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Abstract

This paper formalizes the optimal design of randomized controlled trials (RCTs) in

the presence of interference between units, where an individual’s outcome depends on

the behavior and outcomes of others in her group. We focus on randomized saturation

(RS) designs, which are two-stage RCTs that first randomize the treatment saturation

of a group, then randomize individual treatment assignment. Our main contributions

are to map the potential outcomes framework with partial interference to a regression

model with clustered errors, calculate the statistical power of different RS designs, and

derive analytical insights for how to optimally design an RS experiment. We show

that the power to detect average treatment effects declines precisely with the ability

to identify novel treatment and spillover estimands, such as how effects vary with the

intensity of treatment. We provide software that assists researchers in designing RS

experiments.
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1 Introduction

The possibility of interference in experiments – settings in which the treatment status of an

individual affects the outcomes of others – gives rise to a plethora of important questions.

How does the benefit of treatment depend on the intensity of treatment within a population?

What if a program benefits some by diverting these benefits from others? Does the study

even have an unpolluted counterfactual? In the presence of interference, a full understanding

of the policy environment requires a measure of spillover effects that are not captured by (or

worse, are sources of bias in) standard experimental designs. This is critical to determine

the overall program impact.

Empirical researchers across multiple academic disciplines have become increasingly in-

terested in bringing spillover effects under the lens of experimental investigation. Over the

past decade, a new wave of experimental studies relax the assumptions around interference

between units. Researchers have used a variety of methods, including (i) using experimen-

tal variation across treatment groups, (ii) leaving some members of a group untreated, (iii)

exploiting exogenous variation in within-network treatments, and (iv) intersecting an exper-

iment with pre-existing networks.1

The recent interest in interference between individuals has also spawned a rich economet-

rics literature. Aronow and Samii (forthcoming) and Manski (2013) consider the most general

settings, in which there are arbitrary forms of independence and treatment assignment de-

pendencies. In this paper, we study settings with partial interference, in which individuals

are split into mutually exclusive clusters, such as villages or schools, and interference occurs

between individuals within a cluster but not across clusters. Partial population experiments

(Moffitt 2001), in which clusters are assigned to treatment or control, and a subset of in-

dividuals are offered treatment within treatment clusters, partially overcome the challenge

of allowing for partial interference. But they provide no exogenous variation in treatment

saturation to estimate the extent to which program effects are driven by the intensity of

treatment.2 To identify whether and how treatment and spillover effects vary with the in-

1(i) Bobba and Gignoux (2016); Miguel and Kremer (2004), (ii) Barrera-Osorio, Bertrand, Linden, and
Perez-Calle (2011); Lalive and Cattaneo (2009), (iii) Babcock and Hartman (2010); Beaman (2012); Conley
and Udry (2010); Duflo and Saez (2002); Munshi (2003), (iv) Banerjee, Chandrasekhar, Duflo, and Jackson
(2013); Chen, Humphries, and Modi (2010); Macours and Vakis (2008); Oster and Thornton (2012).

2Most extant partial population experiments feature cluster-level saturations that are either endogenous
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tensity of treatment in a cluster, we use randomized saturation (RS) experiments, a two-stage

randomization procedure in which first, the share of individuals assigned to treatment within

a cluster is randomized and second, individuals within each cluster are randomly assigned to

treatment according to the realized cluster-level saturation from the first stage.3 Hudgens

and Halloran (2008), Tchetgen Tchetgen and VanderWeele (2010) and Liu and Hudgens

(2014) also study settings with partial interference using a two-stage design.

Our first contribution is to provide a foundation for the regression models commonly

used to analyze RS designs by setting up a potential outcomes model with partial interfer-

ence and mapping it into a regression model. We place two restrictions on the population

distribution of potential outcomes – the population average potential outcome only depends

on an individual’s treatment status and the share of treated individuals in the cluster, and

the variance-covariance matrix of the population distribution of potential outcomes is block-

diagonal.4 These assumptions allow us to map the potential outcomes model to a regression

model with clustered standard errors, which provides a bridge between the causal inference

literature and the methods used to analyze randomized saturation (RS) designs in practice.

Athey and Imbens (2017) perform a similar derivation for a model with uncorrelated obser-

vations and no interference – our derivation is an extension of their approach that allows for

intra-cluster correlation and partial interference.

We show that RS designs identify a set of novel estimands: not only can the researcher

consistently identify the usual intention-to-treat effect, but she can also observe spillover

effects on treated and untreated units, and understand how the intensity of treatment drives

spillover effects for the treated and the untreated alike. These are similar to the estimands

that Hudgens and Halloran (2008) show can be consistently estimated in a finite population

(Mexico’s conditional cash transfer program, PROGRESA/Oportunidades) or fixed (Duflo and Saez 2003)
and typically set at 50%. PROGRESA is perhaps the most-studied example – it features a treatment decision
at the cluster (village) level and an objective poverty eligibility threshold at the household level, so both
eligible and ineligible individuals in treatment villages can be compared to their counterparts in the pure
control group. PROGRESA has been used to examine spillover effects in several contexts (Alix-Garcia,
McIntosh, Sims, and Welch 2013; Angelucci and De Giorgi 2009; Bobonis and Finan 2009).

3Banerjee, Chattopadhyay, Duflo, Keniston, and Singh (2012); Busso and Galiani (2014); Crepon, Duflo,
Gurgand, Rathelot, and Zamora (2013); Gine and Mansuri (forthcoming); Sinclair, McConnell, and Green
(2012).

4Hudgens and Halloran (2008) make the stronger assumption of stratified interference to estimate vari-
ances in a setting with partial interference. Graham, Imbens, and Ridder (2010) relax this assumption with
one of observational symmetry, i.e. exchangeability.
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model. The experimental estimate of the average effect on all individuals in treated clusters,

which we refer to as the Total Causal Effect, provides the policy maker with a very simple

tool to understand how altering the intensity of implementation will drive outcomes for a

representative individual.

Our second main contribution is to illustrate the power tradeoffs that exist in designing

RS experiments – that is, choosing the set of saturations and the share of clusters to assign to

each saturation. We derive closed-form expressions for the standard errors (SEs) of various

treatment and spillover estimands. Using these expressions, we derive properties of the

optimal designs to measure different sets of estimands. The ability to identify novel estimands

such as slope effects comes at a cost, namely, decreased statistical power to measure intention-

to-treat effects pooled across all saturations. The same variation in treatment saturation

that permits measurement of how treatment and spillover effects vary with the intensity of

treatment is detrimental to the power of the simple experimental comparison of treatment to

pure control. By placing RS designs in the clustered error framework, we provide the closest

possible analog to the familiar power calculations in cluster randomized trials. This makes

the design tradeoffs present in RS experiments as transparent as possible. In related work,

Hirano and Hahn (2010) study the power of a partial population experiment to analyze a

linear-in-means model with no intra-cluster correlation.

We conclude with an application that uses numerical simulations to illustrate the theo-

retical tools we develop using hypothetical and published study designs. First, we explicitly

define and estimate optimal designs for objective functions that include different individ-

ual saturation, slope and pooled estimands. We use the SE calculations to demonstrate

the power trade-offs that arise based on which estimands the researcher would like to iden-

tify and estimate. We also calculate standard errors for randomized saturation designs in

published papers and show how these designs affect the power trade-off between different esti-

mands. These power calculations and numerical optimizations are conducted using software

we developed specifically for designing RS experiments, which is available for researchers at

http://pdel.ucsd.edu/solutions/index.html.

The remainder of the paper is structured as follows. Section 2 sets up the potential out-

comes framework, defines a RS design and defines estimands related to spillovers. Section
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3 connects the potential outcomes framework to a regression model with clustered errors,

presents closed-form expressions for the standard errors and derives properties of the op-

timal RS design to measure different sets of estimands. Section 4 presents an application

illustrating the optimal design results. All proofs are in Appendix A.

2 Causal Inference with Partial Interference

2.1 Potential Outcomes

A researcher seeks to draw inference on the outcome distribution of a population under

different treatment allocations. The target population I is partitioned into equal-sized, non-

overlapping groups, or clusters, of size n.5 Individual i in cluster c has response function

Yic : {0, 1}n → Y that maps each potential cluster treatment vector t = (t1, ..., tn) ∈ {0, 1}n

into potential outcome Yic(t) ∈ Y , where t ∈ {0, 1} is a binary treatment status in which

t = 1 corresponds to being offered treatment and t = 0 corresponds to not being offered

treatment, and Y is a set of potential outcomes. The response function is independent

of the treatment vectors for all clusters d ̸= c; spillovers may flow within a cluster, but

do not flow between clusters. Thus, we relax the stable unit treatment value assumption

(SUTVA) within clusters, but maintain it across clusters. This set-up is referred to as partial

interference (Sobel 2006).6

A random sample is taken from this infinite population and randomly assigned treatment

according to a prespecified experimental design. Our goal is to study the power of different

experimental designs to detect treatment and spillover effects by comparing the standard

errors of the estimands in different designs. In order to characterize these standard errors,

we make two assumptions on the distribution of potential outcomes. First, we assume that

the population average potential outcome E[Yic(t)] at potential treatment vector t ∈ {0, 1}n

depends only on individual treatment status ti and cluster treatment saturation p(t) ≡
1
n

∑n
i=1 ti, where the expectation is with respect to the population distribution of potential

outcomes.

Assumption 1. There exists a function Y : {0, 1}×[0, 1] → co(Y), where co(Y) is the convex

5We assume clusters are equal in size to simplify the analysis. In practice, datasets may have significant
variation in the size of the cluster and the researcher may want to group clusters into different sized bins –
for example, rural and urban clusters.

6The assumption of no interference across groups is testable. For example, see Miguel and Kremer (2004).
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hull of the set of potential outcomes, such that the population average potential outcome for

an individual with treatment status t is E[Yic(t)] = Y (t, p) at all treatment vectors t ∈ {0, 1}n

with treatment saturation p(t) = p.

Assumption 1 says that in expectation, the impact an individual receiving treatment has on

the outcomes of others in the same cluster is independent of the treated individual’s identity.

This allows for a characterization of the variance of estimands without possessing information

about the underlying network structure within a cluster.7 Assumption 1 is weaker than the

stratified interference assumption proposed by Hudgens and Halloran (2008), which assumes

that the realized potential outcomes of an individual is independent of the identity of the

other individuals assigned to treatment.

Clustering of outcomes can be due to either (i) the extent to which outcomes are endoge-

nously driven by the treatment of others in the same cluster, which is a type of interference

between units, or (ii) a statistical random effect in outcomes that is correlated between

individuals – correlated effects (Manski 1993) – which does not stem from interference be-

tween units. In order to also allow for (ii), we assume a variance-covariance structure for

the distribution of potential outcomes that allows potential outcomes to be correlated across

individuals within the same cluster. We assume there is no correlation across clusters.

Assumption 2. Given σ2 > 0 and τ 2 ≥ 0, the variance-covariance structure for the popu-

lation distribution of potential outcomes is:

1. Var(Yic(t)) = σ2 + τ 2,

2. Cov(Yic(t), Yjc(t)) = τ 2 for i ̸= j,

3. Cov(Yic(t), Yjd(t
′)) = 0 for c ̸= d

for all t, t′ ∈ {0, 1}n.

Assumption 2 imposes homoskedasticity across all potential outcomes for a given individual

and across potential outcomes between two individuals in the same cluster. In other words,

7In the absence of this assumption, a researcher would need to observe the complete network structure
in each cluster, understand the heterogeneity in networks across clusters, and use a model of network-driven
spillovers to simulate the variance in outcomes that could be generated by these networks. This is not an
issue when there is no interference within clusters, as each unit has only two potential outcomes.
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the variance and covariance of the distribution of potential outcomes do not depend on the

treatment status of an individual or the share treated in a cluster.8

Assumption 2 allows us to connect the potential outcomes framework to a regression

model with a block-diagonal error structure. Our goal is to provide a bridge between the

theoretical literature and the use of field experiments in economics to measure spillover

effects. To this end, it is natural to impose a variance structure on potential outcomes

that maps to the regression model typically used for power calculations when there is no

interference.9 It enables a direct comparison of the power of RS designs to the power of

the canonical individually-randomized (blocked) and cluster-randomized (clustered) designs,

making explicit the impact that randomizing saturation has on power. A regression model

with a block-diagonal structure is also the model underlying the use of OLS with clustered

standard errors to analyze resulting data, the method commonly used for analysis. We will

often use ρ ≡ τ 2/(τ 2 + σ2) to denote the intra-cluster correlation (ICC).

2.2 A Randomized Saturation Design

Suppose a researcher draws a sample of C clusters of size n.10 A randomized saturation (RS)

design is a two-stage treatment assignment mechanism that specifies how to assign treatment

to these N ≡ nC individuals. The first stage randomizes the treatment saturation of each

cluster. Let Π ⊂ [0, 1] be a finite set of treatment saturations. Each cluster c is randomly

assigned a treatment saturation Pc ∈ Π according to the distribution f : Π → [0, 1], which

specifies the share of clusters assigned to each saturation. The second stage randomizes the

treatment status of each individual in the cluster, according to the realized saturation of the

cluster. Each individual i in cluster c is randomly assigned treatment Tic ∈ {0, 1}, where

the realized cluster treatment saturation Pc specifies the share of individuals assigned to

8The analysis could be extended to allow for heteroskedasticity. In this case, the standard errors would
be less tractable to characterize analytically, and hence, optimal design results would also be less tractable.
We view the homoskedastic case as a natural benchmark to establish general insights about how RS designs
impact power.

9See Duflo, Glennerster, and Kremer (2007) for these power expressions when there is no interference.
10The RS design and studies discussed here use a simple, spatially defined definition of a cluster that is

mutually exclusive and exhaustive. This is distinct from determining how to assign treatment in overlapping
social networks (Aronow 2012), which requires a more complex sequential randomization routine (Toulis and
Kao 2013). An additional benefit of an RS design is that it also creates exogenous variation in the saturation
of any overlapping network in which two individuals in the same cluster have a higher probability of being
linked than two individuals in different clusters.
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treatment (i.e.
∑n

i=1 Tic = nPc for all c). Let Tc denote the realized treatment vector. An RS

design is completely characterized by the pair {Π, f}. The RS design nests several common

experimental designs, including the clustered, blocked, and partial population designs.11

We refer to individuals assigned to treatment as treated individuals, individuals in clusters

assigned saturation zero as pure controls and individuals who are not assigned to treatment

but are in clusters with treated individuals as within-cluster controls. Let Sic = 1{Tic =

0, Pc > 0} be the random variable that denotes whether individual ic is a within-cluster

control and Cic = 1{Tic = 0, Pc = 0} be the random variable that denotes whether individual

ic is a pure control. An RS design has share of treated individuals µ ≡
∑

p∈Π pf(p), share of

within-cluster control individuals µS ≡ 1−µ−ψ, and share of control individuals ψ ≡ f(0).

A RS design has a pure control if ψ > 0.

In order to identify treatment and spillover effects, we must place a restriction on the

support of the RS design. We say a RS design is non-trivial if it has at least two saturations,

at least one of which is strictly interior. Multiple saturations guarantee a comparison group

to determine whether effects vary with treatment saturation, and an interior saturation

guarantees the existence of within-cluster controls to identify spillovers on the untreated.

The blocked and clustered designs are trivial, and it is not possible to identify any spillover

effects in these designs, while the partial population design is non-trivial and it is possible

to identify spillover effects on the untreated.

An RS design introduces correlation between the treatment statuses of two individuals

in the same cluster,

Cor(Tic, Tjc) =

(
1

n− 1

)(
nη2

µ(1− µ)
− 1

)
,

where η2 ≡
∑

p∈Π p
2f(p)− µ2 denotes the variance of the cluster-level treatment saturation.

This variance in treatment saturation will play a key role in determining the power of an

RS design when there is correlation between the potential outcomes of individuals in the

same cluster, ρ > 0. At one extreme, a clustered design has perfect correlation between the

treatment statuses of individuals in the same cluster, r = 1, while at the other extreme, a

11Fixing the share of treated individuals at µ, the clustered design corresponds to Π = {0, 1} and f(1) = µ,
the blocked design corresponds to Π = {µ} and f(µ) = 1 and the partial population design corresponds to
Π = {0, P} and f(P ) = µ/P .
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blocked design has slightly negative correlation, r = −1/(n−1).12 These two designs bracket

the continuum of RS designs, so it is natural that RS designs have an intermediate level of

correlation.

Discussion. We implicitly assume that all individuals who are part of the spillover network

in a cluster are included in the sample. If this is not the case and spillovers occur on

individuals outside of the sampling frame, either because there is a ‘gateway to treatment’

within the cluster and not all eligible individuals are sampled, or because not all individuals

in a cluster’s spillover network are eligible for treatment, then it is necessary to distinguish

between the true treatment saturation (the share of treated individuals in the cluster) and the

assigned treatment saturation (the share of treated individuals out of sampled individuals

in the cluster).13 If the sampling rate and share of the cluster eligible for treatment are

constant across clusters, the true saturation is proportional to the assigned saturation. If

sampling rates are driven by cluster characteristics or the share of the cluster that is eligible

for treatment varies across clusters, then the true saturation is endogenous. In this case, the

researcher can instrument for the true saturation with the assigned saturation. To streamline

the analysis, we assume that the assigned and true saturations coincide.

Our framework can be applied to settings with perfect compliance or to identify intention

to treat effects in settings with imperfect compliance. While non-compliance does not bias

intention to treat estimands, it presents a second channel for interference – treatment and

spillover effects may vary with saturation due to compliance effects or the direct impact of an

individual’s treatment on others. Exploring extensions considering compliance as a function

12There are two sources of correlation in treatment status between individuals in the same cluster: (i)
the correlation introduced by the variation in treatment saturation across clusters; (ii) when the share of
treated individuals in a cluster is fixed, then when an individual is selected for treatment, this reduces the
probability that another individual is selected for treatment i.e. conditional on realized treatment share
Pc, Cor(Tic, Tjc|Pc) = −1/(n − 1). In a blocked design, the negative correlation stems from the fact that
(ii) is the only source of correlation. If instead each individual in a cluster was independently treated with
probability Pc (sampling with replacement), then (ii) would not exist.

13For example, Gine and Mansuri (forthcoming) sample every fourth household in a neighborhood, and
randomly offer treatment to 80 percent of these households. This causes the true treatment saturation
to be 20 percent rather than the assigned 80 percent. Other examples include unemployed individuals
on official unemployment registries form a small portion all unemployed individuals in an administrative
region (Crepon et al. 2013); neighborhoods eligible for infrastructure investments comprise only 3 percent
of all neighborhoods (McIntosh, Alegria, Ordonez, and Zenteno 2013); and malaria prevention efforts target
vulnerable individuals, who account for a small share of total cluster population (Killeen, Smith, Ferguson,
Mshinda, Abdulla et al. 2007).
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of the assigned treatment saturation – and thereby defining a response function that depends

on whether individuals comply with assigned treatment – is an important avenue for future

research.

2.3 Treatment and Spillover Estimands

Next we define a set of estimands for treatment and spillover effects. We focus on average

effects across all individuals in the population. Recall that the population average potential

outcome at individual treatment assignment t ∈ {0, 1} and saturation p ∈ [0, 1] is Y (t, p).

Individuals offered treatment will experience a direct treatment effect from the program as

well as a spillover effect from the treatment of other individuals in their cluster. Let p ≡ 1/n

corresponds to a cluster with a single treated individual. The Treatment on the Uniquely

Treated (TUT) measures the intention to treat an individual, absent any spillover effects,

TUT ≡ Y (1, p) − Y (0, 0), and the Spillover on the Treated (ST) measures the spillover

effect at saturation p on individuals offered treatment, ST (p) ≡ Y (1, p) − Y (1, p). The

familiar Intention to Treat (ITT) is the sum of these two effects, ITT (p) = TUT + ST (p).

Individuals not offered treatment experience only a spillover effect. The Spillover on the Non-

Treated (SNT) is the analogue of the ST for individuals not offered treatment, SNT (p) ≡

Y (0, p) − Y (0, 0). Given these definitions, there are spillover effects on the treated (non-

treated) if there exists a p such that ST (p) ̸= 0 (SNT (p) ̸= 0).

We can also measure the rate of change in spillovers. The Slope of Spillovers on the

Treated measures the rate of change of the spillover effect on treated individuals between

saturations pj and pk, DT (pj, pk) ≡ (ST (pk) − ST (pj))/ (pk − pj) . If spillover effects are

affine, then this is a measure of dST (p)/dp; otherwise, it is a first order approximation

of the slope. The analogue slope effect for individuals not offered treatment is denoted

DNT (pj, pk).

In the presence of spillovers, the true effectiveness of a program is measured by the total

effect of treatment on both treated and untreated individuals. The Total Causal Effect

(TCE) measures this overall cluster-level effect on clusters treated at saturation p, compared

to pure control clusters, TCE(p) ≡ pITT (p) + (1 − p)SNT (p). We say that treatment

effects are diversionary at saturation p if the benefits to treated individuals are offset by

negative externalities imposed on untreated individuals in the same cluster, ITT (p) > 0
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and TCE(p) < pITT (p). Diversionary treatment effects redistribute value within a cluster

to treated individuals, and the true effectiveness of the program is muted compared to the

direct treatment effect captured in the ITT.14 If the TCE is negative, the program causes

an aggregate reduction in the average potential outcome, even though treatment effects may

be positive. In the presence of spillovers, it is imperative to use the TCE, rather than the

ITT, to inform policy, as the ITT may misrepresent the true effectiveness of the program.

We can also measure the direct impact of being assigned to treatment at a given satura-

tion. The Value of Treatment (VT) measures the individual value of receiving treatment at

saturation p, V T (p) ≡ Y (1, p)−Y (0, p). If V T (p) is decreasing in p, then the value of treat-

ment is decreasing in the share of other individuals treated and spillover effects substitute for

treatment, while if the VT is increasing in p, then the value of treatment is increasing in the

share of other individuals treated and treatment is complementary with spillover effects.15

Hudgens and Halloran (2008) also study causal inference in the presence of partial inter-

ference, and define a set of estimands for a finite population. The ST and SNT defined above

are the infinite population analogues of the indirect causal effects defined in their paper, the

ITT is the analogue of the total causal effect, the TCE is the analogue of their overall causal

effect and the VT is the analogue of their direct causal effect.

2.4 Examples of Spillovers

We illustrate the subtlety and importance of measuring spillover effects with three stylized

examples: measles vaccinations, deworming interventions and job training programs. Con-

sider an intervention that vaccinates a share p of a cluster. The TUT measures the efficacy

of the vaccination in isolation. The vaccination almost fully protects vaccinated individuals

independent of the treatment saturation, which means the ITT (p) is flat with respect to

p and spillovers on treated individuals, ST (p), are small. However, the protection to the

non-treated only becomes sizeable when the saturation is high enough to provide herd im-

munity, which means the SNT (p) varies from zero to one. Thus, the value of receiving the

14Of course, to say anything about the welfare implications of diversionary effects requires a welfare
criterion specifying the social value of different distributions of the outcome variable within a cluster.

15If a RS design does not include a pure control, one could define analogous estimands for the ITT, SNT,
TCE and VT relative to the lowest saturation in the study. For example, if clusters have a base saturation
of share p0 individuals receiving a treatment before an intervention, a researcher could use estimands that
are defined relative to p0.

10



Figure 1. Examples

vaccination, V T (p), is very large when vaccination rates are low and approaches zero at high

vaccination rates since the unvaccinated are protected by herd immunity. Positive spillovers

from treatment create a free-rider problem that may diminish the salience of vaccinations in

populations that have very high overall treatment levels. This is illustrated in the left panel

of Figure 1.

Deworming provides a more challenging case. Reinfection rates are proportional to the

population prevalence of worm infections, which means that individuals who have received

deworming treatment will quickly become reinfected in environments with high prevalence.

The population saturation of deworming treatment drives long-term outcomes for both

treated and non-treated individuals, and effective deworming requires near universal treat-

ment. The poignant irony of such a program is that the V T (p) is close to zero at all

saturations even though deworming can be effective if applied universally. The key feature

of this setting is the positive externality of treatment on both non-treated and other treated

individuals. This is illustrated in the center panel of Figure 1.

Another example is a job training program in which the training has no effect on the

overall supply of jobs – treatment simply diverts benefits from non-treated to treated indi-

viduals but provides little net benefit (Crepon et al. 2013). Similar examples are tutoring

programs for admissions to college or grant-writing workshops that improve specific propos-

als for a fixed funding pool. This type of diversionary treatment effect will have a TCE(p)

that is zero for all p, even though the ITT (p) and especially the V T (p) are strictly positive.
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In the face of diversionary effects, an RS design is imperative to identify the total policy

effect, which is zero. Using within-cluster controls as counterfactuals will yield mistaken

conclusions that the overall impact of a program is positive. This is illustrated in the right

panel of Figure 1.

3 Standard Errors and Optimal Design

This section maps the potential outcomes framework developed in Section 2.1 into a regres-

sion model that identifies the estimands defined in Section 2.3, derives analytical expressions

for the standard errors of the OLS estimates, and characterizes properties of the optimal RS

design to detect different sets of effects. We begin with the individual saturation and slope

estimands, and follow with complementary results for a model that pools multiple satura-

tions. The section concludes with an illustration of the power trade-off between measuring

slope and pooled effects.

3.1 Individual Saturation and Slope Effects

A Regression Framework. A regression model to estimate treatment and spillover ef-

fects at each saturation in the support of an RS design (Π, f) is

Y obs
ic = β0 +

∑
p∈Π\{0}

β1pTic ∗ 1{Pc = p}+
∑

p∈Π\{0}

β2pSic ∗ 1{Pc = p}+ εic, (1)

where Y obs
ic ≡ Yic(Tc) denotes the observed outcome for individual ic. To map the potential

outcomes framework into this model, we define the regression coefficients and error in terms

of potential outcomes, population average potential outcomes and realized treatment status.

Let β0 ≡ Y (0, 0), β1p ≡ Y (1, p)− Y (0, 0) and β2p ≡ Y (0, p)− Y (0, 0).16 Define the error as

εic ≡
∑

t∈{0,1}n\0n
1Tc=t

(
Tic{Yic(t)− Y (1, p(t))}+ Sic{Yic(t)− Y (0, p(t))}

)
(2)

+ Cic{Yic(0n)− Y (0, 0)},

where p(t) is the share of treated individuals in treatment vector t. Athey and Imbens

(2017) build a similar connection for a potential outcomes model with no interference and

no intra-cluster correlation. The following lemma characterizes the distribution of the error

16Note that we are not assuming a constant treatment effect when estimating (1) – β̂ is the average
treatment or spillover effect.
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in terms of the distribution of potential outcomes.

Lemma 1. Assume Assumptions 1 and 2. Then the error defined in (2) is strictly exogenous,

E[εic|Tc] = 0, and has a block-diagonal variance-covariance matrix with E[ε2ic|Tc] = σ2 + τ 2,

E[εicεjc|Tc] = τ 2 for i ̸= j and E[εicεjd|Tc] = 0 for c ̸= d.

Given Lemma 1, the OLS estimate of (1) will yield an unbiased estimate of β. For any RS

design with an interior saturation and a pure control, this estimate identifies ˆITT (p) = β̂1p,

ˆSNT (p) = β̂2p, ˆTCE(p) = pβ̂1p + (1 − p)β̂2p and ˆV T (p) = β̂1p − β̂2p for each p ∈ Π \ {0}.

Hudgens and Halloran (2008) present similar estimators for finite population estimands and

show these estimators are unbiased (Theorems 1 and 2).17 Tests for the presence of treatment

and spillover effects at saturation p are β̂1p ̸= 0 and β̂2p ̸= 0. A one-tailed test of the sign

of β̂2p determines whether treatment creates a negative or positive externality on untreated

individuals, β̂1p ̸= β̂2p determines whether the value to treatment is non-zero and {β̂1p ≥

0, β̂2p ≤ 0} tests for diversionary effects at saturation p.

We can also use (1) to estimate the slope effects. Given saturations pj and pk, the slope

effect on individuals offered treatment is δTjk ≡
(
β1pk − β1pj

)
/ (pk − pj) , with an analogous

expression for the slope effect on within-cluster controls, δSjk. A pure control is not required

– any RS design with two interior saturations identifies the slope effect for both treatment

and within-cluster control individuals. To estimate the slope effect in a design with no pure

control, replace the control group with the within-cluster controls in the lowest saturation

in the RS design, and redefine the coefficients in (1) to be relative to the population mean

of untreated individuals at the lowest saturation.18

Standard Errors. Our first result characterizes the standard errors (SEs) for the esti-

mates of the individual saturation effects and slope effects from (1). This illustrates how the

standard errors depend on the RS design.19

17In Hudgens and Halloran (2008), the sample is equal to the population and uncertainty stems from
unobserved potential outcomes. Our model is defined for an infinite population, and uncertainty stems from
both unobserved potential outcomes and sampling uncertainty. Minor technical modifications to their proofs
establish the analogous results in our setting.

18This model also allows for tests on the shape of the ITT (p) and SNT (p). For example, three interior
saturations allows one to test for concavity or convexity.

19Using these expressions to inform experimental design requires estimates of τ2 and σ2. One could use
existing observational data or conduct a small pilot experiment (Hahn, Hirano, and Karlan 2011).
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Theorem 1 (Individual Saturation and Slope SEs). Assume Assumptions 1 and 2. For any

RS design (Π, f) with a pure control, the SE of the treatment effect at saturation p is

SEITT (p) =

√
τ 2 + σ2

nC
∗
{
nρ

(
1

f(p)
+

1

ψ

)
+ (1− ρ)

(
1

pf(p)
+

1

ψ

)}
for each p ∈ Π. For any RS design (Π, f) with κ ≥ 2 interior saturations, the SE for the

slope effect on treated individuals between saturations pj > 0 and pk > 0 is

SEDT (pj, pk) =
1

pk − pj

√
τ 2 + σ2

nC
∗
(
nρ

(
1

f(pj)
+

1

f(pk)

)
+ (1− ρ)

(
1

pjf (pj)
+

1

pkf (pk)

))
Substituting (1 − p)f(p) for pf(p) yields analogous expressions for untreated individuals,

denoted SESNT (p) (for p ∈ (0, 1)) and SEDNT (pj, pk).

Theorem 1 illustrates the relationship between the correlation structure of outcomes and the

precision of estimates in an RS design. At one extreme, if there is no correlation (ρ = 0),

the variation in ˆITT (p) depends on the share of treated individuals at saturation p, pf(p),

and the share of control individuals, ψ. There is no correlation between potential outcomes

within a cluster, so observing Yic(1, p) for treated individual i provides no information about

the potential outcome Yjc(1, p) for untreated individual j and the share of within-cluster

control individuals at saturation p is irrelevant for SEITT . At the other extreme, if there is

perfect correlation (ρ = 1), the variation in ˆITT (p) depends on the total share of individuals

at saturation p, f(p), and the share of control individuals. Within a cluster, there is per-

fect correlation between individuals’ potential outcomes and observing Yic(1, p) for treated

individual i provides perfect information about the potential outcome Yjc(1, p) for untreated

individual j. At intermediate levels of correlation, SEITT depends on a weighted average of

the share of treated individuals and the total share of individuals at saturation p.

Next consider the standard error of the slope effect. As the distance between two satura-

tions increases, 1/(pk − pj) decreases, making it possible to detect smaller slope effects. At

the same time, increasing the spread of saturations makes the number of treatment (within-

cluster control) individuals very small at low (high) saturations. The former effect dominates

at saturations close to 1/2, and spreading the saturations apart decreases the SE, while the

latter effect dominates at saturations close to zero or one, and spreading the saturations

apart increases the SE. When ρ is large, the share of clusters assigned to each saturation,
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f(pj) and f(pk), play a larger role in determining the SE; a more equal distribution leads

to a smaller SE. When ρ is small, the share of treatment (within-cluster control) individuals

assigned to each saturation, pjf(pj) and pkf(pk) ((1− pj)f(pj) and (1− pk)f(pk)), are more

important; a more equal share leads to a smaller SE.

Theorem 1 can be used to characterize the power of an RS design. The minimum de-

tectable effect (MDE) is the smallest value of an estimand that it is possible to distinguish

from zero (Bloom 1995). Given statistical significance level α, the null hypothesis of no

treatment effect at saturation p is rejected with probability γ (the power) for values of β1p

that exceed MDE = (t1−γ + tα) × SE(β̂1p). The expressions for the MDEs of the spillover

effect on untreated individuals and the slope effects are analogous.

In general, the OLS estimator is inefficient when errors are correlated. The variance of

the OLS estimate characterized in Theorem 1 will be conservative if GLS or another more

efficient estimator is used to analyze the resulting data.

Optimal Design: Individual Saturation Effects. Given a set of saturations Π, the

design choice for measuring individual saturation effects involves choosing the share of clus-

ters to allocate to each saturation. If the researcher places equal weight on the treatment and

spillover effect at each saturation, she chooses f to minimize the sum of standard errors,20

min
f

∑
p∈Π\{0}

(SEITT (p) + SESNT (p)) . (3)

First consider the choice of how many clusters to allocate to each positive saturation. By

design, extreme saturations have more uneven shares of treatment and within-cluster control

individuals, relative to saturations closer to 1/2. A researcher who places equal weight on

measuring effects at each saturation in Π will want to allocate a larger share of clusters to

these more extreme saturations. This stems directly from the concavity of the SE. As ρ

increases, this asymmetry in the optimal f is muted since within-cluster control individuals

provide information about treated individuals, and vice versa, and the uneven shares of

treatment and within-cluster control individuals has a smaller impact on the precision of

estimates

20This is equivalent to maximizing the probability of rejection for a test of the null of no effect i.e.
minimizing the minimum detectable effect.
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Next, consider the optimal control group size. The marginal impact of adding another

cluster to the control reduces all terms in (3), while the marginal impact of adding another

cluster to an interior saturation only reduces the SEs at that saturation. Therefore, the

optimal share of individuals allocated to the control group is always larger than the smallest

share of individuals at any treatment saturation. The optimal control size increases with ρ

– when the outcomes of treated and within-cluster control individuals are more correlated,

the optimal f allocates a smaller share of clusters to each positive treatment saturation.

Corollary 1 formalizes these insights.

Corollary 1. Fix a set of saturations Π. Let f ∗ minimize (3), with ψ∗ ≡ f ∗(0).

1. A larger share of clusters are allocated to more extreme saturations: given p1, p2 ∈
Π \ {0} such that |0.5 − p1| > |0.5 − p2|, f ∗(p1) > f ∗(p2). The difference in the share

of clusters at each saturation, f ∗(p1)− f ∗(p2), is decreasing in ρ.

2. The share of individuals assigned to pure control is larger than the share of treated or

within-cluster control individuals at any positive treatment saturation, ψ∗ > min{p, 1−
p}f ∗(p) for all interior saturations p ∈ Π.

3. For each interior saturation p ∈ Π, f ∗(p) is decreasing in ρ, and ψ∗ is increasing in ρ.

For a given intra-cluster correlation ρ and cluster size n, it is straightforward to numerically

solve for the optimal share of clusters to assign to each saturation.

Optimal Design: Slope Effects. There are two steps to the design choice to measure

slope effects: selecting the set of saturations Π and choosing the share of clusters to allocate

to each saturation. Suppose a researcher is interested in measuring the slope effect, she

places equal weight on estimating the slope effect for treated and untreated individuals, and

she believes that the slope effects are monotonic. Then she chooses an RS design to solve

min
p1,p2,f(p1)

SEDT (p1, p2) + SEDNT (p1, p2). (4)

The optimal saturations are symmetric about one half, an equal share of clusters are allocated

to each saturation, and the optimal distance between saturations is increasing in ρ.

Corollary 2 (Optimal Saturations). The RS design that minimizes (4) equally divides clus-

ters between two saturations symmetric about 1/2, p∗1 = (1−∆)/2 and p∗2 = (1+∆)/2, where
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the optimal distance between saturations ∆ ∈
(√

2/2, 1
)
satisfies

nρ

2(1− ρ)
=

2∆2 − 1

∆(1−∆2)2
.

If ρ = 0, then ∆ =
√
2/2 for all n, ∆ is increasing in ρ and n, and if ρ = 1, then ∆ = 1−2/n.

Note that this optimal design equalizes the standard errors, SEDT (p
∗
j , p

∗
k) = SEDNT (p

∗
j , p

∗
k).

More generally, if a researcher is interested in identifying individual saturation or slope

effects at or between more than two saturations, Theorem 1 can be used to answer questions

like what is the optimal spacing of saturations and what share of clusters should be assigned

to each saturation. For example, suppose a researcher would like to test for linearity by

including three saturations. To minimize the analogue of (4), one saturation should be 1/2

and the other two should be spaced symmetrically about one half. A larger share of clusters

should be allocated to the extreme saturations relative to saturation 1/2.

3.2 Pooled Effects

Suppose the researcher would like to combine observations from clusters with different satu-

rations to measure an average of different estimands across all saturations in the RS design.

What we refer to as a pooled estimand is a weighted sum of the estimand at each individual

saturation. Given design (Π, f) and vector of weights w : Π → [0, 1], a pooled ITT that

assigns weight w(p) to ITT (p) is ITT ≡
∑

Π\{0}w(p)ITT (p). The definitions for ST , SNT ,

TCE and V T are analogous.

A Regression Framework. A regression model to estimate pooled effects is

Y obs
ic = β0 + β1Tic + β2Sic + εic. (5)

As in Section 3.1, we map the potential outcomes framework into this model by defining the

regression coefficients and error in terms of potential outcomes and treatment status. Let

Y (1) ≡ 1
µ

∑
p∈Π\{0} pf(p)Y (1, p) and Y (0) ≡ 1

µS

∑
p∈Π\{0}(1−p)f(p)Y (0, p) be the population

average potential outcome averaged across all non-zero saturations in the RS design, when

t = 1 and t = 0, respectively. Let β0 ≡ Y (0, 0), β1 ≡ Y (1)−Y (0, 0) and β2 ≡ Y (0)−Y (0, 0).
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Define the error as

εic ≡ Tic{Yic(1, T−i,c)− Y (1)}+ Sic{Yic(0, T−i,c)− Y (0)}+ Cic{Yic(0n)− Y (0, 0)}, (6)

where T−i,c is the treatment vector for individuals j ̸= i in cluster c. The following Lemma

characterizes the distribution of the error in terms of the distribution of potential outcomes

and the structure of the RS design.

Lemma 2. Under Assumptions 1 and 2, the error defined in (6) is strictly exogenous,

E[εic|Tc] = 0, uncorrelated across clusters, and has within-cluster variance-covariance matrix

specified as follows:

1. Treated clusters: the variance for treated individuals is Var(ε2ic) = σ2+ τ 2+ϕT and for

untreated individuals is Var(ε2ic) = σ2+ τ 2+ϕS. The covariance is Cov(εic, εjc) = τ 2+

ϕTT between treated individuals, Cov(εic, εjc) = τ 2+ϕSS between untreated individuals,

and Cov(εic, εjc) = τ 2 + ϕTS between a treated and untreated individual.

2. Control clusters: the variance is Var(εic) = σ2 and the covariance is Cov(εic, εjc) = τ 2.

where ϕT ≡ 1
µ

∑
p∈Π\{0} pf(p)Y (1, p)2 − Y (1)2 captures the variation in Y (1, ·) across satu-

rations in the RS design, with analogous definitions for ϕS, ϕTT , ϕTS and ϕSS.

By Lemma 2, the OLS estimate of (5) will yield an unbiased estimate of β for any RS design

with an interior saturation and a pure control.

The interpretation of β is somewhat subtle and depends on the RS design. When ob-

servations are pooled across saturations, β̂1 places a disproportionate weight on treated

individuals in high saturation clusters relative to low saturation clusters – it is an estimate

of the pooled ITT with weight w(p) = pf(p). Similarly, β̂2 places a disproportionate weight

on untreated individuals in low saturation clusters relative to high saturation clusters – it

is an estimate of the pooled SNT with weight w(p) = (1 − p)f(p). Due to these different

weights, a comparison of the two pooled measures does not have a natural interpretation.

Additionally, one must be careful when combining these estimates to identify other effects.

For example, β̂1 + β̂2 is a pooled measure of the TCE with weight w(p) = f(p), but β̂1 − β̂2

is not a pooled measure of the VT.21

21What we call saturation weights, which have a similar interpretation to sampling weights, can be used
to adjust for the different probability of being assigned to treatment at each saturation. To estimate a
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Pooling observations across multiple saturations introduces the possibility of heteroskedas-

ticity. Lemma 2 characterizes the precise form of this heteroskedasticity, which depends on

the expected potential outcome at each saturation in the RS design. When ITT (p) and

SNT (p) are relatively flat, the heteroskedasticity will be small, whereas when these esti-

mands vary with the intensity of treatment, the heteroskedasticity will be more significant.

The error is homoskedastic precisely when the expected potential outcomes do not vary with

the treatment saturations in the RS design.

Definition 1. Treatment and spillover effects are constant on Π if for all pj, pk ∈ Π,

Y (1, pj) = Y (1, pk) and Y (0, pj) = Y (0, pk).

Corollary 3. Given saturations Π, the error has a block-diagonal variance-covariance matrix

if and only if treatment and spillover effects are constant on Π.

Generally, cluster robust standard errors should be used in two-level experiments due to the

design effect. This corollary provides an additional argument for doing so when estimating

(5) due to the variation in treatment and spillover effects at different saturations.

Standard Errors. Since an RS design opens the door to a novel set of questions about

how treatment and spillover effects vary with intensity of treatment, and still identifies

pooled treatment and spillover effects, it may be tempting to conclude that there is no

reason not to run an RS design. If there are slope effects, then the heteroskedastic errors

in the pooled regression are not an important issue, as the researcher is more interested

in the individual saturation model (1), while if no slope effects emerge, then the pooled

model is homoskedastic and there is no need to worry about multiple treatment saturations

introducing heteroskedasticity that reduces the precision of estimates. However, this line of

reasoning misses a crucial piece of the story. Next, we show that including multiple treatment

saturations increases the standard errors of pooled estimates, even when the treatment and

spillover effects are constant, so that the error in (5) is homoskedastic.

pooled ITT and SNT that places equal weight w(p) = 1/|Π| on the treatment or spillover estimand at each
saturation, estimate (5) with weights sic = 1/Pcf(Pc) for treated individuals and weight sic = 1/(1−Pc)f(Pc)

for within-cluster controls. Using these weights, β̂1− β̂2 is now a pooled measure of the VT that places equal
weight on each saturation, but β̂1 + β̂2 is no longer a pooled measure of the TCE. For example, consider a
design with three saturations, Π = {0, 1/3, 2/3} and an equal share of clusters assigned to each saturation,
f(p) = 1/3 for each p ∈ Π. An individual in a cluster assigned p = 2/3 is twice as likely to be assigned to
treatment as a cluster assigned p = 1/3. Weighting the treated individuals in clusters assigned p = 1/3 and
p = 2/3 by sic = 3 and sic = 3/2, respectively, allows one to calculate the pooled estimate that places equal
weight on both clusters, rather than twice as much weight on the p = 2/3 clusters.
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Let η2T be the component of the variance in treatment saturation across clusters that

arises from multiple non-zero saturations,

η2T ≡
∑

p∈Π\{0}

p2f(p)

1− ψ
−
(

µ

1− ψ

)2

=

(
1

1− ψ

)
η2 −

(
ψ

(1− ψ)2

)
µ2 (7)

where f(p)/(1 − ψ) is the distribution of treatment saturation conditional on p > 0, with

support Π\{0}, and η2 is the total variance in treatment saturation. Trivially, η2T = 0 when

there is a single non-zero saturation.

In order to isolate the impact that variance in treatment saturation has on the SE for

the pooled ITT and SNT, we focus on the case where spillover and treatment effects are

constant across all saturations in the RS design.

Theorem 2 (Pooled SE). Let (Π, f) be an RS design with an interior saturation and a pure

control. Assume Assumptions 1, 2 and treatment and spillover effects are constant on Π.

The SE of ITT is:

SEITT =

√
τ 2 + σ2

nC

(
nρ

(
1

(1− ψ)ψ
+

(
1− ψ

µ2

)
η2T

)
+ (1− ρ)

(
1

µ
+

1

ψ

))
.

Substituting µS for µ yields an analogous expression for the SE of SNT , denoted SESNT .

The SE for the pooled estimands depends on the size of the treatment and control groups and

the within-cluster variation in treatment status. Crucially, when outcomes within clusters

are correlated (ρ > 0), the SE is strictly increasing in the variation in treatment saturation

η2T and introducing multiple treatment saturations reduces precision. Standard errors are

minimized in a partial population design in which there is a single treatment saturation and

a pure control. This design has no variation in treatment saturation, η2T = 0.

Corollary 4 (Optimality of Partial Population Design). Suppose ρ > 0. For any (µ, ψ),

the partial population design with treatment saturation p = µ/(1 − ψ) and a pure control

simultaneously minimizes SEITT and SESNT .

Moving away from the partial population design to a design with variation in the treatment

saturation, the power loss is more severe for settings with higher intra-cluster correlation.

The variance of β̂ increases linearly with respect to η2T and the rate at which this variance

increases is proportional to ρ. Therefore, if the researcher a priori believes that slope effects
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Figure 2. Partial Population Design

are small and intra-cluster correlation is high, she is best off selecting a partial population

design. The next subsection explores which partial population design to choose.

Optimal Partial Population Design. Consider the optimal treatment saturation p and

control size ψ for a partial population design. The SE of the ITT decreases with p, while

the SE of the SNT increases with p. The relative importance of detecting these two effects,

as well as their expected magnitudes, will determine the optimal choice of p. If a researcher

places equal weight on each effect,

min
(p,ψ)

SEITT (p, ψ) + SESNT (p, ψ), (8)

then the optimal saturation creates equally sized treatment and within-cluster control groups

by choosing p∗ = 0.5. The left panel of Figure 2 illustrates the SEs in a partial population

design, as a function of p. Note SEITT (0.5, ψ) = SESNT (0.5, ψ).

The optimal share of control clusters depends on ρ and n. As ρ increases, the optimal

share of control clusters also increases – within-cluster controls and treated individuals pro-

vide more information about each other, and the total number of clusters in each treatment

group becomes more important for statistical power than the total number of individuals in

each treatment group. In a partial population design with saturation 0.5, it is always opti-

mal to allocate more than a third of clusters to the pure control as the control serves as the

counterfactual for both treatment and spillover groups; designating about 41% of clusters as

pure controls yields the smallest SE when ρ = 0, while designating 50% is preferable when
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Figure 3. Trade-off between SEs of Pooled and Slope Estimands

ρ = 1. Corollary 5 summarizes these results.

Corollary 5. The partial population design that minimizes (8) has saturation p∗ = 0.5 and

allocates share

ψ∗ =
−(1 + (n− 1)ρ) +

√
(1 + (n− 1)ρ)2 + (1− ρ)(1 + (n− 1)ρ)

1− ρ
∈ [

√
2− 1, 1/2)

of clusters to pure control for ρ ∈ [0, 1) and ψ∗ = 1/2 for ρ = 1. The optimal share of control

clusters ψ∗ is increasing in ρ and n.

The right panel of Figure 2 illustrates how the SEs in a partial population design with

saturation 0.5 (note they are equal) depend on the control group size when ρ = 0 and ρ = 1.

The minimum in each case is marked with an asterisk. Corollary 5 is similar in spirit to

Hirano and Hahn (2010). They show that a partial population design identifies the ITT

and SNT in a linear-in-means model when ρ = 0, and establish that the optimal treatment

saturation is p∗ = 0.5 and the optimal control group size is ψ∗ =
√
2− 1.

3.3 The Design Trade-off.

Taken together, the results in Sections 3 provide important insights on experimental design.

Clustering of outcomes can be due to either correlated effects or interference between units.

Theorems 1 and 2 show that the source of clustering plays an important role in determining

the power of different designs. The optimal design depends crucially on the degree of intra-

cluster correlation and the degree to which individual effects vary with intensity of treatment

– precisely the two underlying factors that drive clustering of outcomes.
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If the researcher has a strong prior belief that spillover effects are relatively flat with

respect to treatment intensity but ρ is high, then choosing an RS design with multiple

treatment saturations will reduce statistical power without yielding novel insights and the

researcher is better off running a partial population design. However, partial population

designs have the drawback that they only measure effects at a single saturation. When a

researcher seeks to identify or rule out slope effects, she will need to introduce variation in

the treatment saturation. A graphical representation of the tradeoff in precision between

measuring pooled and slope effects is presented in Figure 3.

Moreover, if the researcher is primarily interested in identifying slope effects, a design

with no pure control is optimal. But such a design cannot identify treatment and spillover

effects at any individual saturation. Thus, the optimal RS design for a slope analysis stands

in sharp contrast to that for an analysis at individual saturations or a pooled analysis. If the

researcher seeks to identify both slope and individual effects, the optimal design will depend

on the relative importance that the researcher places on each effect.

4 Application

This section illustrates our results by characterizing the optimal design for different hypo-

thetical objective functions and calculating the power of RS designs from published studies

in economics and political science. These examples quantify the power trade-offs that arise

between measuring individual, slope and pooled effects. The calculations are conducted

using code we developed as a tool for researchers.22

First, suppose a researcher uses a clustered design to identify the average treatment effect.

She selects C = 100 clusters, each of which contain n = 10 individuals, and is interested

in the precision of her estimate of the ITT. She implements the optimal clustered design,

which assigns 50% of the clusters to the control group and 50% to the treatment group

and identifies ITT (1). The SE of ITT (1) depends on the intra-cluster correlation, ρ, and

is measured in standard deviations. When ρ = 0, SEITT (1) = 0.063. It increases with ρ,

rising to 0.087 when ρ = 0.1 and 0.200 when ρ = 1 (Table 1, Columns 1-3). The researcher

cannot identify any spillover effects on treated or untreated individuals.

22We created a Graphical User Interface (GUI) to answer many optimal design questions and calculate
power for a given RS design. Code in R and Python is also available to conduct numerical optimization for
more complex design questions. All code is available at http://pdel.ucsd.edu/solutions/index.html.
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Table 1. Optimal Design to Detect Pooled Effects

Objective Function

min SE_ITT 
+ 2*SE_SNT

min SE_SNT 
s.t. 

SE_ITT≤0.09

ICC: ρ 0 0.1 1 0 0.1 1 0.1 0.1
Optimal saturation 1: pure control 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Optimal saturation 2: p2 1.00 1.00 1.00 0.50 0.50 0.50 0.41 0.78
Optimal share in pure control: ψ 0.50 0.50 0.50 0.41 0.45 0.50 0.45 0.47
Optimal share in p2 0.50 0.50 0.50 0.59 0.55 0.50 0.55 0.53
SE of  pooled ITT 0.063 0.087 0.200 0.076 0.097 0.200 0.100 0.090
SE of  pooled SNT . . . 0.076 0.097 0.200 0.094 0.117

Other parameters: C=100, n=10

BENCHMARK: CLUSTERED DESIGN PARTIAL POPULATION DESIGN

min SE_ITT min SE_ITT + SE_SNT

Next, suppose that the researcher also would like to measure spillover effects on untreated

individuals and cares equally about the precision of the estimates of the pooled ITT and

pooled SNT. Applying Corollary 4, the optimal design is a partial population experiment

(PPE), Π = {0, p} and f = {ψ, 1 − ψ}. This design identifies ITT (p) and SNT (p). From

Corollary 5, we know that when the researcher places equal weight on minimizing the SEITT

and SESNT , the optimal treatment saturation is p∗ = 0.5, meaning that half of the individuals

in each treatment cluster are assigned to treatment, and the optimal share of control clusters

ranges from ψ∗ = 41% to 50% as ρ increases from 0 to 1 (Table 1, Columns 4-6). The SE

for the ITT and SNT are equal, SEITT (0.5) = SESNT (0.5), and range from 0.076 to 0.200 as

ρ increases from 0 to 1. Hence, when the researcher wants to detect spillovers on untreated

individuals, the SE for the ITT rises. The source of this power loss is obvious: it stems from

reassigning some treatment and control individuals to serve as within-cluster controls. The

power loss is decreasing in ρ, as within-cluster control individuals provide more information

about treated individuals for high ρ.

Now suppose the researcher wants to detect a pooled SNT that is smaller or larger than

the pooled ITT. A partial population experiment remains optimal, but now the optimal

treatment saturation and control group size minimizes

min
p,ψ

θSEITT (p) + (1− θ)SESNT (p),

where θ ∈ [0, 1] is the relative weight that the researcher places on detecting treatment versus

spillover effects. When ρ = 0.1 and θ = 1/3, the optimal treatment saturation is p∗ = 0.41,
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Table 2. Optimal Design to Detect Slope Effects and SE in Existing Studies

Objective Function

min SE_ITT 
+ SE_SNT   
+ SE_DT      

+ SE_DNT

Banerjee et 
al. & Crepon 

et al.
Sinclair et al. Baird et al.

Baird et al. sat; 
shares solve    

min SE_SNT 
s.t. 

SE_ITT≤.095

ICC: ρ 0 0.1 1 0.1 0.1 0.1 0.1 0.1
Saturation 1: p1 0.15 0.13 1/n 0.00 0.00 0.00 0.00 0.00
Saturation 2: p2 0.85 0.87 (n-1)/n 0.21 0.25 0.10 0.33 0.33
Saturation 2: p3 . . . 0.88 0.50 0.50 0.67 0.67
Saturation 2: p4 . . . . 0.75 1.00 1.00 1.00
Saturation 2: p5 . . . . 1.00 . . .
Share in p1 0.50 0.50 0.50 0.28 0.20 0.25 0.55 0.45
Share in p2 0.50 0.50 0.50 0.33 0.20 0.25 0.15 0.21
Share in p3 . . . 0.39 0.20 0.25 0.15 0.21
Share in p4 . . . . 0.20 0.25 0.15 0.13
Share in p5 . . . . 0.20 . . .
SE of  pooled ITT . . . 0.104 0.113 0.109 0.095 0.095
SE of  pooled SNT . . . 0.109 0.120 0.111 0.115 0.106
SE of  Treated slope 0.179 0.191 0.204 0.217 0.240 0.242 0.289 0.269
SE of  Untreated slope 0.179 0.191 0.204 0.192 0.240 0.274 0.251 0.221

Other parameters: C=100, n=10

OPTIMAL RS DESIGNS EXISTING STUDIES

min SE_DT + SE_DNT

meaning 41% of individuals in a treatment cluster are assigned to treatment (Table 1, Column

7). The optimal share of clusters allocated to the control group is ψ∗ = .45, as was the case

for θ = 1/2 and ρ = 0.1. This produces SEITT (.41) = 0.100 and SESNT (.41) = 0.094.23

Alternatively, if the researcher wants to minimize the SE of the SNT, while maintaining a

SE for the pooled ITT of 0.09 or lower (approximately the SE in the clustered design), then

she would use treatment saturation p∗ = 0.78 and share of control clusters ψ∗ = .47. This

would yield a higher standard error for the spillover effect on the non-treated, 0.117 (Table

1, Column 8).

Next, suppose the researcher wishes to estimate the slope effect for treated and untreated

individuals, and does not care about identifying the individual or pooled ITT and SNT. Then

the optimal design will have two interior saturations and no pure control group. She chooses

a design to solve

min
p1,p2,f

SEDT (p1, p2, f) + SEDNT (p1, p2, f).

By Corollary 2, the optimal saturations are symmetric about 0.5 and clusters equally divided

between these two saturations. When ρ = 0, the optimal saturations are p∗1 = 0.15 and

p∗2 = 0.85. This produces a SE of 0.179 for both the treated and non-treated individuals

(Table 2, Column 1). Increasing ρ moves the optimal saturations further apart and increases

23Moving to a more extreme θ = 1/10 does not alter the share of clusters allocated to pure control
substantively (ψ∗ = 47%), but significantly reduces the optimal treatment saturation (p∗ = 0.23).
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the SEs for the slope effects (Table 2, Columns 2 - 3). At the extreme, when outcomes within

a cluster are perfectly correlated (ρ = 1), the optimal saturations are as far apart as possible

while still maintaining at least one treated and one within-cluster control individual in each

cluster. This corresponds to saturations p∗1 = 1/n and p∗2 = (n− 1)/n.

However, not many researchers are interested in designing an experiment to maximize the

precision of slope estimands, at the expense of not being able to identify standard estimands,

such as the ITT. To give a sense of the optimal design when the researcher would like to have

a pure control group along with two interior saturations, we consider an objective function

that puts equal weights on both the pooled and slope effects,

min
p1,p2,f

SEITT + SESNT + SEDT (p1, p2, f) + SEDNT (0, p2, f).

When ρ = 0.1, it is optimal to allocate 33% of the clusters to saturation p∗1 = 0.21, 39%

to saturation p∗2 = 0.88, and the remaining ψ∗ = 28% to the pure control group, i.e. Π∗ =

{0, 0.21, 0.88} and f ∗ = {0.28, 0.33, 0.39} (Table 2, Column 4).24 The calculated SEs of

0.104 and 0.109 for the pooled ITT and SNT, respectively, indicate an 7-13% increase in the

SEs compared to the optimal partial population design using the same parameters (Table

1, Column 5).25 Unlike the precision loss that arises when moving from a clustered to a

partial population design, the precision loss in moving from a partial population design to

a RS design with two interior saturations arises from the increased variance of treatment

saturations, rather than a reduction in sample size. It is precisely this variance in treatment

saturation that enables identification of slope effects.

Finally, we calculate the standard errors in RS designs used by three published studies.

To facilitate comparability with the optimal designs discussed above, we use the same number

of clusters (C = 100), individuals per cluster (n = 10) and intra-cluster correlation (ρ = 0.1)

24The careful reader might note that the optimal interior saturations are not symmetric about 0.5, as
would be the case if we were solely interested in minimizing detectable slope effects. In this example, a pure
control group is included to identify the ITT and SNT. Furthermore, at 27%, the size of the optimal control
group is smaller than the control group size that minimizes the sum of the individual SEs for the ITT and
SNT (Corollary 1).

25The SEDT is larger than in the optimal slope design in Column 2 because the distance between satura-
tions for treated individuals is smaller in this design, and fewer clusters are allocated to the saturations that
identify the DT i.e. 0.21 and 0.88. The SEDNT is approximately the same as in the optimal slope design in
Column 2 – the distance between the saturations for untreated individuals is larger, but fewer clusters are
allocated to the highest saturation, 0.88.
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as in our examples, rather than the actual values from each study.26

We begin with the RS design used in Banerjee et al. (2012) and Crepon et al. (2013).

Clusters were assigned to a pure control group and four equally spaced treatment saturations

in equal shares, Π = {0, 0.25, 0.50, 0.75, 1} and f = {0.2, 0.2, 0.2, 0.2, 0.2}. By virtue of

having a pure control group and more than two interior saturations, this study design can

identify the ITT and SNT (pooled and saturation-specific) effects, slope effects and test

for the shapes of ITT (p) and SNT (p). The cell with 100% treatment saturation allows

for examination of general equilibrium effects when everyone in the target population is

treated, compared with the partial equilibrium effects in lower saturation cells. Our power

calculations for this design yield SEITT = 0.113, SESNT = 0.120, and SEDT = SEDNT =

0.240 (Table 2, Column 5). All of these figures are higher than their counterparts under

the optimal design for minimizing the sum of these four variables (Table 2, Column 4),

demonstrating the power loss that arises from having a richer, more granular design that

can, for example, test for concavity of ITT (p) and SNT (p).

Our next example is the design used by Sinclair et al. (2012). They randomized nine-

digit zip codes in a congressional district in Illinois into a pure control and three different

saturations: Π = {0, 1/n, 0.50, 1} and f = {0.25, 0.25, 0.25, 0.25}, where 1/n is the saturation

in which only one household is treated.27 In addition to the estimands that can be identified

in Banerjee et al. (2012) and Crepon et al. (2013), this design can also identify the TUT and

the ST (p) for p = 0.5 and p = 1. Our power calculations for this design yield SEITT = .109,

SESNT = 0.111, SEDT = 0.242 and SEDNT = 0.274, respectively (Table 2, Column 6). The

pooled SEs are quite similar to their counterparts under the optimal design for minimizing the

sum of these four quantities (Table 2, Column 4), but the slope effect SEs are substantially

higher, particularly for the non-treated (0.274 vs. 0.192), because the largest saturation

26The pooled SEs in columns 4-8 are calculated for a model with constant treatment and spillover effects,
which implies homoskedastic errors. These are lower bounds for the pooled SEs when treatment and spillover
effects are not constant, and therefore, errors are heteroskedastic. Even if it is not possible to reject the null
hypothesis of a zero slope effect, there may still be a small slope effect that creates heteroskedasticity. For
example, in column 4, the design is powered to detect treatment slope effects larger than 0.62. Suppose the
true slope is 0.5. It will not be possible to reject the null hypothesis that the slope is zero, but there will
still be heteroskedasticity and the pooled SE for treated individuals will be strictly larger than 0.104 which
is the pooled SE for a ITT effect of zero. To account for this, researchers should build some sample size
cushion into their designs.

27The saturation of 0.5 is approximate, as one core household plus half of the remaining households were
randomly assigned to treatment in clusters assigned to that saturation.
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containing within-cluster controls is 0.5.

Our final example is Baird, McIntosh, and Özler (2011), which has a pure control and

three positive saturations, Π = {0, 0.33, 0.67, 1} and f = {0.55, 0.15, 0.15, 0.15}. While the

saturations in this design are also equally spaced, they are not equally sized: the pure control

group, at 55% of clusters, is much larger than the share assigned to any treatment satura-

tion. The combination of having a larger control group and smaller variation in treatment

saturations produces SEs for the pooled ITT that are smaller than those in Banerjee et al.

(2012) and Crepon et al. (2013), but higher SEs for the slope effects, particularly for treated

individuals (Table 2, Column 7). The SE for the pooled SNT is 2 percentage points (or 21%)

higher than that for the ITT, indicating that the pooled spillover effects on the untreated

are underpowered relative to the pooled treatment effects.

Given this large difference between SEs for the pooled ITT and SNT, we can ask whether

there is a way to allocate clusters to this set of saturations that leads to both lower pooled

and slope SEs. Consider the objective function that minimizes the SE of the SNT, subject

to the constraint that the SE of the ITT remains below its value in the original study design,

minf SESNT subject to SEITT ≤ 0.095. The optimal distribution of treatment saturations for

this objective allocates a lower share of clusters to the pure control group and to saturation

p = 1, and a higher share to the two interior saturations, 1/3 and 2/3 (Table 2, Column

8). Such a design dominates the original study design, as it not only lowers the SE for the

pooled SNT, but also decreases the SEs of the slope effects. As we kept Π fixed, the improved

precision comes from redistributing clusters more efficiently between different treatment

saturations, particularly by reallocating clusters from the pure control to interior saturations.

5 Conclusion

In recent years, empirical researchers have become increasingly interested in studying inter-

ference between subjects. Experiments designed to rigorously estimate spillovers open up a

fascinating set of research questions and provide policy-relevant information about program

design. For example, if a vaccination or a bed net distribution program with fixed resources

can either treat 50% of all villages or 100% of half of them, which treatment allocation will

maximize the total benefit? Small policy trials conducted on a subset of the population can

miss important scale or congestion effects that will accompany the full-scale implementa-
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tion of a program. RCTs that fail to account for spillovers can produce biased estimates of

intention-to-treat effects, while finding meaningful treatment effects but failing to observe

deleterious spillovers can lead to misconstrued policy conclusions. Varying the cluster-level

saturation can lead to differential impacts on prices, norms, and congestion effects. The RS

design presented here provides an experimental framework to inform these policy questions

and bolster both external and internal validity.

In this paper, we attempt to formalize the optimal design and analysis of RS designs.

Building on the previous multidisciplinary literature, we map the potential outcomes frame-

work to a clustered error regression model, which allows us to gain analytical insights for

the optimal design of such experiments and derive ex-ante power calculations. The benefit

of randomizing treatment saturations is the ability to generate direct experimental evidence

on the nature of spillover and threshold effects both for treated and non-treated individuals.

The cost of doing so is the precision of these estimates. Having laid out the assumptions

necessary to estimate both the mean and variance of spillover effects, we derive analytical

closed-form expressions for the standard errors. The SEs for the pooled intention-to-treat

effect and spillover effect on the non-treated are directly related to the variation in treatment

saturation. A design trade-off emerges in that randomizing saturations allows the researcher

to identify novel estimands but comes at the cost of the precision of the estimates of more

basic estimands. This is an inherent feature of RS designs.
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A Proofs from Section 3

A.1 Proof of Theorems 1 and 2

Preliminary Calculations This section provides background material used in the proofs

of Theorems 1 - 4. Consider the OLS estimate of

Yic = X ′
icβ + εic, (9)

where Xic is a vector of treatment status covariates and εic is an error term with a block-

diagonal variance-covariance matrix. Given X ′
c = [X1c ... Xnc] and ε′c = [ε1c ... εnc], let

E[εcε
′
c|Xc] = σ2In + τ 21n denote the within-cluster variance-covariance matrix, where 1n is

the (n× n) matrix of ones. Between clusters, E[εicεjd|X] = 0 for all c ̸= d. Then the exact

finite sample variance of β̂ is

Var(β̂|X) = A−1

(
C∑
c=1

X ′
cE[εcε

′
c|Xc]Xc

)
A−1

= A−1

(
C∑
c=1

X ′
c(σ

2In + τ 21n)Xc

)
A−1

= σ2A−1 + τ 2A−1BA−1, (10)

where

A ≡
C∑
c=1

n∑
i=1

XicX
′
ic (11)

B ≡

(
C∑
c=1

X ′
c1Xc

)
. (12)

Proof of Theorem 1. Consider an RS design with two interior saturations, p1 and p2,

and a pure control. Let Tkic ≡ Tic ∗ 1{Pc = pk} and S1ic ≡ Sic ∗ 1{Pc = pk} for k = 1, 2. We

want to compute Var(β̂|X) for (9) when

X ′
ic = [ 1 T1ic S1ic T2ic S2ic ].

By Lemma 1, the error distribution is block-diagonal. Let µk ≡ pkf(pk), sk ≡ (1− pk)f(pk),

ηk ≡ p2kf (pk) and qk ≡ (1− pk)
2 f (pk) = sk − µk + ηk. From Section A.1, Var(β̂|X) =
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σ2A−1 + τ 2A−1BA−1, with

A =
C∑
c=1

n∑
i=1



1 T1ic S1ic T2ic S2ic

T1ic T 2
1ic S1icT1ic T2icT1ic S2icT1ic

S1ic T1icS1ic S2
1ic T2icS1ic S2icS1ic

T2ic T1icT2ic S1icT2ic T 2
2ic S2icT2ic

S2ic T1icS2ic S1icS2ic T2icS2ic S2
2ic


= nC



1 µ1 s1 µ2 s2

µ1 µ1 0 0 0

s1 0 s1 0 0

µ2 0 0 µ2 0

s2 0 0 0 s2


and

B =
C∑
c=1





n∑n
i=1 T1ic∑n
i=1 S1ic∑n
i=1 T2ic∑n
i=1 S2ic


∗



n∑n
i=1 T1ic∑n
i=1 S1ic∑n
i=1 T2ic∑n
i=1 S2ic



′
= n2C



1 µ1 s1 µ2 s2

µ1 η1 µ1 − η1 0 0

s1 µ1 − η1 q1 0 0

µ2 0 0 η2 µ2 − η2

s2 0 0 µ2 − η2 q2


,

where the second equalities follow from
∑n

i=1 Tkic = npk,
∑n

i=1 Skic = n(1−pk),
∑C

c=1

∑n
i=1 Tkic =

npk × Cf(pk) = nCµk,
∑C

c=1

∑n
i=1 Skic = n(1 − pk) × Cf(pk) = nCsk,

∑C
c=1(

∑n
i=1 Tkic)

2 =

n2p2k×Cf(pk) = n2Cηk,
∑C

c=1(
∑n

i=1 Tkic×
∑n

i=1 Skic) = n2pk(1−pk)×Cf(pk) = n2C(µk−ηk),

(
∑n

i=1 T1ic) (
∑n

i=1 S2ic) = 0, and other analogous calculations. Taking the diagonal entries of

Var(β̂|X) yields

Var(β̂1pj) =
1

nC
∗
{
nτ 2

(
1

f(pj)
+

1

ψ

)
+ σ2

(
1

µj
+

1

ψ

)}
and

Var(β̂2pj) =
1

nC
∗
{
nτ 2

(
1

f(pj)
+

1

ψ

)
+ σ2

(
1

sj
+

1

ψ

)}
for each pj ∈ Π. Taking the square root yields the results for Theorem 1. It is straightforward

to extend the result to more than two interior saturations.

To compute the SEDT , note Var(δTjk) = Var(β1pk − β1pj)/ (pk − pj)
2, Cov(β1pk , β1pj) =
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(nτ 2 + σ2)/ψnC, and

Var(β1pk − β1pj) = Var(β1pj) + Var(β1pk)− 2Cov(β1pk , β1pj)

=
1

nC
∗
{
nτ 2

(
1

f(pj)
+

1

f(pk)

)
+ σ2

(
1

µj
+

1

µk

)}
,

where Var(β1pk) follows from Theorem 1. Similarly, Var(δSjk) = Var(β2pk − β2pj)/ (pk − pj)
2,

where

Var(β2pk − β2pj) = Var(β2pj) + Var(β2pk)− 2Cov(β2pk , β2pj)

=
1

nC
∗
{
nτ 2

(
1

f(pj)
+

1

f(pk)

)
+ σ2

(
1

sj
+

1

sk

)}
.

Taking the square root yields the result for the slope effect.

Proof of Theorem 2. Consider an RS design with at least one interior saturation and a

pure control. We want to compute Var(β̂|X) for (9), when

X ′
ic = [ 1 Tic Sic ].

By Lemma 2, the error distribution is block-diagonal. From Section A.1, Var(β̂|X) =

σ2A−1 + τ 2A−1BA−1, with

A =
C∑
c=1

n∑
i=1


1 Tic Sic

Tic T 2
ic TicSic

Sic TicSic S2
ic

 = nC


1 µ µS

µ µ 0

µS 0 µS


and

B =
C∑
c=1


n2 n

∑n
i=1 Tic n

∑n
i=1 Sic

n
∑n

i=1 Tic (
∑n

i=1 Tic)
2

(
∑n

i=1 Tic) (
∑n

i=1 Sic)

n (
∑n

i=1 Sic) (
∑n

i=1 Tic) (
∑n

i=1 Sic) (
∑n

i=1 Sic)
2



= n2C


1 µ µS

µ η2 + µ2 µ− µ2 − η2

µS µ− µ2 − η2 µS − µ+ η2 + µ2

 ,
where the second equalities follow from

∑n
i=1 Tic = nPc,

∑n
i=1 Sic = n(1 − Pc) if Pc >

0,
∑C

c=1 nPc = n
∑C

p∈Π pCf(p) = nCµ,
∑C

c=1(
∑n

i=1 Tic)
2 =

∑C
c=1 n

2P 2
c = n2C(η2 + µ2),
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∑C
c=1(

∑n
i=1 Tic ×

∑n
i=1 Sic) =

∑C
c=1 n

2Pc(1 − Pc) = n2C(µ − η2 − µ2), and other analogous

calculations. Taking the diagonal entries of Var(β̂|X), and plugging in (7) to relate η2 and

η2T yields the result for Theorem 2.

A.2 Proofs of Lemmas 1 and 2

Proof of Lemma 1. Suppose the realized treatment vector is Tc = t, with Tic = t,

Tjc = t′ and p(t) = p. Then E[εic|Tc = t] = E[Yic(t) − Y (t, p)] = 0. The variance of the

error is E[ε2ic|Tc = t] = E[(Yic(t)− Y (t, p))2] = τ 2 + σ2. The covariance of the error between

individuals in the same cluster is E[εicεjc|Tc = t] = E[(Yic(t)− Y (t, p))(Yjc(t)− Y (t′, p))] =

τ 2. Errors across clusters are not correlated since outcomes across clusters are not correlated.

Proof of Lemma 2. The expected value of the error for treated individuals is

E[εic|Tic = 1] = E[Yic(1, T−i,c)− Y (1)|Tic = 1]

=
∑

p∈Π\{0}

Pr(Pc = p|Tic = 1)Y (1, p)− Y (1)

=
1

µ

∑
p∈Π\{0}

pf(p)Y (1, p)− Y (1)

= 0,

since from the perspective of a treated individual, Pr(Pc = p|Tic = 1) = pf(p)/µ. Similarly,

E[εic|Sic = 1] = 0 and E[εic|Tic = Sic = 0] = 0. The variance of the error for treated

individuals is

E[ε2ic|Tic = 1] = E[(Yic(1, T−i,c)− Y (1))2|Tic = 1]

=
1

µ

∑
p∈Π\{0}

pf(p)(τ 2 + σ2 + Y (1, p)2)− 2

µ

∑
p∈Π\{0}

pf(p)Y (1, p)Y (1) + Y (1)2

= τ 2 + σ2 +
1

µ

∑
p∈Π\{0}

pf(p)Y (1, p)2 − Y (1)2.

Similarly, the variance of the error for within-cluster controls is

E[ε2ic|Sic = 1] = τ 2 + σ2 +
1

µS

∑
p∈Π\{0}

(1− p)f(p)Y (0, p)2 − Y (0)2,
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and the variance of the error for pure controls is E[ε2ic|Cic = 1] = τ 2 + σ2. The covariance of

the error between treated individuals in the same cluster is

E[εicεjc|Tic = Tjc = 1] = τ 2 +
1

(η2 + µ2)

∑
p∈Π\{0}

p2f(p)(Y (1, p)− Y (1))2.

Similarly,

E[εicεjc|Tic = Sjc = 1] = τ 2 +

∑
p∈Π\{0} p(1− p)f(p)(Y (1, p)− Y (1))(Y (0, p)− Y (0))∑

p∈Π\{0} p(1− p)f(p)
,

E[εicεjc|Sic = Sjc = 1] = τ 2 +

∑
p∈Π\{0}(1− p)2f(p)(Y (0, p)− Y (0))2∑

p∈Π\{0}(1− p)2f(p)
,

and E[εicεjc|Cic = Cjc = 1] = τ 2. Errors across clusters are not correlated since outcomes

across clusters are not correlated.

Proof of Corollary 3. Recall Y (1) ≡ 1
µ

∑
p∈Π\{0} pf(p)Y (1, p). Suppose treatment effects

are constant on Π. Then Y (1, p) = Y (1) for all p. Therefore, ϕT ≡ 1
µ

∑
p∈Π\{0} pf(p)Y (1, p)2−

Y (1)2 = 1
µ

∑
p∈Π\{0} pf(p)Y (1)2 − Y (1)2 = 0. Similarly, ϕS = 0, ϕTT = 0, ϕSS = 0 and

ϕTS = 0. Therefore, the variance-covariance matrix reduces to a block-diagonal structure

with variance σ2 + τ 2 and covariance τ 2.

For the other direction, suppose the variance-covariance matrix is block-diagonal with

variance σ2 + τ 2 and covariance τ 2. Then ϕT = 0. Therefore, 1
µ

∑
p∈Π\{0} pf(p)Y (1, p)2 =

Y (1)2. But then there must be no variation in the population average potential outcome

across saturations for treated individuals. Similarly, ϕS = 0 and there must be no variation

in the population average potential outcome across saturations for within-cluster controls.

Therefore, treatment effects are constant on Π.

A.3 Proofs of Optimal Design Results

The proof of Corollary 1 follows directly from Theorem 1.

Proof of Corollary 2. Consider an RS design with at least two interior saturations.

Without loss of generality assume pk > pj and fix the share of clusters allocated to these

saturations at f(pk) + f(pj) = F . Denote the size of saturation bin j by f(pj) = f and bin

k by f(pk) = F − f . Let pj = p and denote the distance between the two saturations by
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∆ ≡ pk − pj. Then minimizing (4) is equivalent to solving:

min
f

min
∆

min
p

1

∆2

(
nρ

(
1

f
+

1

F − f

)
+ (1− ρ)

(
1

fp
+

1

(F − f)(p+∆)
+

1

f(1− p)
+

1

(F − f)(1−∆− p)

))
.

For each ∆, the minimum occurs at the p that solves

p(1− p)f = (p+∆)(1−∆− p)(F − f). (13)

For any (p,∆, f) that satisfy (13) such that f ̸= F/2, there exists a (p′,∆′, F/2) that

also satisfy (13) and strictly lower the objective function, since it lowers the term 1
f
+ 1

F−f

without affecting the term inside (1 − ρ). Therefore, the optimal size of each saturation

bin is equal, f = F/2. Given ∆ and f = F/2, the optimal saturations are pj = (1 −∆)/2

and pk = p+∆ = (1 + ∆)/2, which are symmetric about 1/2. The ∆ that minimizes (4) is

equivalent to solving:

min
∆

1

∆2

(
nρ+ (1− ρ)

(
2

1−∆2

))
.

The optimal ∆∗ solves:
nρ

2(1− ρ)
=

2∆2 − 1

∆(1−∆2)2
.

If ρ = 0, then 2∆2 − 1 = 0, yielding ∆∗ =
√
2/2. Note that (2∆2 − 1)/(∆(1 − ∆2)2) is

monotonically increasing for ∆ ∈ [0, 1), and strictly positive for ∆ >
√
2/2. The left hand

side is increasing in ρ, and strictly positive when ρ > 0. Therefore, ∆∗ >
√
2/2 for ρ > 0,

and ∆∗ is increasing in ρ and n. If ρ > 0, then the left hand side converges to ∞ as n→ ∞,

which requires ∆∗ → 1. At the extreme, when ρ = 1, the optimal saturations are the

furthest apart saturations that maintain one treated individual and one with-cluster control

individual in each saturation, p∗j = 1/n and p∗k = (n− 1)/n.

Proof of Corollary 4. Fixing µ and ψ, Var(β̂1) and Var(β̂2) are both minimized at

η2T = 0. This corresponds to a partial population experiment with a control group of size ψ

and a treatment saturation of p = µ/(1− ψ).
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Proof of Corollary 5. A partial population design with share of control clusters ψ and

share of treated individuals µ has SEs

SE(β̂1) =

√
τ 2 + σ2

nC
∗
{
nρ

(
1

(1− ψ)ψ

)
+ (1− ρ)

(
1

µ
+

1

ψ

)}

SE(β̂2) =

√
τ 2 + σ2

nC
∗
{
nρ

(
1

(1− ψ)ψ

)
+ (1− ρ)

(
1

1− µ− ψ
+

1

ψ

)}
.

Fixing ψ, the optimal treatment share solves

min
µ

SE(β̂1) + SE(β̂2),

which has solution µ = (1 − ψ)/2. This implies µS = µ, which corresponds to a partial

population experiment with treatment saturation p = 1/2. Plugging in µ = (1−ψ)/2 yields

SE(β̂1) = SE(β̂2) =

√
τ 2 + σ2

nC
∗
{
nρ

(
1

ψ(1− ψ)

)
+ (1− ρ)

(
1 + ψ

ψ(1− ψ)

)}
Thus, the optimal share of control clusters solves

min
ψ
nρ

(
1

ψ(1− ψ)

)
+ (1− ρ)

(
1 + ψ

ψ(1− ψ)

)
. (14)

When ρ = 0, (14) is minimized at ψ∗ =
√
2−1. When ρ = 1, (14) is minimized at ψ∗ = 1/2.

When ρ ∈ (0, 1), the general FOC for (14) is

(1− ρ)(ψ2 + 2ψ − 1) + nρ(2ψ − 1) = 0.

Using the quadratic formula with a = 1−ρ, b = 2(1−ρ+nρ) and c = −(1−ρ+nρ) to solve

for ψ yields the optimal control group size. Given that (1+ψ)/ψ(1−ψ) and 1/ψ(1−ψ) are

both convex and have unique minimums, any weighted sum of these functions is minimized

at a value ψ∗ that lies between the minimum of each function. Therefore, when ρ ∈ (0, 1),

ψ∗ ∈ (
√
2− 1, 1/2).

B Additional Analysis

This section presents additional uses of an RS design. First, we compute the power of an RS

design to detect treatment effects when it is determined ex post that there are no spillover

effects. We show that the SE of an RS design is nested between the SE of a blocked design
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and the SE of clustered design. Second, we present a parametric linear model of spillovers

and illustrate how an RS design can consistently estimate the pure control outcome. This

is a useful result for situations in which institutional constraints prohibit including a pure

control group.

B.1 Using Within-cluster Controls as Counterfactuals

Suppose there is no evidence of spillovers on untreated individuals – the estimate of SNT (p)

is a precise zero for all p. Then the within-cluster controls are not subject to interference

from the treatment and they can be used as counterfactuals to increase the power of the

treatment effect estimates.

Assumption 3. Y (0, p) = Y (0, 0) for all p ∈ Π.28

Given Assumption 3, the researcher can pool within-cluster and pure controls, and esti-

mate a simpler model to measure treatment effects,

Yic = β0 + β1Tic + εic. (15)

This regression returns ˆITT = β̂1.
29 Power is significantly improved by the larger coun-

terfactual, particularly when τ is high. Theorem 3 characterizes the pooled SE when the

within-cluster controls are included in the counterfactual.

Theorem 3 (SE with Within-Cluster Controls). Let (Π, f) be a RS design. Assume As-

sumptions 1, 2 and 3. The SE of ITT is:

SEITT =

√
τ 2 + σ2

nC

(
nρ

(
η2

µ2(1− µ)2

)
+ (1− ρ)

(
1

µ(1− µ)

))
.

Theorem 3 nests the SE of this model between the more familiar expressions for the

SE of the blocked and clustered designs. An immediate corollary is that the power of the

pooled treatment effect in any RS design lies between the power of the treatment effect in

the blocked and clustered designs.

28This assumption is testable using any RS design that yields a consistent estimate of ˆSNT (p).
29Saturation weights are necessary if there are spillover effects on treated individuals, ST (p) ̸= 0 for some

p ∈ Π.
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Corollary 6. Let SE
RS

ITT be the standard error for an RS design with share of treated indi-

viduals µ. Then

SEBITT < SERSITT < SECITT ,

where SEBITT =
√

1
nC

∗ σ2

µ(1−µ) is the SE in a blocked design with saturation µ and SECITT =√
1
nC

∗ σ2+nτ2

µ(1−µ) is the SE in a clustered design with share of treatment clusters µ.

This follows directly from Theorem 3, noting that the blocked design corresponds to η2 = 0

and the clustered design corresponds to η2 = µ(1− µ).

Corollary 6 provides context for a well-known result. Fixing the treatment share µ, the

SE is decreasing in the variance of the treatment saturation η2, and minimized when this

variation is zero, which corresponds to the blocked design. Second, fixing η2, the SE is

minimized when µ(1− µ) is maximized, which occurs at µ = 1/2. As is well known, in the

absence of spillovers, the optimal design is a blocked study with equal size treatment and

control groups.

B.2 Inference in a Linear Model

It is also possible to measure slope effects by imposing a functional form on the shape of the

spillover effects. For example, we could use an affine model to estimate the first order slope

effect.

Assumption 4 (Linearity). Y (t, p) is affine in p for t ∈ {0, 1}.

Given Assumption 4, it is natural to estimate:

Yic = α0 + α1Tic + δ1Pc + δ2TicPc + εic (16)

This regression identifies the TUT as the intercept of the treatment effect, ˆTUT = α̂1.

The coefficients δ1 and δ2 are slope terms estimating how spillover effects change with the

saturation, dŜT/dp = δ̂1 + δ̂2 and d ˆSNT/dp = δ̂1. A test for dST/dp = dSNT/dp is given

by the hypothesis test δ2 = 0.30

30In order to test the linearity assumption, one could estimate

Yic = α0 + α1Tic + α2Sic + δ1Pc + δ2TicPc + εic. (17)

The intercept δ2 estimates the spillover effect on untreated individuals at saturation zero. This should be
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Theorem 4 characterizes the standard errors of the slope estimands in an affine model,

which is proportional to SE(δ̂1 + δ̂2) for treated individuals and SE(δ̂1) for untreated indi-

viduals.

Theorem 4 (Affine Slope SE). Assume Assumptions 1 and 2 and let (Π, f) be a randomized

saturation design with κ ≥ 2 interior saturations. The SE for the slope effect of treated

individuals is:

SEDT =

√
1

nC
∗ {nτ 2h1 + σ2h2}

where mx ≡ 1
C

∑C
c=1 P

x
c =

∑
p∈Π p

xf(p) and

h1 ≡
(
(η2 + µ2)2 − 2µ(η2 + µ2)m3 + µ2m4

((η2 + µ2)2 − µm3)2

)
and

h2 ≡
(

η2 + µ2

(η2 + µ2)2 − µm3

)
.

An analogous expression characterizes the slope effect of untreated individuals, denoted SEDNT .

B.3 Inference Without a Pure Control

The RS design opens up unique empirical possibilities in studies where there is no pure control

group. This is particularly important for settings in which a pure control is not feasible due

to regulatory requirements or other exogenous restrictions.31 Without a pure control group,

a study’s counterfactual is subject to within-cluster spillovers. An RS design has the distinct

advantage of allowing a researcher to test for the presence of spillover effects and estimate

the unperturbed counterfactual. If the spillover effect is continuous at zero, the researcher

can use the variation in treatment saturation to project what would happen to untreated

individuals as the saturation approaches zero.32 With this unperturbed counterfactual in

hand, it is possible to correctly estimate the ˆITT .

zero, as SNT (0) = 0 by definition, so α2 = 0 serves as a hypothesis test for the linearity of the spillover
relationship.

31For example, in McIntosh et al. (2013), a Mexican government rule required that each participating
cluster (municipality) be guaranteed at least one treated sub-unit (neighborhood).

32Although continuity is a reasonable assumption, it is not universally applicable. Consider signalling in
a ground-hog colony. Individuals are ‘treated’ by being alerted to the presence of a nearby predator, and the
possible individual-level outcomes are ‘aware’ and ‘not aware’. The animal immediately signals danger to
the rest of the colony, and control outcomes will be universally ‘aware’ for any positive treatment saturation,
but ‘unaware’ when the saturation is exactly zero.
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Assumption 4 provides a simple way to estimate the pure control by assuming that

the outcome variable is linear with respect to treatment saturation. Note that Theorem 4

requires at least two interior saturations, but does not require a pure control group.

Theorem 5 (Consistency with No Control). Assume 1, 2 and 4, and let (Π, f) be a ran-

domized saturation design with κ ≥ 2 interior saturations. Then the OLS estimates from

(16) are consistent estimates of ˆITT (p) = α̂1 + (δ̂1 + δ̂2)p and ˆSNT (p) = δ̂1p.

Proof. Given Assumption 4, we can identify the slope of the ITT and SNT. The rest of the

proof follows easily from the Law of Large Numbers. □

The hypothesis test δ1 = 0 determines whether there is a spillover effect on untreated individ-

uals. If spillovers are present, then the counterfactual needs to be corrected. The coefficient

α̂0 is an estimate of the desired ‘pure’ control outcome, Y (0, 0).

B.4 Proofs for Theorems in Appendix B

Proof of Theorem 3. We compute Var(β̂|X) for (9) when

x′ic = [ 1 Tic ].

Recall from Section A.1 that Var(β̂|X) = σ2A−1 + τ 2A−1BA−1. Therefore,

A =
C∑
c=1

n∑
i=1

 1 Tic

Tic T 2
ic

 = nC

 1 µ

µ µ


and

B =
C∑
c=1

 n2 n
∑n

i=1 Tic

n
∑n

i=1 Tic (
∑n

i=1 Tic)
2

 = n2C

 1 µ

µ η2 + µ2

 ,
where the second equalities follow from

∑n
i=1 Tic = nPc,

∑C
c=1 nPc = nCµ, and

∑C
c=1(

∑n
i=1 Tic)

2 =∑C
c=1 n

2P 2
c = n2C(η2 + µ2). This can be used to compute

Var(β̂1) =
1

nC
∗
[(

η2

µ2(1− µ)2

)
nτ 2 +

(
1

µ(1− µ)

)
σ2

]
.

Fixing µ, this expression is minimized at η2 = 0.
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Proof of Theorem 4. We want to compute Var(β̂|X) for (9) when

x′ic = [ 1 Tic TicPc Sic SicPc ].

Recall from Section A.1 that Var(β̂|X) = σ2A−1 + τ 2A−1BA−1. Therefore

A =
C∑
c=1

n∑
i=1



1 Tic TicPc Sic SicPc

Tic T 2
ic T 2

icPc TicSic TicSicPc

TicPc T 2
icPc T 2

icP
2
c TicSicPc TicSicP

2
c

Sic TicSic TicSicPc S2
ic S2

icPc

SicPc TicSicPc TicSicP
2
c S2

icPc S2
icP

2
c



= nC



1 µ η2 + µ2 1− µ− ψ µ− η2 + µ2

µ µ η2 + µ2 0 0

η2 + µ2 η2 + µ2 m3 0 0

1− µ− ψ 0 0 1− µ− ψ µ− η2 + µ2

µ− η2 + µ2 0 0 µ− η2 + µ2 η2 + µ2 −m3



B =
C∑
c=1





n∑n
i=1 Tic∑n

i=1 TicPc∑n
i=1 Sic∑n

i=1 SicPc


∗



n∑n
i=1 Tic∑n

i=1 TicPc∑n
i=1 Sic∑n

i=1 SicPc



′

= n2C



1 µ m2 1− µ− ψ µ−m2

µ m2 m3 µ−m2 m2 −m3

m2 m3 m4 m2 −m3 m3 −m4

1− µ− ψ µ−m2 m2 −m3 1− 2µ+m2 − ψ µ− 2m2 +m3

µ−m2 m2 −m3 m3 −m4 µ− 2m2 +m3 m2 − 2m3 +m4


where mx ≡ 1

C

∑C
c=1 P

x
c =

∑
p∈Π p

xf(p). Taking the diagonal entries of Var(β̂|X) yields the

result, SEDT = SE(δ̂3) and SEDNT = SE(δ̂4).
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