates. The first are behavioral

attributes of the individual, including risk aversion (computed from the individual-specific

utility functions estimated above), ambiguity aversion (measured on a 1-5 scale using the

typical survey measure of ambiguity aversion), and an index of trust built from four questions

asking about the extent to which individuals trust their fellow cooperative members. To

explain actual risk exposure we rely on a set of survey questions asked at the beginning

of the day of games as to what are the main risks facing the output on subjects’ farms.

We asked about excess rainfall, drought, strong wind, or disease, and we characterize each

risk as being relevant at all or being the dominant source of risk for each farmer. Table 4

presents the results of this exercise. Column 1 shows the simple means of each right-hand

side variable. Column 2 uses only the behavioral attributes, and finds that all three of

these variables have very strong relationships with the behavioral aversion to probabilistic

insurance in the direction that we would expect. The risk averse, for whom insurance is more

important overall, are less likely to see large drops in demand as a result of the small drought

risk. Similarly, those with a high trust index are less put off by the presence of drought risk

and maintain demand. The ambiguity averse, on the other hand show much larger drops

in demand when faced with the possibility of mild drought. This latter fact is particularly

relevant in that it suggests that the simple survey question eliciting ambiguity aversion does

indeed capture relevant information in predicting economically relevant parameters.

Columns 3-5 of Table 4 include the actual risk exposure of the farmers to test whether

these can explain the over-reaction to small drought risks. Not only is drought exposure

insignificant in both specifications, and not only does a joint F-test of all four measures of

risk exposure prove insignificant both for ‘some’ and for ‘main’ risk, but the point estimates

on the behavioral parameters are almost completely unchanged. Even when we dummy out

each level of each risk we find the behavioral determinants of this over-reaction to be very

robust. Consequently, our results show very clearly that this over-response to small risks is

driven by the behavioral attributes of the decision-maker and is not driven by the actual
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exposure to risk.

4.3 Risk aversion and demand for insurance against severe risk

We now focus on the response to the ‘worst state’ drought risk, because the literature on

demand for index insurance has paid particular attention to this specific type of contract

non-performance as a candidate explanation for low demand. As shown by Clarke (2011),

the possibility of the worst state being uninsured can introduce non-monotonicity into the

relationship between risk aversion and insurance demand. The drop in WTP for insurance

that features this worst possibility should be particularly pronounced among those with

high risk aversion. Similarly, the Maximin Expected Utility framework used by Gilboa and

Schmeidler (1989) and Bryan (2010) evokes a pessimism in which decisionmakers fixate on

the worst thing that could possibly happen in making insurance purchase decisions, another

context in which the effect of these extreme tail risks would be accentuated.

To investigate this, we use data from all the drought games and the risk game with the

same insurable risk but no drought, distinguishing among the drought games between the

severe drought where the drought loss is worse than the rainfall loss and mild drought for

the other cases. We interact dummies for mild drought and severe drought with the measure

of risk aversion to study the extent to which WTP drops differentially with the risk of severe

drought for the most risk averse.

Consistent with the argument in Clarke (2011), Column 1 of Table 5 shows that while

mild drought risk leads to differentially higher predicted WTP among the more risk averse,

this relationship flips over and the ‘worst possible’ severe drought leads to a substantial and

negative differential effect. In sharp contrast to this, Column 2 illustrates that the patterns

of actual WTP are reversed: WTP in the most risk-exposed uninsured scenarios is highest

for the most risk averse, even though the premium must be paid in this state. Thus the

non-monotonicity in demand over risk aversion as the severity of probabilistic risk increases

is not observed in actual WTP.

In conclusion, while the overall aversion to insurance featuring large probabilistic risk is

largely in line with expected utility theory (Table 3), the mechanism of high risk aversion

leading to large drops in WTP does not appear to be the operative one.

4.4 Can lab experiments be used to study insurance demand?

The analysis of insurance demand using laboratory experiments is subject to fundamental

problems that would not be present in studies of more routine, high-frequency behavior.

First, the purpose of insurance is to cover individuals from drastic changes in income, and
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these cannot easily be replicated in the relatively low-stakes environment of the laboratory.

Second, we are primarily interested in responses to negative shocks, and economic experi-

ments can only ethically induce upside risk. Third, insurance decisions play out over long

periods of time, and markets are built as individuals learn about the qualities of various

forms of coverage by trying them. The quick decisions and payoffs based off of a one-day

experiment explicitly do not capture the learning that would occur in a real market, and are

thus in some sense measuring demand for the initial market only.

Despite this, the use of games to explore insurance-related questions has nonetheless

been expanding, from early papers such as Binswanger (1980) to a more recent set of studies

(Lybbert et al., 2009; McPeak, Chantarat, and Mude, 2010; Charness, Gneezy, and Imas,

2013; Norton et al., 2014; Elabed and Carter, 2015). The stated purpose of these field studies

has been mixed; some have intended to use the games only as a tool for teaching potential

customers about insurance, some have seen it as a marketing exercise to build demand, and

others have sought to learn about the nature of demand from these exercises.

We attempted to address each of these issues in the design of the experiment. We selected

the most risk-prone coffee cooperatives from a larger census in Guatemala, and repeatedly

field-tested the scripts and graphics to provide as realistic and clear as possible a picture

of the issues surrounding index insurance. We framed the games heavily around issues of

vulnerability to excess rainfall, basis risk, and the tradeoffs inherent in group insurance.

Agricultural profit and hurricane loss values were carefully calibrated using data from the

baseline survey. We also explicitly incorporate group deliberation and capture the evolution

of preferences for group insurance before and after discussion of the most strategically fraught

issue, loss adjustment. Further, the variation in the potential actual winnings during the

day was large. The sharp responses to variations across games present throughout the paper

suggest that participants were sensitive to experimental variation.

Just how successful were we in framing the small upside risk of the actual experiment

to reflect the large downside risk of the scenarios? As a way of exploring this we played

three rounds in which the framing of payoffs was removed; three scenarios they had already

seen were repeated, but rather than presenting the payoffs in their framed values, the actual

payoffs they would win for the day were presented. In this analysis we would hope to see some

WTP for insurance in the unframed games; a lack of demand for insurance would suggest

that the stakes were not large enough to induce risk aversion. We would also hope to see

higher WTP in the scenarios framed as large losses, suggesting outcomes spread further out

the distribution of the individual’s utility curve.

Figure 5 and Table 6 present this comparison, beginning with predicted WTP as a simple

way of showing what individuals should have been willing to pay for an insurance product
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that effectively protects them against a very small upside risk. Given the small amounts

of money in play, had individuals shifted completely to the unframed outcomes they would

have been willing to pay only 21 cents for the unframed insurance, relative to $29.42 for the

framed insurance. Instead, we see in columns 3 and 4 that actual WTP in the unframed

scenarios was on average $19.50, and the framing increased this by an additional $9.79.

Column 2 shows that all of the response to the severity of the shock should have come in

the framed shocks only, while Column 4 shows that in actuality the framing only doubled

the marginal response to variance relative to the unframed scenarios.

These results are heartening in that they provide support both for the fact that the

incentives provided in the laboratory environment can capture risk-averse behavior, and

that framing can push purchase decisions in the direction we would expect. They are also

difficult to interpret in that we always played the unframed games after the framed games,

and thus we actually have an experiment in unframing, not framing. Particularly given

the discussion in the previous paragraph, the WTP in the unframed scenarios is consistent

with imperfect unframing, meaning that a sample that was willing to pay $29 to protect

themselves against risks with framed standard deviation of $282 and an actuarially fair price

of $31.73 were willing to pay $20 to insure themselves against unframed risks with a standard

deviation of $1.97 and an actuarially fair price of $1.40. Thus while our results indicate that

framing is effective, we clearly failed to completely unframe the decision during these three

rounds. We nonetheless take these results as confirming the idea that the analysis of framed

games does capture risk aversion over quantities substantially larger than those actually at

risk.

5 Demand for Group Insurance

The promise of insuring groups (rather than individuals) is the possibility that superior

information held by group members allows payouts to be adjusted to reflect the actual

losses experienced. In principle this can permit superior smoothing, and index insurance for

aggregate risk can be thought of as complementary to group insurance for idiosyncratic risk

(Dercon et al., 2014).

Despite this potential, there are at least four factors that could play against group insur-

ance. First, the group negotiation process is not frictionless, and thus distrust or social costs

may make group negotiation an unattractive way to provide smoothing. Second, individuals

may simply not find it credible that the group will conduct this smoothing after the fact,

meaning that the group fails to live up to its potential as a risk pooling mechanism. Third,

while risk pooling may be easy to maintain when group members face homogenous risks, in
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reality certain individuals are likely chronically more exposed to risk than others, meaning

that loss adjustment will de facto be a transfer mechanism from the less exposed to the more

exposed. Finally, there is the well-known dissonance between the ex ante desire to pool risk

(prior to the realization of shocks) and the willingness to carry through with the transfers

necessary for pooling once the shock outcomes have been observed. We now present the

results of experimental games intended to isolate the relative importance of each of these

four mechanisms.

The group games present risk scenarios that are similar to those of the risk games I5 to

I7, where excess rainfall experienced at the group level may lead to three possible levels of

idiosyncratic losses of R,R − σ and R + σ, where R now represents the average loss in the

group. Should the group be insured, the aggregate payout will be Q1,400 times the number of

insured members. This aggregate payout can then be either equally shared among members,

or attributed according to experienced losses.

5.1 The demand for group loss adjustment

Before eliciting WTP for group insurance, we presented the logic of this modality to players,

and facilitated a discussion in which we explicitly presented the potential for group loss

adjustment through unequal sharing of the group payout. We begin our analysis of group

WTP with the results from several tightly framed scenarios in which the within group loss

adjustment was specified. The graphic for group game G4, with σ = Q1, 000, is represented

in Figure 1, panel c. Participants were asked to consider each of the three scenarios indicated

in the payout rows: one that featured group insurance with no loss adjustment, one with a

moderate degree of loss adjustment, and one with complete sharing. Similar group games

with σ = Q2, 000 and Q3, 000 were also played. Notice that the ability to loss adjust

is capped by the size of the payout, so that ‘complete sharing’ is replaced by ‘maximum

possible degree of loss adjustment’; when insurance is partial then the ability to loss adjust

is similarly incomplete. The benchmark case in which no loss adjustment is conducted is

exactly comparable to the individual games I5-I7, meaning that the difference in WTP comes

from a ‘pure’ preference for the group modality itself. Our fitted utility curves are again

useful, because they allow a very precise measure of what individuals should be willing to

pay if the response to risk protection provided by the group were identical to risk protection

coming from the insurance company, as in the individual risk games.

Column 1 of Table 7 shows the predicted WTP for group insurance under the three

potential levels of risk pooling, as compared to the baseline individual insurance game,

for the games of low variance (low σ). By construction, the predicted WTP in the ‘no loss
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adjustment’ scenario is identical to the individual game. The third row of Column 1 show that

the maximal possible risk pooling achievable by the group ought to increase WTP by $7.19.

Column 2 provides three fundamental insights into the demand for group risk pooling. The

first row illustrates that when farmers are presented with a group index insurance product

that is precisely comparable to an individual equivalent, WTP is $5.21 lower. This provides

the pure preference for group insurance, and shows that all things equal there is a dislike of

the group modality, and farmers would prefer to be insured individually. We can also compare

the changes in the WTP coefficients across the rows of Columns 1 and 2, and here we see that

the increase in actual WTP for group insurance as loss adjustment increases to its maximum

is $6.07 (.86+5.21), while the predicted WTP increases by slightly more than a dollar more

than this. Hence, risk protection that arise from group loss adjustment is slightly less

attractive than risk protection that is provided by the insurance company. Finally, while the

group becomes more attractive as its degree of loss adjustment increases, the secular dislike of

the group mechanism is sufficiently strong that farmers are basically indifferent between even

the maximally risk pooling group insurance mechanism and individual insurance. Column 3

shows that this result is very stable even when we increase the degree of variance in losses.

What is the origin of this dislike of group insurance? One obvious explanation is that

farmers simply do not trust their groups. To test this, we exploit our trust index (which

is a composite of four questions about the degree of trust in the group). In Column 4 of

Table 7, we interact this trust index with a dummy for the group games. While high-trust

individuals do indeed have significantly higher demand for group insurance, the magnitude

of this effect is small (93 cents) and hence it would appear that distrust can account for at

most about one fifth of the secular dislike of the group mechanism. Column 5 shows that

trust does not alter WTP for the group modality as the level of environmental risk increases.

Hence, while trust is not inconsequential, it cannot appear to explain the magnitude of the

preference for individual insurance.

5.2 The expected degree of loss adjustment by groups

Having understood how much the groups are willing to pay for loss adjustment, we want to

understand the actual degree of loss adjustment that the players expect from their groups.

In other words, not can then loss-adjust but will they loss-adjust? Column 6 of Table 7

shows the results of an exercise conducted before the explicit presentation of loss adjustment

rules was conducted, in which we asked WTP for a group insurance with the degree of

loss-adjustment left unstipulated.6 By comparing WTP in this game to those in which loss-

6Because these two games were always played in the same order within the overall randomization we
cannot control for the possibility of sequencing effects between these games.
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adjustment was stipulated, we can measure expectations over pooling in a very exact way.

The coefficient on this unstipulated game is -$3.62, relative to a coefficient of -$2.23 for

a group insurance with moderate pooling and of -$5.20 with no pooling. The implication

is that the cooperative members expect that their groups would conduct a fraction of the

possible degree of loss adjustment of idiosyncratic risk (corresponding to approximately a

quarter of the idiosyncratic risk). Column 7 pools data from all three risk scenarios and

arrives at very similar conclusions. Finally, we can ask whether a lack of group trust effects

the extent of pooling that the members expect from the group. This is accomplished in

column 8 by interacting group trust with a dummy for the game in which the sharing rule

was not stipulated; here we see an insignificant effect suggesting that trust is not the driver

of expected loss adjustment.

These results provide a mostly negative picture of the demand for group insurance. While

farmers do have a strong WTP for loss adjustment via the group mechanism and they do

expect their groups to conduct some loss adjustment, these positives are overwhelmed by

a set of counteracting factors. They only expect their groups to loss adjust one quarter of

the potential idiosyncratic variation, and on the whole there is a dislike of the group that

is roughly equal in magnitude to the WTP for the maximum extent of risk reduction that

group loss pooling can achieve. The WTP for marginal risk reduction achieved through

group loss adjustment is less than what it would be if this protection was provided by the

insurance company. Group trust decreases the magnitude of the penalty levied on group

insurance products, but the mechanism for this is neither the extent nor the credibility of

loss adjustment to be conducted by the group.

5.3 The effect of heterogeneity in expected losses

Having considered so far the implications of mean-zero idiosyncratic risk on the demand

for group insurance we now address the effect that asymmetric loss exposure may have on

demand. This is a critical issue because this asymmetry introduces a dimension of expected

transfer into the loss adjustment mechanism. If certain people are subject to more extreme

shocks (because, for example, they are insuring steep or flood-exposed farmland) then loss

adjustment will systematically entail a transfer of payouts towards these more exposed in-

dividuals and away from those who are less exposed to risk. This alters the actuarially fair

premium. The greater the heterogeneity within a group in the exposure to these shocks, the

more difficult we would expect group contracting to be.

To investigate this, we introduced five scenarios in which the group was presented as

being composed of heterogeneous members with different risk exposure. While idiosyncratic
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losses could still be R−σ,R and R+σ, where σ was maintained constant at Q2,000, and the

average loss in the group was R, some members had a higher probability of smaller losses

R − σ, and others a higher probability of higher losses R + σ. In the example represented

in panel d of Figure 1, the probability of low loss (of Q2,000) is 6/84, while the probability

of high loss is 2/84. Across the five games, the probability of low loss varies from 8/84 to

6/84, 4/84, 2/84, and 0, with the complementary probability for high losses. Throughout

we maintained that there would be partial risk pooling, and gave concrete amounts to be

pooled for each scenario. These five games give the basic dislike of heterogeneity, and the

change in WTP as the expected losses to that individual change.

In the first game, we merely presented the issue of heterogeneity, but the player’s exposure

to risk is the same as the average in the group (probabilities for high and low losses are equal).

Results in Table 8, column 1 that simply framing the group as consisting of heterogeneous

membership drives down WTP by $6.54, an amount greater than the overall penalty to group

insurance. We then place the individual in different parts of the expected loss distribution,

meaning that group loss adjustment would predictably serve as a transfer to or from that

individual of the difference between net expected payout and the group average. Players with

higher probability of low losses will on average transfer a higher amount to the group, and

players with higher probability of high losses will be net receiver. As a way of understanding

what this move in expected payouts should have done to demand, again utilize our utility

structure to predict WTP. Column 2 shows that predicted WTP from the utility models

should have decreased by $1.21 for each marginal dollar to be transferred (this number is

less than negative one because the money is transferred in the worst states), while column 3

shows that the actual WTP drops by only $.60. Thus, at the margin, the demand disutility

of making transfers to other group members is only half of what it is when the transfers are

to the insurance company. Columns 4 and 5 repeat this analysis showing each cell of the

game separately; the results indicate that the divergence between the two types of WTP is

particularly pronounced when an individual is the one least exposed to shocks.

The takeaway from this analysis is that while group heterogeneity depresses demand

for group insurance, and individuals do respond in the predicted way to their own shock

exposure relative to the rest of the group, these individuals are only half as unwilling to

transfer money to each other to reduce inequality as they are to lose money to the insurance

company.
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5.4 Willingness to loss adjust after shocks are realized.

Having conducted tightly framed exercises on group loss adjustment, we now try to un-

derstand decisions over loss adjustment in a more natural deliberative context. The actual

decision over group loss adjustment requires an aggregation of individual preferences into

a group decision, and the successful implementation of group insurance requires that those

individual who suffered less severe shocks remain willing to pool after these losses have been

realized. To try to simulate these steps in a laboratory context, we conducted a sequenced

‘group deliberation exercise’.

We first presented the idea that groups could loss adjust, framed the pros (better risk

protection) and the cons (tensions within the group), and asked players as individuals what

degree of loss adjustment they would prefer (1 = none, 2 = moderate, 3 = as much as

possible) if they were obtaining group insurance. We then asked them to discuss and decide

upon this issue as a group, and recorded the outcome. Finally, we attempted to mimic the

incentive to renege on group risk sharing by asking each individual to draw an actual rainfall

shock (and thus a level of income) and to vote again on the group risk pooling decision.

These three outcomes (pre-deliberation individual preference, group choice, and post-shock

individual preference) provide a window directly into the desirability of this theoretically

central feature of group insurance.

Column 1 of Table 9 shows that players that are risk averse or ambiguity averse have

a lower preference for sharing, although the point estimates are small. The group decision,

explained in Column 2, shows that groups with more women and with less educated members

reach agreement on a higher level of risk pooling after deliberation. The core point of

the exercise, however, is illustrated in Column 3. Even in this contrived environment in

which individuals are ask to state their preference twice over a very short period of time

and with only a small sum of money at stake, we find evidence that the ex post incentive

incompatibility of risk pooling will prove problematic. Individuals who draw large negative

shocks pivot to desire greater pooling, and those who draw small shocks desire less pooling.

The extent to which preferences for sharing are altered in this interval provides an application

of withdrawing the Rawlsian Veil of Ignorance, as agents who had previously not understood

their exact position in a shock redistribution now know what they personally stand to win

or lose. The magnitude of the change in behavior provides some evidence for the extent to

which the inability to writing binding contracts will pose a constraint on pooling agreements

that must be ex-post incentive compatible.

The coefficients on the desired degree of risk sharing can be taken back to the coefficients

from Table 7 in which the expected degree of risk pooling is estimated. Across all three

exercise, participants report wanting ‘moderate’ risk sharing (50% of potential), and yet

24



they expect that the groups will only provide 25% of the potential risk sharing. Given our

evidence that the dynamic consistency of risk sharing is a problem in practice, the expectation

that actual risk pooling will come in below the level desired may be well justified.

6 Conclusion and Discussion

Using a set of artefactual field experiments, we investigate the demand for index insurance

among coffee farmers in Guatemala. Willingness to Pay is in general lower than the ac-

tuarially fair rate, which is an initial piece of evidence that partial insurance products do

not generate the kind of demand that we would expect from risk-averse agents if offered

perfect insurance. We use the lab context to decompose the potential reasons that insurance

products may meet with limited demand, and to investigate several promising modalities to

stimulate demand.

Using variation in how partial the insurance is we first estimate a flexible utility curve

for each individual. This allows us to predict the demand that we think should obtain if

expected utility theory drove all WTP decisions. Taking these estimates of WTP to a set

of scenarios featuring probabilistic insurance we find results consistent with the behavioral

literature on this topic. Individuals respond far more strongly than we would expect to a

slight increase in the possibility that a shock occurs without the product paying out. We

investigate the mechanisms that might lead to this result and find the non-linear probability

weighting of prospect theory, in combination with concave utility, explain our results very

well.

We then move on to analyze whether a group loss-adjustment mechanism could provide

sufficient decrease in idiosyncratic risk as to make index insurance palatable to farmers.

Here we verify the mechanisms at play; farmers understand the risk pooling benefits of

loss adjustment, and indeed they expect their cooperatives would provide about a quarter

of the possible degree of risk pooling. Despite this, there is a secular dislike of the group

mechanisms, increasing in the degree of distrust of the cooperative, that makes even a fully

loss-adjusted group insurance product only just equal to individual insurance. Given the

expected degree of loss adjustment, the average individual would prefer individual insurance

to group. Heterogeneity in the group further damages the desire to use the group mech-

anism to cross-insure. Hence, while we verify that the underlying mechanisms that make

group insurance potentially attractive are indeed at play, in the end in this context they are

insufficient to compensate for the overall dislike of the group mechanism.

In summary our results isolate several reasons for the low demand that index insurance

products have met in the developing world. Index insurance will struggle to generate demand
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in environments with multiple risks, and group insurance does not appear to be an attractive

way to overcome this hurdle. Our results indicate that the probabilistic nature of index

insurance is the dominant factor making it unattractive, and this is driven both by expected

utility issues as well as by behavioral factors. This study therefore reinforces the need to

push agricultural insurance products to cover multi-peril risks, as can be achieved with more

sophisticated indexes, or to find ways of going directly towards insuring yield.
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Tables

Table 1: Summary Statistics on WTP by Game

Game Description Actual 
Willingness to Pay

Predicted EU 
Willingness to Pay

(1) (2)
I1 Risk, small shock 24.38 22.73
I2 Risk, med shock 29.51 29.92
I3 Risk, large shock 33.87 35.02
I4 Risk, base (no variability) 25.72 28.49
I5 Risk, some variability 29.10 29.41
I6 Risk, med variability 32.31 31.42
I7 Risk, large variability 35.58 33.40

I4 No drought 25.72 28.49
I8 Drought, rare & small 21.59 28.05
I9 Drought, rare & med 18.71 26.48
I10 Drought, rare & worst 15.58 12.36
I11 Drought, freq & small 17.22 27.24
I12 Drought, freq & med 14.26 23.50
I13 Drought, freq & worst 11.72 9.86

All figures are in US Dollars. 

Panel A:  Variation in Insured Risk

Panel B:  Variation in Uninsured Risk

Table 2: Estimated Parameters

Overall utility Individual utilities
Parameters Coeff. (se) Median Lowest 5% Highest 5%

β̂ 0.042 (0.120) .720 -.959 3.64

k̂ 0.801 (0.194) .849 -4.033 50.500

δ̂ 0.156 (0.004) .217 .0737 1.0347
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Table 3: Willingness to Pay in Presence of Drought

Dependent Variable:  
WTP, US $.

Difference
Actual WTP 

- Predicted WTP
(1) (2) (3) (4) (5) (6)

Any Drought -7.71*** -14.03***
(0.2240) (0.4160)

Residual SD of Income 
in Drought Games -79.33*** -31.10***

(2.6280) (1.14)
Residual SD of Income 
in Risk Games 62.32*** 55.41***

(2.1190) (2.05)
Mild Drought -3.59*** -12.02*** -10.03*** -8.44***

(0.11) (0.38) (0.35) (0.34)
Drought Inducing the 
Worst Possible State -18.80*** -16.31*** -5.87*** 2.48***

(0.60) (0.45) (0.62) (0.58)

Predicted WTP 0.56***
(0.03)

Constant 31.91*** 30.00*** 31.73*** 30.03*** 13.36*** 0.05
(0.17) (0.12) (0.23) (0.19) (0.79) (0.17)

Observations 8,523 8,523 8,547 8,547 8,517 8,517
R-squared 0.795 0.771 0.74 0.704 0.775 0.41

Actual WTPPredicted WTP

*** p<0.01, ** p<0.05, * p<0.1.  Regressions use fixed effects at the individual level, and standard errors are clustered at 
the individual level.  Regressions use games I1-I13.
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Table 4: Deviation from EU Behavior when Facing Low Uninsured Risk

Mean
(sd)
(1) (2) (3) (4) (5)

Behavioral characteristics
Risk Aversion 5.76 -0.88*** -0.81** -0.86** -0.87**

(0.80) (0.34) (0.35) (0.35) (0.36)
Ambiguity Aversion  2.2 0.83*** 0.85*** 0.82*** 0.87***

(1.17) (0.32) (0.32) (0.33) (0.34)
Trust Index -0.01 -1.00*** -0.95*** -0.95*** -0.88***

(1.00) (0.31) (0.32) (0.31) (0.32)

Perceived Risk Exposure (Some risk) (Some risk) (Main risk)
Excess Rainfall 0.91 -0.10 0.41 Dummy

(0.29) (1.15) (1.90) variables
Drought 0.17 -0.04 2.20 for each 

(0.38) (0.89) (2.48) level
Strong Wind 0.24 1.52* 3.66 of  each

(0.43) (0.79) (2.91) risk
Disease 0.60 -0.94 0.71

(0.49) (0.71) (2.29)
Constant 11.65*** 11.50*** 11.02*** 16.14**

(2.47) (2.68) (3.08) (7.14)

Observations 644 644 644 644 644
R-squared 0.036 0.047 0.041 0.064
F_stat. for exposure to risk variables 1.737 0.782 1.089

Mean value of (Predicted WTP - Actual WTP) in USD

*** p<0.01, ** p<0.05, * p<0.1.  Risk aversion is  the estimated average risk aversion based on the individual-specific utility 
model.  Ambiguity aversion is an indicator from 1 to 5 based on the standard survey question. Trust index is a normalized index 
of four questions related to trust in the coop. The risk variables are constructed from responses to the question: Does (Excess 
rainfall / Drought / Strong Wind / Diseases) represent a risk to your coffee production?  Potential answers are: the highest risk, 
2nd highest risk, 3rd highest risk, 4th highest risk, no risk.  In columns 1 and 3, the risk variable is set to 0 if answer is no risk, 1 
otherwise.  In column 4 the risk is set to 1 if it is the highest risk.  In column 5, there is one variable per type of risk and rank. 
Standard errors on behavioral characteristics bootstrapped from 300 iterations in each of which risk aversion is re-calculated to 
account for the prediction error of the estimated right-hand side variable. 

Reduction in WTP under mild drought games
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Table 5: Willingness to Pay and Risk Aversion

Dependent Variable: 
Willingness to Pay, US$

Predicted WTP Actual WTP

(1) (2)
Risk aversion * Mild Drought 0.15* 0.33
 (0.10) (0.54)
Risk aversion * Severe Drought -6.83*** 0.7
 (0.93) (0.61)
Risk Aversion 0.99 1.73**

(0.67) (0.70)
Mild Drought -3.01*** -9.69***
 (0.58) (3.20)
Severe Drought 21.95*** -16.12***

(5.46) (3.61)
Constant 22.80*** 15.75***

(3.90) (3.85)

Observations 4662 4686
R-squared 0.319 0.142

*** p<0.01, ** p<0.05, * p<0.1.  Regressions are estimated using games I4 and I8-I13.  
Standard errors bootstrapped from 300 iterations in each of which risk aversion is re-calculated 
to account for the prediction error of the estimated right-hand side variable. 

Table 6: WTP in Unframed Games

Dependent Variable: 
Willingness to Pay, US$

(1) (2) (3) (4)
Framed 29.21*** 22.95*** 9.79*** 7.72***

(0.58) (0.56) (0.70) (0.66)
Framed * Medium Insured Shock 6.95*** 2.29***

(0.27) (0.45)
Framed * Large Insured Shock 11.85*** 3.92***

(0.44) (0.54)
Medium Insured Shock 0.03 2.50***

(0.02) (0.26)
Large Insured Shock 0.07*** 5.29***

(0.02) (0.38)
Constant 0.21 0.18 19.50*** 16.90***

(0.28) (0.28) (0.35) (0.34)

Observations 3885 3885 3864 3864
R-squared 0.83 0.869 0.598 0.653

Predicted WTP Actual WTP

*** p<0.01, ** p<0.05, * p<0.1.  Regressions include fixed effects at the individual level, and standard errors 
are clustered at the individual level.   Regressions used games I1-I3 and I14-I16.
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Table 7: Willingness to Pay for Group Insurance

Dependent Variable: 
Willingness to Pay, US$

Predicted             
WTP

Actual            
WTP

Actual            
WTP

Actual            
WTP

Actual            
WTP

Actual            
WTP

Actual            
WTP

Actual            
WTP

(1) (2) (3) (4) (5) (6) (7) (8)
Group with No Loss Adjustment 0 -5.21*** -5.45*** -5.52*** -5.52*** -5.20*** -5.20*** -5.27***

(0.00) (0.52) (0.47) (0.47) (0.47) (0.50) (0.46) (0.46)
Group with Moderate Loss Adjustment 2.11*** -2.25*** -2.17*** -2.25*** -2.25*** -2.23*** -2.15*** -2.24***

(0.10) (0.53) (0.48) (0.49) (0.49) (0.51) (0.48) (0.48)
Group with Maximal Loss Adjustment 7.19*** 0.86 0.06 -0.05 -0.05 0.87 0.07 -0.04

(0.35) (0.56) (0.49) (0.49) (0.49) (0.54) (0.48) (0.48)
Medium Variance in Loss Game 2.85*** 2.81*** 2.82*** 3.10*** 3.07***
 (0.16) (0.16) (0.16) (0.16) (0.16)
High Variance in Loss Game 5.84*** 5.91*** 5.91*** 6.32*** 6.38***

(0.23) (0.23) (0.23) (0.24) (0.25)
Trust in Group * Group Game 0.93* 0.90* 0.93*

(0.51) (0.52) (0.50)
Trust  *  Group * Moderate Loss Adjustment 0.1
 (0.22)
Trust  *  Group * Maximal Loss Adjustment 0.02
 (0.32)
Sharing Rule Not Stipulated -3.62** -2.89* -2.92*
 (1.42) (1.53) (1.55)
Trust  *  Group * Sharing Not Stipulated -0.72

(1.16)
Constant 29.62*** 29.27*** 29.50*** 29.43*** 29.43*** 29.22*** 29.21*** 29.18***

(0.11) (0.38) (0.34) (0.35) (0.35) (0.44) (0.50) (0.52)

Observations 2664 2646 6610 6463 6463 3306 8590 8413
R-squared 0.954 0.744 0.695 0.685 0.685 0.417 0.392 0.386

Games used I5, G4abc I5, G4abc I5-I7, G4-G6 I5-I7, G4-G6 I5-I7, G4-G6 I5, G1, G4abc I5, G1-G6 I5, G1-G6

Note: Games G1, G2, and G3 present the same risk profiles as I5, I6, and I7, respectively, as do G4, G5, and G6, all with same expected loss but varying variance in loss.  In 
G1-G3, the rule of allocation of the group payout is not specified.  In G4, G5, and G6, the rule of allocation is specified with no loss adjustment (a), partial loss adjustment (b), 
or maximum loss adjustment (c) in the group.  Columns 1-2 only use the games with low variance in loss, columns 3-5  use all three levels of loss variance.  Columns 6-8 also 
include the three games G1-G3 in which the rule of allocation is not specified.

Trust in Group
Amount of Loss Adjustment Expected from 

Group
Amount of Loss Adjustment Conducted by 

Group

*** p<0.01, ** p<0.05, * p<0.1.  Regressions include fixed effects at the individual level, and standard errors are clustered at the individual level.  
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Table 8: Group Heterogeneity

Dependent Variable: 
Willingness to Pay, US$

Heterogeneous vs. 
Homogenous     

Group
Predicted WTP Actual WTP Predicted WTP Actual WTP

(1) (2) (3) (4) (5)
Group is Heterogeneous -6.54***

(0.65)
Expected Transfer to Others -1.21*** -0.60***

(0.03) (0.02)
High transfer provider -26.78*** -7.17***

(0.68) (0.35)
Low transfer provider -5.01*** -3.86***
 (0.23) (0.27)
Low transfer receiver 3.79*** 4.52***

(0.22) (0.28)
High transfer receiver 7.07*** 8.28***
 (0.43) (0.42)
Constant 33.10*** 42.19*** 26.74*** 46.37*** 26.38***

(0.31) 0.00 0.00 (0.18) (0.17)

Observations 1252 3330 2990 3330 2990
R-squared 0.791 0.848 0.817 0.899 0.818
Games Used: G6b & G7 G7-G11 G7-G11 G7-G11 G7-G11

*** p<0.01, ** p<0.05, * p<0.1.  Regressions include fixed effects at the individual level, and standard errors are clustered at 
the individual level.  
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Table 9: Group Deliberation

Initial Individual 
Preference for 

Sharing

Group                
Decision on Sharing

Final Sharing 
Preference for 

Sharing

 (1=none, 
2=moderate, 
3=maximum 

possible)

(1=none, 
2=moderate, 
3=maximum 

possible)

In Difference from 
Group  Decision

(1) (2) (3)
-0.0109 -0.9055 0.0568*
(0.07) (0.66) (0.03)

Female 0.1258 1.2967** -0.0465
(0.09) (0.54) (0.04)

Education -0.0084 -0.0745* 0.0042
(0.01) (0.04) (0.00)

Wealth -0.0398 0.3876 -0.0188
(0.06) (0.42) (0.03)

Trust in Cooperative -0.0186 0.0722 0.0115
 (0.03) (0.15) (0.02)
Utility-based Risk Aversion -0.0804** 0.4145* -0.0308
 (0.03) (0.22) (0.03)
Ambiguity Aversion -0.0510** -0.1168 0.0297***

(0.02) (0.15) (0.01)
Constant 2.7018*** -0.4691 0.1166

(0.25) (1.80) (0.20)

Mean of Dependent Variable 1.98 2.01 0.00
Observations 610 68 610
R-squared 0.024 0.174 0.026
*** p<0.01, ** p<0.05, * p<0.1.  Regressions are clustered at the group level; Column 3 includes group fixed 
effects. The dependent variable in column 1 is the preference expressed before deliberation.  Column 3 reports 
on the group decision as function of mean value of the indicated independant variables in the group. In column 
3, the dependent variable is the difference between the preference for sharing after having drawn individual 
shocks and the agreed upon group choice. 

Loss  Shock Drawn after Deliberation  ('000 
US dollars)
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Figure 1: Examples of Representations Used in Games

a. A ‘Risk’ Game (I6) b. A ‘Severe Drought’ Game (I13)  2a.  A ‘Risk’ Game (I6).                   2b.  A ‘Severe Drought’ Game (I13). 
 

           

c. A ‘Group’ Game (G4) d. A ‘Heterogeneous Group’ Game (G8)
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Note: Columns represent different states of nature. On the left, the state of nature with no loss shows an
income of Q10,000, while the other columns represent states with losses ranging from Q1,000 to Q8,000.
Circles indicate frequencies, with 4 circles representing an event with probability of 1/21. The pictogram
(rain gauge or sun) and the color of the circles indicate weather events: white circle represent normal rainfall,
yellow circles heavy rainfall below the threshold for insurance payout, red circles excess rainfall covered by
the insurance, and grey circles incidence of drought. Panel a represents a scenario in which normal rainfall
occurs with probability 5/7, heavy rainfall with either no loss or Q1,000 loss with probability 1/7, and
excessive rainfall with losses of Q3,000, Q5,000, or Q7,000, each with probability of 1/21. In panel b, the
scenario includes a potential loss of Q5,000 with probability 1/7 due to excess rainfall, a potential drought
loss of Q8,000 with probability 1/7, and either normal or heavy rainfall with probability 5/7. Panel c shows
a group game, with alternative rules of risk sharing. Panel d shows the case of a low risk person in a
heterogeneous group with partial risk pooling. If the individual is insured, payment of premium (cuota)
occurs in all states of nature, and the payout of Q1,400 occurs in states of excess rainfall in individual games
and of the indicated amount for the group risk pooling scenarios.
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Figure 2: State Space and Payoffs in Games
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Figure 3: Estimated Individual Utility Functions
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Note: Utility curves are shown for the different deciles of their distribution, when individuals are ranked
according to their risk aversion at the mid-point of the income range. The thick curve is the estimated
aggregate utility curve.
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Figure 4: Actual versus Estimated WTP in Risk and Drought Games

I1
I4

I2

I6

I7
I3

I8

I11
I9

I12
I10

I13

worst worst

10
15

20
25

30
35

W
T

P
, U

S
$

100 200 300 400 500
SD of Income if Insured in Game

Actual WTP, Risk Actual WTP, Drought
Predicted WTP, Risk Predicted WTP, Drought
Fitted, Actual Risk Fitted, Actual Drought
Fitted, Predicted Risk Fitted, Predicted Drought

Figure 5: Actual and Predicted Demand in the Unframed Games
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Appendix A - List of All Games

Table A.1: Distribution of States in Different Games

Shocks (in Quetzales)
Games 0 1,000   2,000   3,000   4,000   5,000   6,000   7,000   8,000   

I1 80.95 4.76 4.76 4.76 4.76
I2 80.95 4.76 4.76 4.76 4.76
I3 80.95 4.76 4.76 4.76 4.76
I4 80.95 4.76 14.29
I5 80.95 4.76 4.76 4.76 4.76
I6 80.95 4.76 4.76 4.76 4.76
I7 80.95 4.76 4.76 4.76 4.76
I8 76.19 4.76 4.76 14.29
I9 76.19 4.76 4.76 14.29

I10 76.19 4.76 14.29 4.76
I11 66.67 4.76 14.29 14.29
I12 66.67 4.76 14.29 14.29
I13 66.67 4.76 14.29 14.29
I14 80.95 4.76 4.76 4.76 4.76
I15 80.95 4.76 4.76 4.76 4.76
I16 80.95 4.76 4.76 4.76 4.76
G1 80.95 4.76 4.76 4.76 4.76
G2 80.95 4.76 4.76 4.76 4.76
G3 80.95 4.76 4.76 4.76 4.76
G4a 80.95 4.76 4.76 4.76 4.76
G4b 80.95 4.76 4.76 4.76 4.76
G4c 80.95 4.76 4.76 4.76 4.76
G5b 80.95 4.76 4.76 4.76 4.76
G5c 80.95 4.76 4.76 4.76 4.76
G6b 80.95 4.76 4.76 4.76 4.76
G6c 80.95 4.76 4.76 4.76 4.76
G7 80.95 4.76 4.76 4.76 4.76
G8 80.95 4.76 7.14 4.76 2.38
G9 80.95 4.76 9.52 4.76
G10 80.95 4.76 2.38 4.76 7.14
G11 80.95 4.76 4.76 9.52
G12 80.95 4.76 4.76 4.76 4.76

Probabilities of Occurrence of States (*100)

Income without shock is Q10,000.  Cells with grey background are not covered by the insurance.  
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Appendix B - Change in WTP due to a small uninsur-

able shock in EU model

Simplify the model to include only one state with insurable shock (income R with proba-
bility π) and one state of uninsurable shock (income D with probability ω). In absence of
uninsurable shock, the WTP wtp is defined by:

πu(R) + (1− π)u(K) = πu(R + P − wtp) + (1− π)u(K − wtp).

With an uninsurable shock K −D, the WTP wtp∗ is defined by:

πu(R)+ωu(D)+(1−π−ω)u(K) = πu(R+P−wtp∗)+ωu(D−wtp∗)+(1−π−ω)u(K−wtp∗).

We derive a first order approximation for a small shock (K−D) and the corresponding small
change in WTP. Subtracting these two expressions gives:

ω [u(D)− u(K)] = π [u(R− wtp∗ + P )− u(R− wtp+ P )]

+(1− π) [u(K − wtp∗)− u(K − wtp)]
+(ω) [u(D − wtp∗)− u(K − wtp∗)]

ω [u′(K)(D −K) + o(K −D)] = −πu′(R− wtp+ P )∆wtp+ o(∆wtp)

−(1− π)u′(K − wtp)∆wtp+ o(∆wtp)

−ω[u′(K − wtp) + o(∆wtp)](K −D) + o(K −D)

where ∆wtp = wtp∗−wtp and o(z) indicates any function f(z) such that limz→0 f(z)/z = 0.
This gives:

∆wtp ' [u′(K)− u′(K − wtp)] (K −D)

πu′(R− wtp+ P ) + (1− π)u′(K − wtp)
ω < 0

This shows that in the EU model, the introduction of a small uninsurable shock induces a
reduction in WTP that is approximately proportional to the probability ω of the shock.
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Appendix C - Game Ordering

Table C.1: Game Ordering

Title of the Games: 1 2 3 4 5 6 7 8
MKTING:  Before 1 1 1 1 1 1 1 1
IND:  Risk, Expected Loss I1-I3 2 3 2 3 6 7 6 7
IND:  Risk, Variance in Loss I4-I7 3 2 3 2 7 6 7 6
IND:  Drought I8-I13 4 4 4 4 8 8 8 8
GRP:  Without Allocation Rules G1-G3 5 5 5 5 2 2 2 2
GRP:  With Allocation Rules G4-G6 6 6 7 7 3 3 4 4
GRP:  Heterogeneity G7-G11 7 7 6 6 4 4 3 3
GRP:  Deliberation G12-G13 8 8 8 8 5 5 5 5
IND:  Unframed I14-I16 9 9 9 9 9 9 9 9
MKTING:  After 10 10 10 10 10 10 10 10

Alternative Ordering of the GamesNumbers in 
Base Order:

Table C.2: Effect of Game Ordering

Dependent Variable:  WTP

Bracketing Time Trend Sequencing of 
Group Game

Group Game 
First

Group Game 
After

Sequencing of 
SDL and 

Heterogeneity 
Games

(1) (2) (3) (4) (5) (6)
1.9

(1.23)
Order of Game -0.53***

(0.11)
5.12*** 5.20***
(0.77) (0.77)

Group Game   -3.41*** -3.41*** 1.71*** -1.09*
(0.57) (0.57) (0.52) (0.60)

-0.58
(0.67)

SDL Game 2.14***
(0.43)
0.14

(0.63)
Heterogeneity Game   -3.34***
 (0.44)
Constant 23.77*** 26.23*** 29.87*** 31.67*** 27.93*** 28.80***

(0.91) (0.69) (0.24) (0.36) (0.33) (0.26)

Observations 674 17,948 12,017 6,232 5,785 12,017
R-squared 0.014 0.412 0.514 0.528 0.492 0.526
*** p<0.01, ** p<0.05, * p<0.1.  Regression in column 1 uses game I1 only, it is cross-sectional at the individual level and 
standard errors are clustered at the cooperative level.   Regressions in columns 2-6 include fixed effects at the individual level, and 
standard errors are clustered at the individual level.  Regression in column 2 use all individual and group games, it includes fixed 
effects for each specific game, so the trend is measured for the same game played in different places in the sequence.  Column 3-6 
include individual games and group games with specified rules of allocation.

High Price Bracketing 
   (bracket higher by $6.35)

Group Game * Group
   Game after Individual Game

Standard Deviation of Loss 
   * SDL after EL Game

Heterogeneity Game * Het Game 
   after Correlation Game
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