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1. INTRODUCTION 

A transformation is occurring in many developing countries in which a borrower’s personalized 

relationship with a sole provider of credit is being replaced by an impersonal relationship with a larger 

market of potential lenders.  This transformation has arisen as the number of providers of microfinance 

and commercial credit has proliferated in the population centers of Asia, Africa, and Latin America, 

creating multiple borrowing options (Miller, 2003; Luoto, McIntosh, and Wydick, 2007).  While a 

personalized credit relationship may check moral hazard problems via threats of credit termination 

and/or rewards for timely repayment, a proliferation of credit options increases the scope for 

asymmetric information problems in credit markets.  This phenomenon has triggered the rapid 

emergence of credit information systems,1 that allow lenders to share information about borrowers.2    

In many ways the formation of credit information systems in the developing world is a 

bellwether of financial development: Institutions that facilitate credit information sharing add stability to 

financial systems.  Moreover, in this transformation of the credit relationship from a personalized one to 

a relationship with a larger market, borrowers stand to gain from competition between lenders.  Yet 

despite their increasing importance, too little is known about the specific effects of credit information 

systems on credit markets.   

Building from the results of field experiments that surrounded the implementation of a credit 

bureau in Guatemala and other empirical studies, our model analytically decomposes the overall impact 

of a credit information system into three effects.  The first two effects lower borrower default rates: 

a screening effect and an incentive effect.  While the two positive effects of credit bureaus have been 
                                                      
1 There are two principal types of credit information systems: credit bureaus (often called private credit registries), which 
involve the voluntary exchange of information among lenders, and public credit registries established by the state in which 
participation in the system is typically compulsory.   
2 Developing and transitional countries which now have private credit bureaus are (Africa): Botswana, Kenya, Namibia, Nigeria*, 
and South Africa; (Latin America): Argentina, Bolivia*, Brazil, Chile, Colombia, Costa Rica, Dominican Republic, El Salvador, 
Guatemala, Honduras*, Mexico, Panama, Paraguay, Peru, and Uruguay; (Asia): India*, Indonesia*, Kyrgyzstan*, Malaysia, 
The Philippines, Sri Lanka, and Thailand; (Eastern Europe): Bosnia-Herzegovina, Bulgaria*, Czech Republic*, Estonia, Georgia*, 
Hungary, Lithuania*, Poland, Romania*, and Slovakia*; (Middle East): Egypt*, Israel*, Kuwait*, Pakistan, Turkey, and Saudi 
Arabia*.  (Source: International Financial Corporation, World Bank Group).  A current updated list is available at 
http://www.ifc.org/ifcext/gfm.nsf/Content/FinancialInfrastructure-PCB-List.  
*Denotes first private credit bureau instituted since 2000. 
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previously discussed in the literature, our model also derives a third effect--the credit expansion effect--that 

predicts equilibrium increases in loan size and a resultant increase in default.  The credit expansion effect 

creates an offsetting behavior that is not unlike Peterson, Hoffer, and Millner's (1995) work on new 

airbag technology.  They show how drivers use the safety coming from the airbag to buy more speed, 

with the empirical result that airbags are associated with more automobile crashes.   

In the same way, the data from our previous empirical work and the theory presented in this 

paper show that lenders use the information from credit bureaus to expand credit, which counteracts 

much of the decline in defaults associated with better credit market information.  While the data from 

our previous empirical study comes from credit-system-based field experiments in a developing country, 

Guatemala, we believe the theoretical model we present may also yield some insight into the causes of 

the 2008-09 U.S. financial crisis, where defaults dramatically increased even within the context of the 

world's most sophisticated credit information system.   As a result, our research offers pertinent insights 

for the IFC and other international institutions that are currently financing the development of credit-

information infrastructures in less-developed countries.3  While such efforts are likely to lead to 

reductions in default from screening and incentive effects, the resulting lender expansion of credit that 

typically accompanies the implementation of such systems may counteract some of the stabilizing 

benefits that information systems bring to credit markets. 

Our work builds on seminal research in the field such as Jappelli and Pagano (1993), who 

demonstrate that credit information systems are likely to emerge in large, heterogeneous, and mobile 

pools of borrowers, and that such systems are a natural monopoly because of increasing returns to scale 

in information-sharing.  Theoretical work by Padilla and Pagano (1997, 2000) and Vercammen (1995) 

analyzes the effects of information sharing between lenders in credit markets.  The former suggests that 

the exchange of “blacklists” of defaulting borrowers between lenders can be an effective discipline 

device to mitigate various forms of moral hazard, reducing interest rates in credit markets, while the 

                                                      
3 The IFC is promoting bureaus and registries in numerous developing countries including Egypt, Lebanon, Mongolia, 
Morocco,  Pakistan, and Vietnam. 
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latter demonstrates that the sharing of shorter credit histories is optimal for mitigating moral hazard, 

preventing borrowers from free riding on good reputation.  Subsequent empirical work by Brown, 

Jappelli, and Pagano (2007), using firm-level panel data in transition economies, has found that the cost 

of credit declines as information sharing increases between lenders. 

The canonical treatment of asymmetric information in credit markets is due to Stiglitz and Weiss 

(1981), who model the incentives for borrowers to undertake risky investments that increase a 

borrower’s expected payoff under limited liability but that reduce the expected payoff to the lender.  

Higher interest rates draw an increasingly larger proportion of risky investments into the pool of 

borrowers, creating conditions for a credit-rationing equilibrium.  This approach to asymmetric 

information, and the corresponding empirical methods suggested by Karlan and Zinman (2009), are of 

interest when we consider the quantity of asymmetric information in a credit market as fixed, and 

consider the interest rate to be the only control parameter.  Credit information systems, however open 

up the possibility of engendering a first-order reduction in the quantity of asymmetric information in the 

marketplace.  Hence our model of the impact of credit information systems takes the interest rate as an 

endogenous variable determined through a competitive equilibrium and considers how it responds to a 

reduction in asymmetric information.  This is in some ways the conceptual reverse of Stiglitz and Weiss, 

who examine how the unobserved attributes of those remaining in a credit market are affected by an 

exogenous change in interest rates. 

 Subsequent work has highlighted other forms of ex-ante moral hazard, such as underinvestment 

in borrower activity complementary to credit (e.g. Boot, Thakor, and Udell, 1991), borrower negligence 

(e.g. Aghion and Bolton, 1997), and partial diversion of a loan from productive investment to present 

consumption (e.g. Wydick, 2001).  Moral hazard may also occur ex-post to project outcome if a borrower 

simply reneges on a promise to repay.  This kind of strategic default underlies the models of Banerjee 

and Newman (1993) and Paulson and Townsend (2003).   The form of moral hazard that characterizes 

our model is multiple loan contracting, in which borrowers may obtain more advantageous credit terms 
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through taking hidden loans from different lenders, with each lender possessing information over only 

his own contract with a borrower (Jappelli and Pagano, 2000;  Bizer and De Marzo, 1992).  Hidden loan 

contracts impose a negative externality because the unseen debt increases the probability of default on 

each loan.  We build our analysis of credit information systems around this type of moral hazard because 

defaults associated with over-indebtedness are an increasingly grave phenomenon in parts of the 

developing world that have experienced a proliferation in sources of credit.  The growing problem of 

multiple loan contracting has been well-documented, for example, in Turkey (Kaynak and Harcar, 2001), 

South Africa (Daniels, 2004), and Central America (McIntosh and Wydick, 2005). 

We now proceed to a summary of empirical results on credit bureau implementation, which we 

condense into a series of four stylized facts.  From there we present our theoretical model, and we 

conclude with a discussion of the ramifications of our modeling environment for policy in credit market 

institutions. 

2. SUPPORTING EMPIRICAL EVIDENCE 

Related to this research, Luoto, McIntosh, and Wydick (2007) and de Janvry, McIntosh, and 

Sadoulet (2009) use field experiment data from a microfinance lender, Génesis Empresarial, one of the 

lending institutions participating in a credit bureau that was implemented across Guatemala in 2001.   By 

the late 1990s the burgeoning growth in the number of microfinance institutions (MFIs) in Guatemala 

had exacerbated problems of multiple loan contracting and hidden debt to an extent that the country’s 

major MFIs joined to establish CREDIREF, a credit bureau allowing for positive and negative 

information sharing between participating lenders.  By 2003 the bureau held data on over 120,000 

borrowers from six major MFIs, with more institutions being incorporated into the system each year.   

 The 39 branches of Génesis Empresarial, a major microfinance lender, received the hardware 

and software necessary for the credit bureau in nine different waves between August 2001 and January 

2003, providing a natural experiment to test the effects of the credit bureau on the lending portfolio of 
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Génesis.  Luoto et al. (2007) provide a set of diagnostics demonstrating that the rollout of the bureau 

provides an admissible source of statistical identification, and proceed to test the branch-level impacts 

from the screening effect of the bureau on loan delinquency rates, finding a reduction in default of 

approximately two percentage points after the bureau was implemented in branch offices. 

A preliminary field survey with 184 borrowers in six branch offices of Génesis found that 

borrowers were remarkably poorly informed as to the presence of the credit bureau.  This lack of 

awareness of the bureau at the time of its implementation is helpful in trying to decompose the 

different effects of a credit bureau empirically.  de Janvry et al. (2009) exploit this lack of awareness 

among borrowers to isolate the incentive effects of bureaus via a field experiment.  In the experiment, 

573 Génesis borrowing groups were randomly selected from within 7 branches (the branches 

themselves randomly selected through stratified sampling) to receive a course that highlighted the 

existence and workings of the bureau.  The training course focused both on the positive repercussions 

of a bureau (increased access to outside credit for those with good borrowing records) as well as the 

negative (heightened adverse consequences of failing to repay), and provided specific information 

about lenders using the bureau, when information was checked, and on whom.  Following is a set of 

four stylized facts that emerge from the experimental study in Guatemala and other more macro-

oriented empirical work on the impacts of credit bureaus: 

EMPIRICAL FINDING #1:  Credit information-sharing substantially increases lending.  (Jappelli and Pagano, 

2002; Djankov, McLiesh, and Shleifer, 2007; de Janvry et al., 2009).  de Janvry et al. show that there 

is both an increase in the number of loans issued by each branch per month (from 30 to 45) as well as 

an increase in the average loan size:  ongoing borrowers who take loans both before and after the 

bureau see loan sizes go up from $1,058 to $1,140 for individual borrowers, and from $872 to $1,080 

for borrowers in solidarity groups.  Figure 1 uses the staggered entry of the 39 branches of Genesis 

(which entered the bureau in nine waves) to show that within a month of beginning to use the bureau 

average lending volume per branch jumps almost 50%, from US$44,000 to US$63,000 per month. 
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Figure 1 

The dramatic level of credit expansion seen in the Guatemalan field experiment is consistent 

with macro-level cross-country work: Jappelli and Pagano find that the ratio of bank lending to GDP 

increases significantly and substantially under both positive and negative information sharing.  

Investigating determinants of credit in 129 countries, Djankov et al find information-sharing 

institutions to be associated with higher levels of private credit relative to per capita income. 

EMPIRICAL FINDING #2:  Overall default decreases marginally after credit bureau introduction. (Jappelli and 

Pagano, 2002; Luoto et al., 2007; de Janvry et al., 2009).  Jappelli and Pagano find in a cross-country 

estimation that information sharing reduces at-risk loans by 3 to 4 percentage points over a base rate 

of 7.7 percent.  Luoto et al. find a significant 3.3 percentage point decrease in the fraction of loans 

with any late intermediate payments, and also find that the trend on delinquency turns significantly 

negative when the bureau comes into use.  de Janvry et al. disentangle this effect more closely, finding 

that while new clients recruited after the bureau have better repayment rates, this improvement in 
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default is counteracted by an doubling in the probability of serious delinquency among ongoing 

borrowers whose loan sizes grew sharply subsequent to the use of the bureau.  These ongoing 

borrowers with larger loans realized an increase in arrears (for loans more than two months late) from 

2.0 to 4.3 percent.  The overall effect in the Guatemalan experimental work is indicative of a marginal 

reduction in default, but this result is smaller and less robust than expected.  

EMPIRICAL FINDING #3:  Credit Bureaus induce a wave of borrower turnover.  (Jappelli and Pagano, 2002; 

Cowan and De Gregorio, 2003; Miller, 2003; Luoto et al., 2007; de Janvry et al., 2009).  Prior to the 

rollout of the Guatemalan credit bureau, 42% of Genesis clients were taking their first loan and 51% 

of borrowers did not take a subsequent loan.  de Janvry et al. find both rates go up by about 14 

percentage points.  This means that there was a one-third increase in new borrowers and an almost 

one-quarter increase in the rate at which borrowers left the lending portfolio in the first cycle after the 

bureau came into use.  Luoto et al. show the benefits of screening high-risk borrowers in terms of 

reduction in default.  Cowan and De Gregorio find that bureaus provide information which is highly 

effective in allowing Chilean banks to screen out bad risks through credit scoring.  In larger cross-

country studies, Miller highlights the benefits of screening effects in preventing risky borrowers from 

obtaining loans, and Jappelli and Pagano find that as credit applicants with poor records are able to be 

screened from borrowing, smaller firms with good credit records benefit disproportionally, especially 

in countries with weaker business law. 

EMPIRICAL FINDING #4:  Credit Information Systems have distinct screening and incentive effects.  When the 

screening effect precedes the incentive effect, the screening effect is larger.  (de Janvry et al., 2009).  The Genesis case 

featured an unannounced implementation of a bureau, which our team followed with a randomized 

training campaign intended to trigger incentive effects.   The screening effects are found to be 

substantially larger, with the bureau having only muted impacts on repayment performance to 

Genesis.  Point estimates indicate that after awareness of the bureau, delinquency falls by roughly a 
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full percentage point and default falls by about one and one-half percentage points, yet both results are 

statistically insignificant.   Results also indicate that borrowing from other lenders increases by roughly 

10 percentage points among borrowers in large communal banking groups.4  Given the large cull of 

borrowers that accompanied the lender’s use of the bureau, it is perhaps not surprising that the 

remaining borrowers have limited positive incentive effects from the bureau, because borrowers 

engaging in risky cross-lender borrowing had already been removed from the portfolio.   

 In what follows, we present a theoretical model that can explain these four empirical findings.  

Specifically, the model allows us a straightforward decomposition of screening effects (effects that 

mitigate adverse selection in credit markets), incentive effects (that mitigate moral hazard), and credit 

expansion effects (the expansion of lending as credit information increases).  Our model motivates 

why a competitive profit-driven lender will increase loan sizes when asymmetric information is 

removed from the marketplace, and provides predictive power of the types of people screened into 

and out of the market when a bureau is implemented.  Besides capturing these key features of the 

experience from our field experiments, we can use the model to extend our understanding of the 

potential impact of the introduction of bureaus in different contexts.  We conclude by fitting 

parameters from the model using data from the field, and use it to perform a simulation of the impact 

of the bureau had the incentive effects been realized prior to the screening effects.  The results of this 

simulation suggest that the impacts of a bureau can be brought forward in time by a publicity 

campaign which informs borrowers in advance as to the creation of a bureau. 

                                                      
4 The expansion of credit by other lenders illustrates that there are credit-constrained borrowers in the pool for whom a 
well-informed credit system as a whole is willing to offer more than their current lender will offer alone.  This is the 
outside lender analogy to the "credit expansion" effect, whereby willingness to offer credit to high-quality Génesis 
borrowers expands as a result of the bureau.  Given that those with hidden debt have already been purged from the 
portfolio, this increase in outside lending results from high-quality, credit constrained individuals realizing that they are no 
longer as constrained.   
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3. A MODEL OF CREDIT INFORMATION SHARING 

3.1  Moral Hazard with Incomplete Lender Information Sharing 

To conceptualize the effects of information sharing in credit markets, we develop a model that is 

both a simplification and extension of McIntosh and Wydick (2005).  Here we consider the case of an 

oligopolistic industry of lenders engaging in Bertrand competition over a finite but large pool of 

borrowers indexed by i ∈{1, 2…n}.  Lenders offer loan contracts to borrowers at a fixed administrative 

cost F, where a contract is defined over the size of the loan and interest rate, { }rV, .5  Upon receiving a 

loan, a borrower’s project either succeeds or fails in returning a yield higher than the interest rate.  More 

borrowing increases the payoff if a project is successful, but also increases the probability that the 

borrower will be unable to repay the entire loan.  Total borrowing is equal to existing debt and the size 

of the proposed loan, or VVV ET += .   Existing debt, EV , is known to the borrower, but in the absence 

of credit information sharing is hidden from the lender who is therefore forced to form expectations 

over the extent of existing indebtedness.  A project fails with probability p  yielding only 1 <R  per unit 

of borrowed capital.  We assume borrowers have no collateral, and in this case are forced to default on 

this fraction R−1  of the principal.  A successful project yields a gross return of rR +>1  with 

probability p−1 .  The probability of project failure p  is increasing in TV  such that TvVpp = , where 

0>vp .  Assuming that the cost of capital to lenders is zero, this makes the lender’s expected profit 

from a loan to borrower i equal to   

( )( ) FVVRpVrpL
i −−++−=Π 11 .   (1) 

In a zero-profit Bertrand competitive equilibrium, this implies that the interest rate for any loan of 

size V  will be equal to ( )( ) ( )VpRpVFr −−+= 11 .  Note that since ( )VVpp Ev += , this means that 

                                                      
5 We will suppress the subscript i on contractual variables in our paper except for emphasis or in cases of ambiguity. 
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the competitive equilibrium interest rate to any borrower is increasing in the (expected) level of debt 

carried by a borrower.   

 We derive the shape of the lender’s iso-profit curves in { }rV,  space by totally differentiating (1) 

to obtain   

( )
( )( ) rRrpVp

pV
dr
dV

v −−++
−

=
1
1  .    (2) 

Because the numerator is positive, the slope of the lender’s iso-profit curve is positive when V is large, 

and negatively sloped when V is small.   

 Borrower profits are generated from small enterprises with a uniform endowment that has zero 

opportunity cost.  Borrower profits are equal to project payoff minus interest costs.  Because the 

probability of project failure is increasing in a borrower's outstanding debt, a project failure signals that a 

borrower is more likely to be characterized by hidden levels of indebtedness than one who is free of 

default, and thus the borrower incurs an endogenous penalty Γ from default, the details of which we will 

describe shortly.   

 Borrowers differ only in the extent to which they value these future penalties, and hence in their 

willingness to engage in risky borrowing behavior for which they may realize short-term gain at a greater 

risk of long-term pain.6  Specifically, each borrower is characterized by a rate of time preference ∈iρ  

[ ρρ , ] where ( )ig ρ  is the density function of iρ  and ( )iG ρ  is its associated distribution function.  

This makes the profit function of borrower i equal to  

    ( ) ( )( ) 111 −Γ−+−−=Π i
B
i pVrRp ρ      (3)  

Totally differentiating borrower i’s profit function with respect to V and r, we obtain the slope of the set 

of borrower i’s iso-profit curves in { }rV, space: 

                                                      
6 In our model, ρ can alternatively be viewed as social collateral, alternative income-generating options, or any other individual-
level source of heterogeneity which affects borrowers welfare (but not lender profits) in the event of default. 
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   ( )
( ) ( )( ) 111

1
−Γ−+−−−

−
=

ivv prRVpp
pV

dr
dV

ρ
.      (4) 

As seen in (4), in contrast to the lender, the borrower’s iso-profit curves are positively sloped for small V, 

specifically when ( ) ( )( ) 111 −Γ>+−−− iviiv prRVpp ρ , and negative otherwise.  While lenders’ iso-profit 

curves are increasing across r, borrowers’ iso-profit curves are decreasing in r. 

Using (2) and (4) and by substituting ( )Ev VVp +  for p, an equilibrium loan contract { }** , rV  

between a borrower and lender in Bertrand competitive equilibrium occurs at   

( )( )
( )RRp

VRRpR
V

v

Eiv

−
−+Γ−−

=
−

2
1 1

* ρ
  ,  

( )( )
( )Ev

Ev

VVp
VFRVVp

r
+−

+−+
= *

**
*

1
1

    (5) 

if it satisfies ( ) ( ) 0, , ≥rVΠ,rVΠ L
i

B
i , where we assume that the return in the good state is sufficiently high 

that the equilibrium loan is always positive.  Remembering the subscript i  is suppressed on contract 

terms, Equation 5 spells out how variation in the equilibrium loan size and interest rate is driven by 

underlying heterogeneity in discount rates.  With Bertrand competition between lenders, the equilibrium 

loan to any borrower i will occur at the tangency point between borrower i’s iso-profit curve and the 

lender’s iso-profit curve where L
iΠ = 0, depending on a borrower’s rate of time preference, as seen in 

Figure 2a.7 

Where this tangency point occurs depends on the future penalties imposed on borrowers for 

default, and the value different borrowers place on these future penalties.  Consider the borrower with 

rate of time preference 1ρ  in Figure 2A.  The tangency point of this borrower’s iso-profit curve to the 

zero-profit curve of the lender occurs at Point A.  But as ρi  increases, borrower i’s indifference curve 

rotates clockwise, as seen in (4).  The negatively-sloped portion of the curve becomes steeper and the 

positively sloped portion of the curve becomes flatter, resulting in a higher tangency point along the 
                                                      
7 A detailed proof for the existence of equilibrium in this model is provided in McIntosh and Wydick (2005).  We assume that 
the parameter pv is sufficiently small that for all loan contracts 1<= TvVpp .  It can easily verified that when the return in the 
good state, R , is sufficiently high that the borrower’s iso-profit curve bends backward at a higher level of V than that for the 
lender, which we assume.  This implies that in the equilibrium loan contract, a marginal increase in V increases expected profit 
to the borrower, but not the lender. 
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lender’s zero-profit curve.  This is illustrated by borrowers with different rates of time preference, where 

321 ρρρ <<  in Figure 2A.  Thus in our model more impatient borrowers are riskier borrowers, 

demanding larger loans (and their potential for greater profit) in the present, while discounting the 

future consequences of default more heavily.   

 

 From this full-information benchmark case, we can now consider the incentives of a single 

individual to take advantage of asymmetric information over debt from other lenders.   Why should 

some borrowers seek to obtain loan contracts from multiple lenders?  In the full-information context, a 

lender may oblige a borrower with higher ρ  by offering him a larger loan at a higher interest rate, which 

fully compensates the lender for the added risk, as seen by tangency point B in Figure 2A.8  Moreover, 

because of the fixed costs associated with each loan, with full information borrowers will exclusively 

contract with a single lender.  If a single borrower is able to take two separate loans, where the existence 

of the second loans is hidden from each of the two lenders, then the extra risk imposed by the high debt 

level of the borrower is not priced into the contract.  As seen in Figures 1A and 1B, a high-ρ  borrower 

                                                      
8 In practice some lending institutions are willing to negotiate higher interest rates for larger loans, while other institutions 
offer all loans of a given type at a single interest rate.  Whether or not a lender is willing to grant larger loans at a higher 
interest rate is a choice that may depend on particular institutional frictions related to negotiation costs, and does not alter 
our fundamental point that borrowers have an incentive to conceal borrowing from multiple lenders.  In practice some 
institutions establish a fixed interest rate at which they grant all loans, and will constrain loan sizes or reject applications for 
loans of excessive size.   
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would choose to take separate loan contracts from different lenders, allowing him to avoid the interest 

rate premium that would otherwise be required on a single, larger loan.   

Because the interest rate is a convex function of *V  (i.e. 0, 2*

*2

*

*

>
dV

rd
dV
dr ), it is therefore most 

advantageous for this borrower contracting multiple loans to obtain separate loans of equal size.  In Figure 

1A, a borrower with rate of time preference 2ρ  would be indifferent between obtaining a single loan of 

size V at interest rate r or two separate loans of the same size, though he prefers a single loan at a higher 

interest rate rr >2 .  However, a borrower with rate of time preference 23 ρρ >  strictly prefers obtaining 

two separate loans at interest rate r , each of size V to a single loan at a higher risk-adjusted interest rate, 

3r .  Because a borrower’s rate of time preference is hidden, he may do this by soliciting two loans of size 

V  from two lenders, each at interest rate ( )( ) ( )( )VpRVpr −−= 11  < ( )( ) ( )( )VpRVpr 2112~ −−=  who 

misperceive the probability of default as ( )Vp  rather than ( )Vp 2 .  (We will demonstrate shortly how 

lenders incorporate this expectation of hidden debt into account in the credit market equilibrium where 

asymmetric information is ubiquitous.)  Figure 2B shows the marginal borrower with ρρ ˆ=i , who 

is indifferent between multiple and single loan contracting if he were able to take a hidden loan.  

Consequently, borrowers with ρρ ˆ>i  present a hidden default risk to lenders, where we assume that 

ρρρ >> ˆ . 

3.2 Introduction of a Credit Information System 

Having demonstrated that borrowers may choose to take advantage of hidden actions, we now 

consider the equilibrium contract under asymmetric information.  In such markets, interest rates and 

loan sizes adjust endogenously to account for the possibility that any borrower, ex-ante to borrowing, 

may possess hidden debt.  A credit information system is an institution that decreases the degree of 
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asymmetric information between lenders in the credit market.  The system's effectiveness determines the 

extent to which the market represents the full or the asymmetric information equilibrium.    

First we consider what happens when lenders share negative information about defaults.  In this 

case, even if lenders cannot directly observe outside debt, they have a proxy for it in a borrower’s 

repayment record.  Because they are suspected of having external debt, defaulting borrowers will receive 

less favorable equilibrium loan contracts than non-defaulting borrowers.   We can cast the negative 

information in a bureau (repayment history) in this simple static environment as a signal on the 

probability of a borrower having outside debt.   Let d represent the state of having defaulted and ~d the 

state of no default.  In the pure asymmetric information case lenders observe neither  EV  nor d, while 

with a negative information sharing bureau d becomes observable.  Noting from before that  

( | 0) ( | 0)E Ep d V p d V> > = ,  for two otherwise observationally equivalent individuals where one has 

outside debt and the other does not, it is easily seen using Bayes’ rule that once the bureau allows d to be 

observed, 
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By (5) this means that the equilibrium loan contract for defaulting borrowers is worse than for non-

defaulting borrowers so that *
~

*
dd VV <  (the equilibrium loan size is smaller) and *

~
*

dd rr >  (the 

equilibrium interest rate is higher). 

Negative information sharing can therefore easily be thought of as defining the magnitude of Γ, 

the pecuniary reward for not defaulting.  Without negative information sharing,  Γ is limited to the 

punishment capability of the lender writing the defaulted loan.  Stronger negative information sharing 

generates a larger difference for those who have and have not defaulted, and so 
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( ) ( ) 0,Π - ,Π ~~ >=Γ dd
B
idd

B
i rVrV  will be larger.  This will increase loan sizes and decrease interest rates 

for non-defaulters relative to the no negative information sharing case. 

While the benefits of negative information sharing have been well developed, our model also 

allows us to consider the added advantage of lenders sharing positive information about borrowers when 

the possibility of hidden indebtedness exists.  In contrast to negative information, which primarily 

concerns records of defaults, positive information may provide data on outstanding debt, borrower 

characteristics, positive records of repayment, and loan histories.  Lenders are typically willing to share 

negative information because the threat of being put on the list of defaulters promotes borrower 

discipline.  But lenders may be less willing to share positive information because it exposes them to 

competition from other lenders over high-quality borrowers for whom they may enjoy informational 

rents.  But with both positive and negative information sharing, borrowers may be punished not only by 

defaults, but by evidence of hidden debt.  Ironically, while negative information reveals only past 

defaults (which may have been unavoidable), in our model it is positive information sharing that actually 

provides direct evidence of ex-ante borrower risk.9   

We consider the problem of a lender screening borrowers who may carry existing debt obtained 

from other lenders.  Let α ∈ [0, 1] represent the quality of credit information sharing in the system; we 

model good information sharing through the probability with which the system exposes a multiple 

contracting borrower's hidden debt, if such exists.  Let { }** , rV and { }** ~,~ rV  be the equilibrium loan 

contracts that are taken by a borrower with single loans and multiple loans respectively in an 

incomplete-information market characterized by lender information-sharing level α..  Our model 

implicitly makes the following assumptions in the interest of tractability: 1) Lenders consider default on 

                                                      
9 Padilla and Pagano (2000) argue that the value of negative information sharing yields a greater disciplinary effect on borrowers 
than full (positive and negative) information sharing.  Moral hazard in their model involves non-contractible effort levels by 
borrowers.  Sharing only default information makes future borrowing directly contingent upon performance, while sharing 
positive and negative information reduces borrower discipline as risk is not just assessed by performance but also by borrower 
characteristics.  In contrast, our model focuses on moral hazard in multiple loan contracting, such that positive information 
directly reveals evidence of borrower risk.   
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a borrower’s previous loan and information on current debt with other lenders, whether in default or 

not;  2) Lenders know γ(α), but loan terms for an individual borrower provide no added information 

about the probability of hidden debt;  3) All borrowers not detected with existing debt remain in the 

market because each borrower has identical borrowing options andα is assumed to be the same for all 

lenders; 4) Exposed borrowers are denied secondary loans.   

Let ( ) ( )ρραρ ,ˆ ∈  now equal the lowest value of iρ , given α, for which the expected payoff to 

borrower i  from seeking multiple loans is higher than from a single loan, i.e. 

 ( ) ( )( ) ( )( )( ) ( )[ ] ( )( ) ( )( )[ ] ( )[ ]
( )( ) ( )( )[ ] ( ) .11       
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ii
B
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VpVrRVpVpVrRVp

ρ

ραρα        (6) 

By definition then, we know that for ( ) ( )αραρ ˆ≥∀ i , { } { } { }****** ~,~,~,~2 rVrVrV , and for ( ) ( )αραρ ˆ<∀ i , 

{ } { } { }****** ~,~2,~,~, rVrVrV , and thus from (6) we know that ( ) 0
ˆ

>
α
αρ

d
d .  Without restricting ourselves 

to distributional assumptions on the support of ( )⋅g , this makes the expected default rate on a new loan 

equal to 
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Letting ( )( )αργ ˆ1 G−≡  be the probability of multiple loan contracting, we can write 

    ( ) ( )
γα

αγγ
−

−+−
=

1

~11 ppp ,    (7b) 

where p and p~  are the expected probabilities of default for borrowers who have single and multiple 

loans at information-sharing level α.   While McIntosh and Wydick (2005) derive the equilibrium 

contracts and lender profitability in an asymmetric information setting, this paper provides an 



 17

exploration of how credit information systems will alter that equilibrium, and disentangles their diverse 

and counteracting effects as information systems are implemented in the credit market.  

Positive and negative information sharing together in our framework create three types of 

borrowers: "exposed borrowers,” those who are screened from multiple loan contracting and as a result 

possess single loan contracts that are inferior to their perfect-information contract, “defaulting 

borrowers,” those who have defaulted on a previous loan, and “clean borrowers,”  borrowers with clean 

credit records.   While the latter may have hidden debt, this becomes less likely as α  increases.  Let d  

continue to be the state of a borrower in default, e be the state of being exposed with hidden debt, and  

c =~d ∩~e  be the state of being a clean borrower with no default and no exposure of hidden debt, with 

corresponding subscripts on V and r.  This leads to the first proposition from our model which 

corresponds to EMPIRICAL FINDING #1:  

PROPOSITION 1: Increased positive information sharing between lenders leads to larger equilibrium loans at lower interest 

rates for both clean and defaulting borrowers. 

PROOF:  Since by using Bayes' rule ( )cVp E 0> = ( ) ( )γααγ −− 11  and since by the convexity of 

( ) 0=Π L
TVr  we have 0* >= EE VVV , then [ ] ( ) *

1
1 VcVE E γα

αγ
−
−

= .  Substitution of [ ]cVE E  into the 

expressions for *V  and *r  in (5) and differentiating yields 0
*

>
αd

dVc  and 0
*

<
αd

drc , respectively, or that 

the equilibrium loan size (interest rate) increases (decreases) for clean borrowers as positive information 

sharing increases.  Again using Bayes' rule, the expected level of indebtedness for defaulting borrowers 

is [ ] ( ) ( )
( ) ( ) ( ) ( )0101

01
 

*

=⋅−+>−

>−
=

EE

E
E VdpVdp

VVdp
dVE

γαγ
αγ

, which when similarly substituted into (5) yields 

0
*

>
αd

dVd  and 0
*

<
αd

drd , or that the equilibrium loan size (interest rate) likewise increases (decreases) for 

defaulting borrowers with greater positive information sharing.    
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The intuition to the second part of the proposition is that greater positive information sharing 

allows lenders to screen applicants with hidden debt more effectively so that default becomes a weaker 

signal of hidden indebtedness.  This makes the expected level of hidden debt among defaulting 

borrowers as well as clean borrowers lower, allowing access to better credit terms.  This is illustrated in 

Figure 2 where the equilibrium loan contracts for clean and defaulting borrowers both improve as α 

increases.  As α approaches one (perfect positive information sharing), contracts to clean and defaulting 

borrowers become equal since in both cases expected existing debt falls to zero. 

3.3 Decomposition of Screening, Incentive, and Credit Expansion Effects. 

By examination of (6) we see that an increase in α decreases the likelihood of multiple loan-

taking, so that ( ) 0
ˆ

>
α
αρ

d
d  and thus αγ < 0.  In other words, positive information sharing reverses the 

incentive for some borrowers to take multiple loans.  Empirical Findings #1 and #3 are thus explained 

through our second proposition: 

r 

B
cΠ  

*
cr    *

ir        dr    
Figure 2 

  V 
 

 Hc 
     • *

cV  
*

iV  

  
*

dV  

 
B
dΠ  

α=1
•

• Hd 

 • α=0

 • α=0

0=Π L
d

0=Π L
c  



 19

PROPOSITION 2: Credit information systems that facilitate positive and negative information sharing between lenders 

yield three distinct effects: 1) a screening effect that arises from improved borrower selection, 2) an incentive effect that comes 

from fear of detection, and 3) a credit expansion effect whereby larger loans create a perverse effect on default rates. 

PROOF: Differentiation of the default rate in (7b) with respect to α, holding EV  constant, yields  

  ( ) ( )( )( ) ( )
( )2

2

1
1~11ˆ

γα
γααγγγ

α
αα

−

−+−−−−
=

∂
∂ pppp    (8) 

where 
αα ∂

∂
≡

*
c

v
V

pp .  Note that αγ represents the change in the fraction of defaulting borrowers with 

hidden debt in response to the probability of being detected.  By setting 0== ααγ p  we can isolate the 

screening effect in 8(a) to obtain 
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−
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∂
∂

=
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γγ
α α
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ppp

p
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While maintaining 0=αp , we can subtract the screening effect in (8a) from total effect in (8) to isolate 

the incentive effect in (8b): 

    ( )( )
( )
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~1
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α
α

α

ppp
p     (8b) 

Subtracting the screening and incentive effects from (8) and substituting for pα  yields the credit 

expansion effect in (8c) which we know from the proof of PROPOSITION 1 is greater than zero: 

0
*

>
∂
∂

=
∂
∂

αα
c

v
V

pp .      (8c) 

The borrower screening effect of a credit information system seen in (8a) mitigates adverse selection 

problems and reduces portfolio default rates.  It is the direct change in the default rate resulting from 

the ability to screen risky borrowers ( )ρρ ˆ>i  from the portfolio as α  increases.  The borrower incentive 

effect in (8b) also reduces default rates by mitigating problems of moral hazard.  As α  increases, more 

borrowers choose to take single rather than multiple loan contracts, thus reducing the higher default 
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associated with hidden debt.  This can be seen in the borrower’s switching condition in (6) where higher 

levels of α change the behavior of some borrowers in the neighborhood of ρ̂ ; thus the effect is 

increasing in the magnitude of the derivative γα .10  The credit expansion effect occurs as borrowers are 

given larger equilibrium loans.   Because default is an increasing in loan size, this credit expansion 

increases default rates, but does not overwhelm the stronger effect on default of lower expected debt, 

which is consistent with what we discover in Empirical Finding #2. 

PROPOSITION 3: The overall effect of information sharing will be a reduction in default rates. 

PROOF:  Since default is strictly a function of outstanding debt, we must show that although the credit 

expansion effect results in larger loan sizes, the total level of debt declines for a borrower as α increases.  

From PROPOSITION 1 we know using Bayes’ rule that 
[ ]

.0<
∂

∂
α

EVE
  Substituting the expression 

for *V in (5) into the probability of default, ( )Ecv VVpp += * , and differentiating yields 

( )
( ) 0

2
11

2
>=+

−
−−

=
∂
∂

v
v

v

E

p
RRp
RRp

V
p .  Thus because the screening effect is larger than the credit 

expansion effect and the incentive effect has the same sign as the screening effect, the net effect from 

information sharing must be a reduction in the default rate.  

The proposition demonstrates that larger equilibrium loans dampen, but do not overwhelm, the 

reduction in the default rate from a lower level of hidden debt in the portfolio.  Even after credit 

expansion, borrowers in the portfolio have lower expected default rates. 

                                                      
10 It is interesting to consider the effect of the system on the lender providing original  loans to borrowers who then seek  a 
hidden second loan from a subsequent lender.  From the first lender's perspective the equilibrium default rate in (7b) is 

( )( ) ( )ppp ~11 αγγαγ −++−= , while (8) becomes  ( )( )( ) αα αγγ
α

pppp
+−−−=

∂
∂ ~1

ˆ .  The original lender receives a passive 

benefit from the system in that subsequent lenders reduce the level of hidden debt within the original lender's portfolio.  The 
decomposition of this term into screening, incentive, and credit expansion effects proceeds in similar fashion to our case in 
which we focus on subsequent lenders screening for hidden debt.  The full impact of the use of a bureau by all lenders is a 
composite of these two terms, which is algebraically more cumbersome but yields similar intuition to 8a-c. 
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3.4 Model Simulation 

 To better understand the effects of credit information systems, we carry out a simulation of 

portfolio default rates based on our model.  Here we focus on the nature of screening and incentive 

effects.  To calibrate the simulation we set pα = 0, p =0.05, p~ =0.15, and ( ) ( )21
2
1 ααγ −=  so that 

αγα −= , which yields a baseline default rate (with α = 0) of 10.0%.  In Figure 2, we simulate the 

portfolio default rate in (7b) with three levels of information sharing, α = 0.30, 0.60, and 0.90.   

We assume loans upon which arrears in payments may occur in any month and a portfolio 

default rate based on a 12-month moving average of overdue loans.  In our first simulation, we assume a 

credit information system is implemented in the 12th month, but to visually isolate screening and 

incentive effects, we assume borrower awareness of the system begins only in the 36th month.   
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    Figure 3 

As seen in Figure 3, given our parameter assumptions, screening effects (the first dip in default 

rates) are larger as α  increases, reducing the equilibrium default rate by approximately 0.88, 2.14, and 

4.09 percentage points for α = 0.30, 0.60, and 0.90.  Incentive effects at these corresponding levels of α 

amount to a reduction in default of 0.43, 1.28, and 0.81 percentage points, respectively.  Incentive 
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effects are larger, however, at intermediate levels of α, because when α is very small the probability of 

discovery is too small to deter marginal borrowers from hidden debt; when α  is very large, most 

borrowers who are tempted with multiple loan contracting have already been purged from the 

portfolio before the incentive effect can take hold. 

Figure 4 reveals the magnitude of screening and incentive effects as a function of α.  It illustrates 

that under our parameter assumptions, the incentive effect is largest when α = 0.701, bringing about a 

default rate reduction on its own of 1.38 percentage points.  However as α→1, the total effect on 

default reduction is maximized, but comes exclusively from the screening effect which continues to 

increase but at a diminishing rate.  
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      Figure 4 

 Normally we would think of the screening effect as the initial and larger effect of a credit 

information system with the incentive effect both subsequent and smaller.  This, however, need not be 

the case.11  It is conceivable that borrowers might become aware (or purposely be informed) of the 

impending use of the system, and that current behavior may have implications for future credit terms.  

                                                      
11Reversing the order so that awareness of the bureau occurs before implementation produces an initial incentive effect in 
which γ increases from γ(0) to γ(α) and a secondary screening effect in which screening increases from 0 to α in (7b). 
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Figure 5 shows that when the timing is reversed--awareness of lender information sharing occurs in the 

12th month and actual implementation of the system occurs in the 36th month--the incentive effect not 

only precedes the screening effect, but given our simulation parameters is larger in magnitude.  

Moreover, the magnitudes of the screening effect (given α = 0.30, 0.60, and 0.90) are equal to 0.45, 1.80, 

and 4.05  while those of the subsequently occurring screening effect are 0.86, 1.62, and 0.85, displaying a 

similar magnitude and pattern to the incentive effect when awareness of the system is subsequent to 

implementation.  This is consistent with our Empirical Finding #4.   In the case of our field experiment, 

when the screening effect preceded the incentive effect, the screening effect was larger.  However, in 

practice if a population of borrowers fully expects that their current borrowing behavior to be recorded 

and shared among lenders in a future system, we might expect incentive effects to outweigh the 

subsequent screening effect. 
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    Figure 5 

4. CONCLUSION 

We present a theoretical model that predicts the effects of credit information systems on 

equilibrium contracts and decomposes its overall impact into three separate effects: a screening effect 
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that mitigates adverse selection, an incentive effect that mitigates moral hazard, and a credit expansion 

effect that causes higher default rates from larger loans.  Indeed, these three effects can be extended in a 

general way to other contexts where internet technology has increased the potential for agent 

information-sharing among principals in a market.  Examples of this kind include automobile insurance 

firms pooling records across states, buyers and sellers sharing ratings information from past transactions 

on eBay, or law enforcement institutions sharing criminal records across jurisdictions.  In each of these 

examples, principals first derive a screening effect by curtailing their interaction with some high-risk 

types. Secondly, principals benefit because awareness of the system induces some agents on the margin 

to improve their behavior.  But more subtly, the increased confidence of principals over agent quality 

induces principals to extend riskier contracts to the agents passing informational screening.  This "trust" 

created by the system induces an offsetting behavior which is analogous to our "credit expansion" effect. 

We demonstrate theoretically that the first two (positive) effects will overwhelm the latter 

(negative) effect, such that the overall effect of information sharing on repayment is positive.   Our field 

experiment evidence from Guatemala shows that the introduction of the bureau induces a strong 

screening effect and a more muted incentive effect.  However, the Guatemalan evidence on the 

introduction of a bureau featured a screening effect of the bureau that preceded the incentive effect in 

time. Our theoretical model allows us to simulate what would have happened had the incentive effect 

come first and the screening effect thereafter.  Interestingly, we find that the impact of the "first" 

intervention is similar and dominant regardless of whether the screening precedes information about the 

system or vice versa, and hence the effect on moral hazard of the bureau may have been dominant had 

the incentive effect preceded the screening effect.  

One of the factors that makes a credit bureau an attractive intervention from a policy 

perspective is its modest cost compared to its substantial benefits, which other work related to this 
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project has demonstrated.12  We illustrate here a somewhat surprising way of pulling these benefits 

forward in time as credit bureaus come to be implemented in developing countries:  If a group of 

lenders can credibly signal that they intend  to introduce a credit bureau in the future, our simulations 

suggest that the incentive effect will allow them to capture a large majority of the future impact of the 

system almost immediately.  This suggests that broadcasting credible statements about the future 

implementation of information-sharing systems may be an inexpensive and rapid way to bring stability 

to markets plagued by information asymmetries.   

What can we learn from these results about the effect of credit information systems on credit 

markets in industrialized countries?  Clearly the sophisticated credit scoring mechanisms operating in 

economies such as the United States have come to serve both important screening and incentive 

functions.  But indeed it may be that the credit expansion effect was one of the subtle contributors to 2008 

financial crisis in the United States.  The widespread commercial use of the internet and internet-

accessed credit scoring mechanisms by lenders increased dramatically during the 1990s.  For example, in 

1995 Freddie Mac and Fannie May began to recommend the use of FICO (Fair Isaac Corporation) 

credit scores in the evaluation of US mortgage loans.  Better information on existing debt and credit 

scores likely contributed to the confidence that banks and secondary mortgage holders had in exposing 

consumers to heavier debt loads, and in pricing these debts in the secondary market.  This increased use 

of credit scoring based on both positive and negative credit information coincided with a 10-year period 

that saw a dramatic increase in the level of outstanding U.S. consumer credit from US$1.02 trillion in 

1995 to US$2.21 trillion in 2005 (Federal Reserve Board), setting the stage for the resulting crisis.  The 

model presented here motivates the possibility that the seeds of the financial crisis were sown by the 

same informational innovations that improved the efficiency of credit markets.  This introduces a note 

of caution into our understanding of the impact of credit bureaus on systemic credit market risks.  

                                                      
12 See Luoto, McIntosh, and Wydick (2007) for a cost-benefit analysis of the CREDIREF system, in which in is determined that 
implementation of the system within the Génesis branch offices yielded a net present value to the microfinance institution of 
US$185,570 over three years with an annual internal rate of return of 96.5%, generated primarily from lower defaults. 
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