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Abstract 4 

Reliable large-scale representations of contemporary urban extent remain limited, hindering 5 

scientific progress across a range of disciplines aimed at helping create functional and sustainable 6 

cities.  We present a novel, efficient, and low-cost machine-learning approach to map urban areas 7 

at large scales. Our methodology combines nighttime-lights data and Landsat 8 imagery using a 8 

transfer-learning approach that overcomes the lack of extensive ground-truth data. We 9 

demonstrate the effectiveness of our methodology through the development of high-quality 30m 10 

resolution maps that characterize urban areas in three diverse countries: India, Mexico, and the 11 

US. We implement our methodology in Google Earth Engine and show that it produces accurate 12 

maps of built-up land cover at high resolution over large spatial extents. Our approach highlights 13 

the usefulness of machine-learning techniques for studying the built environment, with broad 14 

implications for identification of urbanization drivers and effects on earth-system processes. 15 

Keywords: Urbanization, built-up land cover, nighttime light, image classification 16 

1. Introduction 17 

Urbanization has been a fundamental trend of the past two centuries and a key force shaping 18 

almost every dimension of the modern world. In the period between 1950 and 2014, the share of 19 

the global population living in urban areas increased from 30% to 54%, and in the next few 20 

decades is projected to expand by an additional 2.5 billion urban dwellers, primarily in Asia and 21 

Africa (Seto et al., 2012; UN, 2014). Urban population growth is accompanied by a dramatic 22 
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increase in the land area incorporated in cities (Georgescu et al., 2015). While urbanization in 23 

rapidly growing nations is helping lift hundreds of millions of people out of poverty, it is also 24 

creating immense societal challenges by increasing greenhouse-gas emissions, destabilizing 25 

fragile ecosystems and creating new demands on public services and infrastructure. Despite the 26 

importance of understanding the drivers of urban growth, we are still unable to quantify the 27 

magnitude and pace of urbanization in a consistent manner at high resolution and global scale. 28 

Standard empirical approaches use data from household surveys that are expensive to collect, 29 

produced infrequently, and subject to measurement problems.  30 

The revolution in geospatial data transforms how we study cities. Since the 1970s, terrestrial 31 

Earth-observation data has been continuously collected in various spectral, spatial and temporal 32 

resolutions. As improved satellite imagery becomes available, new remote-sensing methods and 33 

machine-learning approaches have been developed to convert terrestrial Earth-observation data 34 

into meaningful information about the nature and pace of change of urban landscapes and human 35 

settlements (CIESIN, 2005; Gaughan et al., 2013; Pesaresi et al., 2016; Potere et al., 2009; Seto et al., 36 

2011; Taubenböck et al., 2012). Existing maps of urban land show considerable disagreement on 37 

the location and extent of urbanization (Potere et al., 2009; Seto et al., 2011) and are further subject 38 

to limitations across space and time. These inconsistencies may arise in part because the 39 

delineation of urban land depends on the nature of the input data (Schneider et al., 2010), which 40 

may capture different dimensions of urbanization, such as built-up land cover or land use and 41 

population density (Bagan and Yamagata, 2014; Stevens et al., 2015; Tatem et al., 2007).  42 
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Since the early 1990’s, data on nighttime lights have been amassed, primarily from sensors on 43 

board the Operational Line-scan System of the Defense Meteorological Satellite Program (DMSP-44 

OLS). DMSP-OLS sensors capture artificial lighting, which is associated with developed land 45 

(Elvidge et al., 2014; Levin and Duke, 2012; Sutton, 2003) and can be used to infer the extent of 46 

urban areas (Bagan and Yamagata, 2015; Small and Elvidge, 2013; Zhang and Seto, 2013), as well 47 

as economic activity at the local, regional and national levels (Elvidge et al., 2014; Henderson et 48 

al., 2012; Keola et al., 2015). According to this approach, a pixel is considered urbanized if its 49 

magnitude exceeds a threshold, where the appropriate threshold may vary across countries 50 

(Small and Elvidge, 2013) and even across regions within a country (Henderson et al., 2003; Liu 51 

et al., 2016; Su et al., 2015; Wei et al., 2014; Zhou et al., 2015, 2014). Thus, inference using nighttime-52 

light data is often inaccurate, especially in low-density urban areas (Zhang and Seto, 2013). 53 

DMSP-OLS can also exaggerate the extent of urban areas (Henderson et al., 2003; Small et al., 54 

2005) while overlooking small or developing settlements. In addition, the extent and intensity of 55 

lit areas cannot directly delimit urban regions due to the “blooming” effect (Imhoff et al., 1997) 56 

and the “saturation” of the pixels (Hsu et al., 2015). “Blooming” refers to the identification of lit 57 

areas as consistently larger than the settlements they are associated with (Small et al., 2005); 58 

“saturation” occurs when pixels in bright areas, such as in city centers, reach the highest possible 59 

digital number (DN) value (i.e., 63) and no further details can be recognized (Hsu et al., 2015). 60 

1.1. Detecting Urbanization Processes by Means of Machine Learning Approaches 61 

Urban areas can be detected in satellite imagery using various machine-learning approaches (e.g., 62 

supervised, unsupervised and semi-supervised). These approaches typically rely on ground-63 
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truth data that mark urban features, either for training or for validation. Several datasets have 64 

been previously proposed to serve as ground truth for urban research. These include Landsat-65 

based urban maps (Potere et al., 2009), census-based population databases (Stevens et al., 2015) 66 

and hand-labeled examples (Goldblatt et al., 2016), as well as data collected via crowd-source 67 

platforms, such as OpenStreetMap (OSM) (Belgiu and Dr ǎgu     . 68 

Despite significant progress in machine learning and the increasing availability of satellite data 69 

that can be used as input for classification, there remains a paucity of ground-truth datasets that 70 

have been developed to detect urban areas (Miyazaki et al., 2011). Previous studies have used 71 

ground-truth datasets that are of limited size (Goldblatt et al., 2016; Trianni et al., 2015). Transfer 72 

learning (or knowledge transfer) has emerged as a useful framework for machine learning and 73 

image classification, including in remote sensing, in order to address the scarcity of ground-truth 74 

data and to minimize the need for expensive labeling efforts. Transfer learning aims to transfer 75 

knowledge between task domains, even where the training and test data are drawn from a 76 

different feature space (Pan and Yang, 2010). Poverty prediction is an example of previous 77 

application of transfer learning in the remote-sensing field (Jean et al., 2016). 78 

Until recently, the majority of studies that analyze urbanization have been limited in scale 79 

because of the lack of extensive high-resolution satellite data, scarcity of ground-truth data, and 80 

computational constraints. However, emerging cloud-based computational platforms allow for 81 

scaling analysis across space and time. Google Earth Engine (GEE) is an example of a platform 82 

that leverages cloud-computational services to achieve planetary-scale utility. GEE has been 83 

previously used for various research applications, including mapping population (Patel et al., 84 

2015; Trianni et al., 2015), urban areas (Goldblatt et al., 2016) and forest cover (Hansen et al., 2013).  85 
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1.2. Research Objective  86 

This paper develops a novel machine-learning methodology for supervised image classification 87 

of built-up areas that leverages high-resolution satellite data for analysis of large-scale regions 88 

using GEE`s cloud-based computational platform. Our methodology utilizes nighttime-light data 89 

as the source of training data for classification of built-up areas, yielding high precision without 90 

relying on expensive hand-labeled examples. It can be applied for any region on Earth.  91 

Our methodology integrates two datasets: DSMP-OLS nighttime-light data and Landsat high-92 

resolution daytime satellite imagery. We infer the spatial distribution of human activity and built-93 

up land cover from nighttime-light data to collect examples for supervised image classification in 94 

Landsat’s imagery. We assess the accuracy of the methodology using a dataset of 60,000 hand-95 

labeled polygons characterizing built up (BU) and not built-up (NBU) pixels for each of the three 96 

study areas.  97 

1.3. Study Area 98 

To illustrate our methodology and its applicability in heterogeneous and diverse geographical 99 

conditions, we map the built-up land cover in three countries that are characterized by distinct 100 

geographical conditions (e.g., land cover, topography, climate, soil, landform, and fauna): India, 101 

Mexico, and the US.  102 

India. The share of India’s population living in urban areas in 2015 was 33%, which is much lower 103 

than the corresponding values of 79% and 82% for Mexico and the US, respectively. However, 104 

India is urbanizing at a relatively rapid rate (Figure 1). For example, between 2010 and 2015, 105 

India’s average annual rate of change of the urban population was 1.14%, compared to 0.36% and 106 
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0.21% in Mexico and in the US, respectively. By 2050, half of India’s population is likely to be 107 

urban. In the last decade, the growth of India’s urban population outpaced the growth of its rural 108 

population by 31.8% to 12.2% (H. S. Sudhira and K. V. Gururaja, n.d.)—primarily the result of 109 

natural urban population growth and secondarily because of rural-to-urban migration (Buhaug 110 

and Urdal, 2013)—a trend which is expected to continue (H. S. Sudhira and K. V. Gururaja, n.d.).   111 

Mexico. Mexico has gone through three major phases of urbanization. In the first phase, 1900-112 

1940, urban growth slowly incorporated 10% to 20% of the population. In the second phase, 1940-113 

1980, rapid urban expansion, particularly in Mexico City, increased the share of urban population 114 

to 55%. In the current phase, since the 1980s, more dispersed moderate urban growth increased 115 

the urban share of the population to over 70% (Consejo Nacional de Población, 2012). The current 116 

phase of urbanization is characterized by informal urbanization on the city periphery, 117 

representing 65% of all new housing construction in Mexico City, and is even higher for small to 118 

mid-sized cities (Connolly, 2014). Informal settlements tend to be marginalized in terms of lower 119 

socio-economic development, access to services like water and electricity, and are more 120 

vulnerable to risks like water scarcity and flooding (Aguilar, 2008; Aguilar and Guerrero, 2013; 121 

Consejo Nacional de Población, 2012; Eakin et al., 2016).   122 

US. In the context of the US, the initial urban growth occurred from 1790 to 1890 and the country 123 

has become increasingly urban since (Census Bureau, 2012). In 1910, the Census Bureau defined 124 

an urban area as one with a population above 2,500, and the 1920 census marked the first time 125 

that 50% of the US population lived in an urban area (US Census Bureau, 2016).  126 
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 127 

Figure 1: Annual changes in share of urban population in India, US and Mexico compared to world 128 
average (UN, 2014). 129 

2. Conceptual Framework: Infused DMSP-OLS / Landsat Methodology  130 

Our methodology relies on infusion of Earth-observation datasets from two domains: DMSP-OLS 131 

(which is used to extract examples of areas associated with human activity and built-up land-132 

cover) and Landsat (which is used as the input for supervised image classification). We proceed 133 

in five steps (Figure 2): (1) Divide each country into a uniform hexagonal grid; (2) Pre-process 134 

Landsat 8 images; (3) Extract labeled examples from DMSP-OLS; (4) Perform supervised image 135 

classification; (5) Validate and test. We next describe these steps in detail. 136 
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 137 

Figure 2: Schematic illustration of our infused DMSP-OLS / Landsat methodology. 138 

2.1. Divide each country into an equal-area hexagonal grid (“mapping zones”)  139 

Mapping large-scale heterogeneous land cover requires partitioning the region of interest into a 140 

finite number of relatively homogenous sub-regions, or zones, that are characterized by similar 141 

landform, soil, vegetation, spectral reflectance, and image footprints (Homer et al., 2004). This 142 
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practice is often referred to as ‘zone mapping’ (Homer and Gallant, 2001). The partition can be 143 

according to different criteria, such as land cover and land use, socio-political definition, size 144 

(Hunsaker et al., 1994; O’Neill et al., n.d.; Turner, 1989), or by means of an artificial grid system 145 

where each element in the grid is treated as an independent region of interest. In this study, we 146 

partition each country into an equal-area hexagonal grid (or a hexagonal tessellation). Hexagonal 147 

grids are advantageous because they are characterized by elements that do not have gaps or 148 

overlaps, the center-to-center distances between adjacent grid cells are approximately equal, the 149 

topology of the cells is symmetrical and invariant, the cells are equal area, and the cells can be 150 

recursively partitioned (Richards et al., 2000). Because the classification is subject to the size of 151 

each hexagon in the grid, we examine grids of different sizes of hexagons (different center-to-152 

center distances): a distance of 1 decimal degree, 4 decimal degrees and 8 decimal degrees from 153 

center to center (see Figure 3 for illustration).  154 
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 155 

Figure 3: The three examined hexagon levels: 1°, 4°, and 8° from center to center, for (a) Mexico, (b) India, 156 
and (c) the US. 157 

2.2.  Pre-process Landsat 8 images (classifier`s inputs)  158 

We use Landsat-8 imagery as classifier inputs (predictors). We apply a standard Top-of-159 

Atmosphere (TOA) calibration on all USGS Landsat 8 Raw Scenes in one year (since DMSP-OLS 160 

is only available until 2013, we begin with mapping built-up areas in 2013). We assign a cloud 161 

score to each pixel and select the lowest possible range of cloud scores. Then we compute per-162 

band percentile values from the accepted pixels and scale them to 8 bits. For each pixel we 163 

calculate additional spectral indices, which we use as additional predictors for the classifier: 164 

Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), 165 
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Urban Index (UI), Enhanced Vegetation Index (EVI), Normalized Difference Built-up Index 166 

(NDBI) (see description of these indices in Appendix 1). 167 

2.3. Extract “built-up” and “not built-up” labeled examples from DMSP-OLS  168 

Because “highly lit” pixels are associated with man-made structures that emit light, we assume 169 

that pixels with DN values that exceed a given threshold represent locations with built-up land 170 

cover and man-made structures. In this study we use DMSP-OLS (the “stable light” band of the 171 

‘F182013’ satellite) to identify “highly lit” pixels. To account for regional variations, we determine 172 

this threshold for each hexagon independently by calculating the value of the 99th percentile of 173 

all pixels in the hexagon. A pixel is “built-up” if its DN value exceeds the threshold. Note that we 174 

only use hexagons that include at least one DMSP-OLS pixel with a value higher than 0. This 175 

definition allows us to capture, on the one hand, small settlements in isolated low-density regions 176 

(i.e., where the threshold is low), and on the other hand, only the core of cities in high-population-177 

density regions (i.e., where the threshold is relatively high). 178 

Due to the spatial resolution of DMSP-OLS and the blooming effect, areas identified as “highly 179 

lit” may potentially include non-built land cover.  Thus, we also examine the effect of excluding 180 

these types of land cover from the lit pixels (according to Landsat’s per-pixel NDVI and NDWI 181 

values). In each hexagon we randomly sample 100,000 pixels. We create a point at the center of 182 

each Landsat pixel and associate each point with the spectral values of the Landsat composite 183 

and derived spectral indices. Each example includes a label and the spectral values from Landsat. 184 

These per-hexagon training sets are used to build the local classification model. 185 
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2.4. Perform supervised image classification  186 

As noted above, we train and classify each hexagon, with Random forest (20 trees) as the classifier. 187 

Random forests are tree-based classifiers that include k decision trees (k predictors). When 188 

classifying an example, its variables are run through each of the k tree predictors, and the k 189 

predictions are averaged to get a less noisy prediction (by voting on the most popular class). The 190 

learning process of the forest involves some level of randomness. Each tree is trained over an 191 

independently random sample of examples from the training set and each node’s binary question 192 

in a tree is selected from a randomly sampled subset of the input variables.  We use Random 193 

forest because previous studies find that the performance of Random forest is superior to other 194 

classifiers (Goldblatt et al., 2016), especially when dealing with large-scale and noisy datasets 195 

(Jean et al., 2016). We identify hexagons that remained unclassified as a result of no examples of 196 

built-up areas being sampled (e.g., hexagons that include only a few lit pixels, and that have a 197 

99th percentile value of DMSP-OLS pixels equal to 0). Because some of these hexagons do include 198 

isolated small settlements, which we want to capture, we additionally perform a classification 199 

using each country as one region of analysis (i.e., defining a single hexagon for a country) and 200 

use this classification to map the built-up land cover within these hexagons. Finally, we post 201 

process the classification maps by clipping the maps to the extent of the countries’ borders. In 202 

addition, we remove misclassified built-up pixels in remote, unlit regions (i.e., where the DN 203 

value of the DMSP-OLS is 0).  204 

 205 

 206 
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2.5. Validate and test  207 

We next assess the performance of the classifiers in each hexagon by dividing the sampled 208 

examples into a training set and a test set (30% and 70% of the examples, respectively). First, in 209 

each hexagon the classifiers are trained with the examples in the training set. We classify the 210 

examples in the test set and assess the classifier’s performance. This validation procedure is 211 

designed to evaluate the quality of the sampled examples and to indicate how well our classifiers 212 

can predict their class. Then, we use the sampled examples for per-hexagon training and 213 

classification of built-up area. Finally, the classifications in all hexagons are mosaicked.   214 

In each country we assess the accuracy of the classification using a large dataset of hand-labeled 215 

examples. We manually label these examples (polygons, 30m by 30m in size) as “built-up” or as 216 

“not built-up”. We define polygons as built-up if the majority of their area (more than 50%) is 217 

paved or covered by human-made surfaces and used for residential, industrial, commercial, 218 

institutional, transportation, or other non-agricultural purposes. Similar definitions for urban 219 

areas are proposed by Goldblatt et al. (2016), Potere et al. (2009) and Schneider et al. (2010) who 220 

characterize a pixel as “urban” when the built environment spans the majority (50% or greater) 221 

of the sub-pixel space. For India, we use Goldblatt et al.’s (2016) ground-truth dataset. This dataset 222 

includes 20,030 examples (30m by 30m in size) labeled as “built-up” or as “not built-up” spanning 223 

the entire country (4682 polygons labeled as built-up and 16,348 labeled as not-built-up). For the 224 

US and Mexico, we construct a manually labeled ground-truth dataset of 20,000 examples 225 

(polygons, 30m by 30m in size) per country. Between 22%-27% of the datasets’ polygons are 226 

labeled as built-up. We describe the procedure to create the stratified sample and the distribution 227 

of the examples in Appendix 2. We use half of the hand-labeled dataset to assess alternative 228 
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parameters for the classifiers (the test set) and the other half to evaluate and report its 229 

performance (the validation set).   230 

3. Results 231 

3.1. Optimal Hexagon Scale and Parameters to the Classifiers 232 

Our methodology produces high-quality, high-resolution maps of built-up areas for India, 233 

Mexico, and the US. First, we partition each country into a uniform hexagonal grid and consider 234 

each hexagon as an independent unit of analysis. To determine the optimal scale of the hexagons 235 

in the hexagonal grid division (1, 4, and 8 decimal degrees from center to center) and to assess 236 

various parameters to the classifiers, we evaluate the accuracy of the maps using half of the hand-237 

labeled examples in each country (the test set). We use several performance estimators (we refer 238 

to the class “built up” as positive and to the class “not built-up” as negative): (1) True-Positive 239 

Rate (TPR) (the percentage of actual BU examples classified correctly as BU); (2) True-Negative 240 

Rate (TNR) (the percentage of actual NBU examples classified correctly as NBU); (3) Balanced 241 

Accuracy (the average of TPR and TNR); Precision (the percentage of actual BU examples out of 242 

all examples that were classified as BU) and F-Measure (the harmonic mean of the TPR and the 243 

precision): 244 

1. TPR =  TP / (TP + FN) 245 
2. TNR = TN / (TN + FP) 246 

3. Balanced Accuracy = (TPR + TNR) / 2 247 
4. Precision = TP / (TP + FP) 248 

5. F-Measure = 2 * ((Precision * TPR) / (Precision + TPR)) 249 
 250 
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Where TP is the number of the actual BU examples predicted to be BU; TN is the NBU examples 251 

predicted as NBU; FN is the actual BU examples predicted as NBU and FP is the actual NBU 252 

examples predicted as BU. 253 

The results show differences between countries in the optimal hexagonal scale.  In India and 254 

Mexico, classification with the smallest level of hexagon (1°) results in the best performance, 255 

indicated by high balanced accuracy rates of 79% and 84%, respectively (Table 1), as well as by 256 

highest F-Measure scores (63% and 73%, respectively). Classification with larger hexagons results 257 

in a lower balanced accuracy: for example, with 8° hexagons it drops to about 75% and 77% in 258 

India and in Mexico, respectively. In the US, classification with the largest hexagons (8°) results 259 

in a marginally greater accuracy than with the smallest hexagon (1°), indicated by a balanced 260 

accuracy rate of 81.7% (compared to 81.5%). Classification with 8° hexagons also shows the 261 

highest F-measure value (67%). When no hexagons are used for classification and the 262 

classification is done with the entire country as one region of interest, both balanced accuracy and 263 

F-Measure drop. The classifiers predict for each new example (pixel) the probability it is a positive 264 

example (“built-up”) (a posterior probability, ranging between 0 and 1). We find that the best 265 

performance in all three countries is achieved with a lower threshold on posterior probability 266 

(around 0.2). Table 2 presents, as an example, the performance of the classifiers as a factor of the 267 

posterior probability threshold, for classification with 1° hexagons. Both balanced accuracy and 268 

F-measure decrease as the posterior probability threshold increases. Although the TNR increases 269 

with higher posterior probability thresholds, the TPR decreases (i.e. the classification “misses” 270 

urban pixels). Thus, an optimal balanced accuracy is achieved with lower thresholds.  271 
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Table 1: Performance measures as a factor of the hexagon level for India, the US, and Mexico 272 
(classification with a posterior probability threshold of 0.1, 0.1 and 0.2, respectively). 273 

    
Overall 

accuracy TPR TNR Balanced 

India 

no hexagon 80.5% 53.9% 88.2% 71.0% 

8° 78.1% 68.4% 80.9% 74.6% 

4° 80.8% 69.1% 84.2% 76.7% 

1° 80.3% 76.5% 81.4% 79.0% 

US 

no hexagon 82.4% 77.4% 83.9% 80.7% 

8° 81.5% 81.9% 81.4% 81.7% 

4° 74.2% 86.2% 70.6% 78.4% 

1° 78.0% 88.0% 75.0% 81.5% 

Mexico 

no hexagon 84.9% 46.1% 97.4% 71.8% 

8° 82.4% 66.2% 87.6% 76.9% 

4° 84.0% 71.0% 88.2% 79.6% 

1° 85.9% 79.9% 87.8% 83.8% 

 274 

Table 2: The effect of the posterior probability threshold on the classifier’s performance (classification 275 
using 1° hexagons). 276 

 Threshold 0.1 0.2 0.4 0.6 

India 
Balanced 79.0% 75.6% 68.8% 63.6% 

F-Measure 63.2% 63.0% 53.3% 42.8% 

US 
Balanced 81.5% 80.2% 73.3% 67.1% 

F-Measure 65.0% 68.3% 61.0% 50.5% 

Mexico 
Balanced 81.4% 83.8% 78.6% 72.5% 

F-Measure 65.0% 73.2% 69.6% 61.1% 

 277 

In the experiment described above, we sampled “built-up” examples from “highly lit” pixels 278 

(defined as all pixels with a DN value above the 99th percentile of the value across all pixels within 279 

a given hexagon). However, because these areas may also include other types of land cover, such 280 

as vegetation and bodies of water, in an additional experiment we mask out these types of land 281 

cover from the “highly-lit” pixels. We do this according to Landsat’s per-pixel NDVI value (above 282 

0.3 or 0.7) and NDWI values (a negative value). We find that excluding vegetation and bodies of 283 
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water from the lit pixels does not affect much the performance of the classifiers (with 1° hexagons, 284 

performance only marginally improves by 0.2% and 0.6% in the US and Mexico, respectively).  285 

Thus, in the sequential experiments we do not remove these types of land cover from the “highly 286 

lit” pixels. Because the optimal hexagon level and posterior probability threshold varies between 287 

countries, we choose for each the following optimal parameters: for India 1° hexagons, posterior 288 

probability threshold 0.1; for Mexico 1° hexagons, posterior probability threshold 0.2; for the US 289 

8° hexagons, posterior probability threshold 0.1. 290 

3.2. Internal Per-Hexagon Accuracy Assessment 291 

To evaluate the performance of the classifiers and the quality of our sampled training examples, 292 

we perform per-hexagon accuracy assessment (using only the sampled examples). This analysis 293 

is intended to assess the quality of the sampled examples and to provide an additional estimate 294 

on the performance of the classifiers in relation to spatial scale (it only relies on the sampled 295 

examples rather than on hand-labeled examples). In each hexagon, we randomly designate 70% 296 

of the examples for training and 30% for testing.  We find a high balanced accuracy rate of 71.5% 297 

in India, 76.5% in the US. The balanced accuracy rate is lower in the case of Mexico (61%). These 298 

results indicate that the sampling procedure generates accurate examples that are beyond 299 

random. Although, by their nature, these examples are relatively “noisy”, the classifiers can 300 

predict their class with reasonably high precision.  301 

3.3. Accuracy Assessment with Validation Set 302 

Based on the optimal hexagon level found for each country, we produce classification maps of 303 

built-up areas spanning the three countries. We use the second subset of our hand-labeled 304 
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examples (the validation set) to assess the accuracy of the classification and find a high balanced 305 

accuracy rate of 79%, 80% and 84% in India, the US and Mexico, respectively. Similar to the 306 

accuracy measures found with the test set, the best performance is achieved with lower posterior 307 

probability thresholds, again, indicating a lower TPR as the posterior probability thresholds 308 

increase. Interestingly, while the TPR and TNR measures are relatively similar in India and the 309 

US (77% and 81%, and 79% and 81%, with a posterior probability of 0.1), in the case of Mexico the 310 

TPR is significantly higher than the TNR (92% and 71%, respectively, with a posterior probability 311 

of 0.1) (Table 3 presents the accuracy measures of the validation set and a confusion matrix of the 312 

classification performance).  313 

Finally, we post-process the classification maps and clip them to the extent of each country. In 314 

addition, “low-lit” hexagons that include only a few lit pixels (i.e. where the 99th percentile of the 315 

lit pixels is 0) are mapped according to the classification we create for each country as one unit of 316 

analysis. We find that although the post-processing procedure only marginally improves the 317 

classification accuracy (see Appendix 3), a visual examination suggests that this procedure 318 

removes misclassified pixels, primarily over bodies of water and distant bare land. Thus, the final 319 

classification maps are post-processed. 320 

 321 

 322 

 323 

 324 
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Table 3: Description of accuracy measures and the confusion matrix using the validation set a 325 
(classification in India and Mexico is done with 1° hexagons, and in the US with 8° hexagons) 326 

Posterior  
probability 

Overall 
accuracy 

TPR TNR Balanced Precision F-Measure           

India 
0.1* 80.0% 77.0% 80.9% 79.0% 53.9% 63.4%  Confusion matrix 

0.2 83.9% 60.8% 90.6% 75.7% 65.2% 62.9%     Predicted    

0.3 84.0% 56.2% 92.0% 74.1% 67.0% 61.1%     BU NBU Sum 
0.4 83.8% 44.7% 95.2% 69.9% 72.8% 55.4% Actual 

 
BU 1955 585 2540 

0.5 83.5% 40.6% 95.9% 68.2% 74.3% 52.5% NBU 1672 7101 8773 
0.6 82.6% 32.2% 97.2% 64.7% 76.6% 45.3%   Sum 3627 7686 11313 

 US 
0.1* 80.4% 78.7% 81.0% 79.8% 54.5% 64.4%  Confusion matrix 
0.2 84.9% 58.9% 92.4% 75.7% 69.2% 63.6%    Predicted  
0.3 84.8% 52.8% 94.0% 73.4% 71.9% 60.9%     BU NBU Sum 
0.4 83.8% 38.2% 96.9% 67.6% 78.3% 51.4% Actual BU 1933 523 2456 
0.5 83.3% 34.4% 97.4% 65.9% 79.4% 48.0%   NBU 1617 6873 8490 
0.6 82.1% 26.3% 98.3% 62.3% 81.6% 39.8%   Sum 3550 7396 10946 

Mexico 
0.1 76.1% 91.7% 71.1% 81.4% 50.3% 65.0%  Confusion matrix 
0.2* 85.9% 79.9% 87.8% 83.8% 67.6% 73.2%     Predicted   
0.3 86.5% 75.4% 90.1% 82.7% 70.8% 73.0%     BU NBU Sum 
0.4 86.8% 62.7% 94.4% 78.6% 78.2% 69.6% Actual BU 2123 534 2657 
0.5 86.3% 57.4% 95.6% 76.5% 80.5% 67.0%   NBU 1018 7321 8339 
0.6 85.2% 48.0% 97.1% 72.5% 83.9% 61.1%   Sum 3141 7855 10996 

* denotes the highest balanced accuracy rate for which the confusion matrix is presented. 327 

4. Discussion 328 

We present a novel machine learning approach to map built-up areas at scale. Our methodology 329 

utilizes nighttime-light data (derived from DMSP-OLS) as a source for training examples of built-330 

up and not built-up areas, which are then used for supervised image classification in Landsat 8 331 

imagery. This is the first study, to our knowledge, to present a practical and simple form of 332 

transfer learning that can be applied to map built-up areas across space. Although many 333 

classification products map urban land, they are typically limited in their temporal and/or spatial 334 

resolution. This limits their use to track urbanization processes over time.  335 
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Mapping built-up areas at scale is challenging because of the scarcity of extensive ground-truth 336 

data for supervised classification and validation. Crowd-sourced datasets, such as 337 

OpenStreetMap (OSM) can also be used to map urban areas (Belgiu and Dr ǎgu     338 

Painho, 2015). OSM is a valuable source for ground-truth data, primarily because of its vast extent 339 

and free availability. However, the completeness of OSM and its suitability for urban research is 340 

subject to the number and reliability of OSM contributors (Schlesinger, 2015). The use of OSM for 341 

supervised image classification remains challenging due to the risk of imbalanced distribution of 342 

class labels (including their spatial coverage), the presence of errors or missing class assignments 343 

(“class-noise”), and inaccurate polygon boundary delineations (Johnson and Iizuka, 2016). Our 344 

methodology overcomes the lack of such data by utilizing low-resolution DMSP-OLS data for 345 

classification of built-up areas in Landsat imagery. We collect examples of built-up and not-built-346 

up areas by identifying “highly lit” areas within small homogenous regions (or mapping zones). 347 

These examples are used for image classification of built-up areas from Landsat imagery. By 348 

partitioning countries into smaller regions, we allow the parameters of the classification model to 349 

vary in what is determined as “built-up” pixels. We demonstrate that this flexibility is important 350 

and show that countries differ in this optimal hexagon scale. Although many studies address the 351 

effect of the classifiers` hyper-parameters on their performance, in this study we show that 352 

classifiers also have an optimal spatial scale, which can and should be discovered through 353 

techniques similar to those we propose here. 354 

We assess the validity of our approach using two procedures for accuracy assessment: internal 355 

per-hexagon validation (assessing the classification of our sampled examples) and an external 356 

validation that uses 60,000 hand-labeled examples. The results demonstrate the robustness of our 357 
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approach and its applicability in heterogeneous regions. We find that our classification performs 358 

well with a high balanced accuracy rate of around 80%. Yet, the degree to which the “localization” 359 

of our classifiers affects their performance varies between regions and depend on the 360 

heterogeneous nature of the mapped landscape. Appling this method at a global scale will require 361 

automatic methods for selecting, in any pixel, the scale of classification that maximizes accuracy. 362 

However, due to the lack of on-board calibration and unstable radiometric performance of the 363 

DMSP-OLS sensors, the absolute radiance of light cannot directly represent temporal changes in 364 

the intensity of the light, and thus, inter-sensor calibration is required to make our approach 365 

operational in time. 366 

Our methodology overcomes the need for expensive hand-labeled data for supervised 367 

classification as well as many of the limitations associated with DMSP-OLS data. As illustrated 368 

in Figure 4, due to the blooming effect, lit areas are consistently larger than the built-up land cover 369 

they are associated with. Our classification captures the fine boundaries of built-up areas with 370 

high precision (Figure 5). 371 

 372 
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 373 

Figure 4: A comparison between our classification of built-up areas and lit pixels according to DMSP-OLS 374 
in (a) Ahmedabad, Gujarat, India; (b) New Delhi, Delhi, India; (c) Kolkata, West Bengal, India; (d) 375 

Phoenix, Arizona, US; (e) Washington DC, US; (f) Denver, Colorado, US; (g) Mexico City, Mexico; (h) 376 
Guadalajara, Mexico; (i) Puebla, Mexico. (the top figure in each city presents our classification; the bottom 377 

figure presents the DN values of DMSP-OLS stable lights band; 30-55 (red), 56-61 (green), 63 (blue)) 378 

 379 
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 380 

Figure 5: Classification of built-up areas (in red) in (a) Nagpur, Maharashtra, India; (b) Hyderabad, 381 
Telangana, India; (c) Houston, Texas, US; (d) Mexico city, Mexico 382 

To evaluate our classification and to compare it with other products, we used the 60,000 labeled 383 

polygons to assess the accuracy of MCD12Q1 UMD MODIS classification scheme and DMSP-OLS 384 

(we define here a highly lit pixel similar to the definition we propose in this study, i.e., a value 385 

that is greater than the 99th percentile value of all pixels within a given hexagon). The accuracy of 386 

our classification exceeds both datasets; Table 4 shows that we achieve a higher balanced accuracy 387 

rate (between 6%-10%). As illustrated in Figure 6, the extent of the built-up land cover that we 388 

detect with our methodology is smaller than the extent of the land cover that is classified as urban 389 

and built-up by the MCD12Q1 classification. 390 
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 391 

Figure 6: A comparison between areas classified as built-up using our methodology (top) and areas 392 
classified as built up and urban by MCD12Q1 UMD MODIS classification scheme (bottom), in (a) 393 

Ahmedabad, Gujarat, India; (b) New Delhi, Delhi, India; (c) Phoenix, Arizona, US; (d) Mexico City, 394 
Mexico 395 

Our classification also exceeds other national high-resolution land-cover and land-use maps. To 396 

illustrate, a comparison between our examples and the US National Land Cover Database 397 

(NLCD) classification map showed a lower balanced accuracy rate in the NLCD product (72.3%) 398 

(we define a polygon as “built-up” if more than 50% of its area is built. Thus, we relate to the 399 

NLCD classes “Developed, Medium Intensity” and “Developed High Intensity” as “built-up”). 400 

Similar findings were found in the case of Mexico, where a comparison between our examples 401 

and the urban classification of the Instituto Nacional de Estadística y Geografía (INEGI) resulted 402 

in a lower balanced accuracy rate of around 79%. 403 

 404 

 405 

 406 
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Table 4: Accuracy assessment (balanced accuracy) of our infused methodology for classification, MODIS-407 
MCD12Q1 (MODIS) and DMSP-OLS “highly lit” areas (defined as pixels with a DN value above the 99th 408 

percentile). Accuracy assessment with 60,000 labeled examples. 409 

  
Our BU 

classification 
DMSP-

OLS 
MODIS 
UMD 

India 
TPR 74.9% 62.8% 61.7% 
TNR 81.8% 82.6% 84.3% 
Balanced 78.3% 72.7% 73.0% 

US 
TPR 87.5% 67.5% 64.4% 
TNR 74.8% 80.7% 87.3% 
Balanced 81.2% 74.1% 75.8% 

Mexico 
TPR 81.5% 77.6% 53.4% 
TNR 87.0% 71.2% 94.1% 
Balanced 84.3% 74.4% 73.7% 

 410 

To summarize, we have developed a conceptual framework whereby utility of our transfer-411 

learning methodology results in high-resolution, high quality depictions of built-up areas across 412 

three highly diverse countries. In today’s era of big data, a globally consistent and data-driven 413 

method of defining and classifying urban areas has extensive applications. Economics, urban 414 

planning, climate modeling, water-resource management, hazard-response efforts, and urban-415 

eco-system assessments all use geographic data on urban areas. With earth’s rapidly urbanizing 416 

population, having information on urban extent that is spatially and temporally consistent and 417 

defined at high resolution is both relevant to a wide range of disciplines and essential for helping 418 

society better understand the drivers of urbanization.  419 
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Appendix 1: Indices used in Machine Learning Classifier 595 

I. NDVI (Normalized Difference Vegetation Index)  596 

NDVI expresses the relation between red visible light (which is typically absorbed by a plant’s 597 

chlorophyll) and near-infrared wavelength (which is scattered by the leaf’s mesophyll structure) 598 

(Pettorelli et al., 2005). It is computed as: 599 

(NIR-RED) / (NIR+RED) (1) 600 

where NIR is the near infra-red wavelength and RED is the red wavelength. The values of NDVI 601 

range between (-1) and (+1). An average NDVI value in 2014 was calculated for each pixel (with 602 

Landsat 7 32-Day NDVI Composite). 603 

II. NDBI (Normalized Difference Built-up Index)  604 

NDBI expresses the relation between the medium infra-red and the near infra-red wavelengths 605 

(Zha et al., 2003). It is computed as: 606 

(MIR-NIR) / (MIR+NIR) (2) 607 

where MIR is the medium infra-red and NIR is the near infra-red wavelength. The index assumes 608 

a higher reflectance of built-up areas in the medium infra-red wavelength range than in the near 609 

infra-red. 610 

III. NDWI (Normalized Difference Water Index)  611 

NDWI expressed the relation between the green (G) and the NIR (near infra-red), with a scaling 612 

of -1 to +1(McFeeters, 1996). It is computed as:  613 
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(G-NIR) / (G+NIR) (3) 614 

The positive values are typically open water areas with reflect green light but not NIR 615 

wavelengths, while negative values are non-water features, like soil and vegetation, which reflect 616 

higher NIR values than green wavelengths. 617 

IV. UI (Urban Index)  618 

UI is the difference between the short infra-red (SWIR) and the near-infrared wavelengths 619 

(Kawamura et al., 1996). It is computed as: 620 

(SWIR-NIR) / (SWIR+NIR) (4) 621 

Like NDBI, UI assumed high brightness in SWIR in urban areas as opposed to the NIR.  622 

VI. EVI (Enhanced Vegetation Index)  623 

EVI is an improved vegetation index with higher sensitivity in high biomass regions where NDVI 624 

tends to saturate, reduces atmospheric influences, and removes the canopy background 625 

signal(Huete et al., 2002). It is computed as: 626 

(2.5 * ( (NIR-R) / (NIR + 6R – 7.5B +1) )  (5) 627 

This is a similar formula to the NDVI, which takes advantage of high reflectance of vegetation in 628 

the NIR band as opposed to the R band. The blue band (B) is used (with a coefficient of 7.5) to 629 

correct for aerosol influences in the red band (R). There is a integer of 1 added to the denominator 630 

to adjustment for nonlinear NIR and R radiant transfer through canopies. 2.5 is applied as a gain 631 

to the index.  632 
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Table 6. Bands in landsat and indices used 633 

 Spectral band Wavelength 
(micrometers) 

Resolution 
(meters) 

Landsat 8 
B1 Band 1 – Ultra blue 0.43 - 0.45 30 
B2 Band 2 - Blue 0.45 - 0.51 30 
B3 Band 3 - Green 0.53 - 0.59 30 
B4 Band 4 – Red 0.64 - 0.67 30 
B5 Band 5 - Near Infrared (NIR) 0.85 - 0.88 30 
B6 Band 6 - SWIR 1 1.57 - 1.65 30 
B7 Band 7 - SWIR 2 2.11 - 2.29 30 
B8 Band 8 - Panchromatic 0.50 - 0.68 15 

B10 Band 10 - Thermal Infrared (TIRS) 1 10.60 - 11.19 100  
(resampled to 30) 

B11 Band 11 - Thermal Infrared (TIRS) 2 11.50 - 12.51 
 

100 
 (resampled to 30) 

NDVI (B5-B4)/(B5+B4)  30 
NDWI (B3-B5)/(B3+B5)  30 
NDBI (B6-B5)/(B6+B5)  30 
EVI 2.5*((B5/B4)/(B5+6*B4-7.5*B2+1)  30 
UI (B7-B5)/(B7+B5)  30 

    
 634 
 635 
 636 
Appendix 2:  Sampling Scheme for Testing and Validation 637 

We use a random stratified sampling procedure according to the nighttime light intensity. In each 638 

country, we identify the NTL (night time lights) pixels whose value is 63 (the highest possible 639 

value). Then we calculate a 5 pixels radius circle-shaped boolean kernel (a buffer of 640 

approximately 5 Km). We found this method to result in an approximate distribution of 75% 641 

urban points, our class of interest, and 25% non-urban points. We randomly sample ~10,000 642 

points in this buffer zone of high NTL and its periphery. This process was repeated twice, to 643 

generate two 10,000 point datasets for each country- only used in testing to determine optimal 644 

algorithm parameters, and the second used to validation the final urban class map to assess its 645 

accuracy. 646 
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A 30 by 30 meter square buffer (the size of a Landsat pixel) is drawn around each random sample 647 

point. These polygons are overlaid with high resolution imagery in Google Earth. The interior of 648 

each polygon is compared to the imagery it overlays by an analyst. Based on the imagery, the 649 

polygons are manually labeled as built-up or as not-built-up. A polygon is built-up when 50% or 650 

more of the contents of polygon are man-made. Polygons labeled not built-up may still contain 651 

man-made structures, such as roads or buildings, but they make up less than 50%. 652 

Table 7: the distribution of the built-up and not-built-up points for each country. 653 

 BU points NBU points Total 
India 4682 (22.26%) 16,348 (77.74%) 21,030 
US 4386 (21.6%) 15,898 (78.4%) 20,284 
Mexico 5477 (27.4%) 14,523 (72.6%) 20,000 

 654 

Appendix 3: Accuracy Assessment of Post Processed Country Maps 655 

 656 

All samples (~20,000 per country) described in appendix 2 were used to assess accuracy when 657 

adding in pre-processing and after post-processing.  Pre-processing involved replacing hexagons 658 

with low NTL in each country with the urban classification map produced without hexagons (e.g. 659 

using the entire country boundary to extract training data and build a classifier). This is because 660 

hexagons with low NTL do not have enough training data to make a good classification. Post-661 

processing includes the pre-processing steps in addition to removing pixels with 0 NTL values. 662 

Results are shown in table 8. India has marginal accuracy improvements, Mexico shows no effect, 663 

and the US improves accuracy around 1%. Table 3 shows the results for various accuracy metrics. 664 

 665 

 666 
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Table 8: Accuracy assessment pre- and post-processing (removing pixels with 0 NTL values) 667 

 India Mexico US 

 Pre-Process Post- Process Pre-Process Post- Process Pre-Process Post- Process 

Accuracy = 0.807372748 0.810091743 0.862046781 0.862046781 0.819810714 0.833104772 

Precision = 0.54927557 0.554166061 0.735567091 0.735567091 0.575346505 0.600739372 

Recall = 0.751963865 0.748428908 0.779723195 0.779723195 0.789239482 0.786448881 

TPR = 0.751963865 0.748428908 0.779723195 0.779723195 0.789239482 0.786448881 

TNR = 0.823244824 0.827733453 0.893364628 0.893364628 0.828795625 0.846781344 

Balanced = 0.787604345 0.788081181 0.836543912 0.836543912 0.809017553 0.816615113 

F-Measure = 0.634833789 0.636811764 0.757001781 0.757001781 0.665529592 0.681163217 
 668 

 669 

 670 

 671 


	II. NDBI (Normalized Difference Built-up Index)
	III. NDWI (Normalized Difference Water Index)
	IV. UI (Urban Index)
	VI. EVI (Enhanced Vegetation Index)

