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ABSTRACT
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1. INTRODUCTION

A long literature in economics has emphasized the important role of human capital in determin-

ing labor market activity and economic growth.1 It is widely believed that the information age has only

increased the private and social returns to education, which may partly explain why governments around

the world spend an average of 5% of their GDP on education (World Development Indicators 2010) and

why Americans alone spend more than $7B on private tutoring every year (Dizik, 2013). Yet, human capital

formation depends on many inputs and growing literatures in public health and economics highlight the im-

portant role played by prenatal and early childhood health in this process (Cunha and Heckman 2008, Currie

and Hyson 1999, Almond and Currie 2011). Since pollution adversely affects contemporaneous childhood

health,2 the impacts of early-life pollution exposure on long-term human capital outcomes is of particular

interest as pollution could have a sizable cost to society through its contemporaneous and dynamic effects

on the production of human capital. If short run changes in pollution lead to lifelong changes in well-being,

they may constitute a sizable, and heretofore largely unmeasured, cost of pollution.

Estimating the relationship between fetal environmental exposures and human capital outcomes

later in life is challenging for two reasons. First, datasets that link environmental and human capital measures

over an extended period of time are quite rare. Second, exposure to pollution levels is typically endogenous.

Families can engage in both short- and long-run avoidance behaviors to reduce exposure: for example,

curtailing outdoor activities or moving to a more pristine location. As a result research in this area has been

extremely limited,3 relying on quasi-experimental variation in exposure induced by nuclear accidents/testing

in data-rich Scandinavian countries (Almond, Edlund and Palme 2009; Black et al. 2013), or policy-induced

variation in pollution coupled with strong assumptions about individual mobility (Sanders 2012).

In this paper, we employ a unique panel dataset from Santiago, Chile, to examine the impacts of

fetal carbon monoxide exposure on children’s performance on high-stakes national tests in primary school.

The richness of our data allows us to overcome the core estimation challenges in this line of research and

1See Heckman, Lochner and Todd (2006) for a review on the links between human capital and wages; Romer (1986) and Lucas
(1988) form some of the important work showing the importance of human capital for economic growth.
2For recent examples see Currie and Walker (2009), Schlenker and Walker (2011), Knittel, Miller, and Sanders (2012), Arceo-
Gomez, Hanna, and Oliva (2012), Currie et al. (2013).
3A notable exception is the literature focused on exposure to lead, a neurotoxin with well documented impacts on brain development
even at modest concentration levels (Sanders, Liu, Buchner, and Tchounwou 2009). Long-term consequences include negative
impacts on: schooling outcomes, criminal behavior, and economic productivity (Reyes 2007, Nilsson 2009, Rogan and Ware 2003,
Rau, Reyes and Urzua 2014).
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improve upon the existing literature in several important dimensions. First, we can directly link vital statis-

tics and education data through unique individual identifiers. Geographic identifiers allow us to further link

to data from pollution monitors operated by the Chilean Ministry of Environment. Moreover our study pe-

riod, which includes the universe of births between 1992 and 2002, corresponds to a period when sustained

economic growth and new environmental policy allowed Santiago to transition from high levels of pollution

to more modest ones.

Second, we exploit a multi-pronged approach to address the endogeneity of pollution exposure.

In particular, we rely on sibling comparisons which allow us to address concerns about locational sorting

and purge estimates of all other time-invariant family characteristics, including those that might spuriously

influence our core relationship of interest in ways that would otherwise be unobservable to the econometri-

cian. As we will detail below, using sibling fixed effects yields results that are quite a bit larger than OLS

estimates, suggesting an important role for family level characteristics.4 We also exploit data on air quality

alerts to address short-run time-varying avoidance behavior, which has been shown to be important in a

number of other contexts (Neidell 2009; Graff Zivin and Neidell 2009; Deschenes, Greenstone and Shapiro

2012; Graff Zivin, Neidell and Schlenker 2011).

Finally, our paper may shed light on the micro-foundations underpinning the recently documented

relationship between early life pollution exposure and labor market outcomes (Isen, Rossin-Slater, and

Walker 2014). It may also help underscore the implicit tradeoffs across economic development paths by

highlighting potential feedback loops between industrialization, human capital formation, and economic

growth. The evidence presented in this paper is also of direct policy relevance. To the extent academic

achievement in school can be linked to labor productivity, we develop a quantitative estimate of the social

costs of pollution through its effects on human capital production and highlight the sizable benefits incurred

from pollution abatement policies implemented during the last two decades. Carbon monoxide is regularly

emitted as a byproduct of fossil fuel combustion and subject to regulation across the world. The human

capital impacts from pollution along with any attending avoidance behaviors constitute additional costs that

should be weighed against the relevant benefits from the generation of air pollution.

4Note that Almond, Edlund and Palme (2009) also use a sibling FE framework. Since endogenous exposure to fallout from the
Chernobyl accident in their setting is a minimal concern, while exposure was made quite salient to individuals ex post, they interpret
their findings as shedding light on parental investments rather than sorting.
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The remainder of the paper is organizing as follows. The next section provides a brief description

of the relevant scientific background. Section 3 describes our data and Section 4 details our econometric

approach. Our results are described in Section 5. Section 6 offers some concluding remarks.

2. SCIENTIFIC BACKGROUND

Carbon monoxide is an odorless and colorless gas that is largely emitted through motor vehicle

exhaust (Environmental Protection Agency, January 1993, 2003b). CO binds to the iron in hemoglobin,

inhibiting the body’s ability to deliver oxygen to vital organs and tissues. The detrimental effects of CO

exposure are magnified in utero. First, the reduced oxygen available to pregnant women means less oxygen

is delivered to the fetus. Second, carbon monoxide can directly cross the placenta where it more readily

binds to fetal hemoglobin (Margulies 1986) and remains in the fetal system for an extended period of time

(Van Housen et al., 1989). Third, the immature fetal cardiovascular and respiratory systems are particularly

sensitive to diminished oxygen levels. Exposure to carbon monoxide in utero and in early childhood has

been linked with lower pulmonary function (Mortimer et al 2008, Neidell 2004, Plopper and Fanucchi

2000). Moreover, most of the damaging effects of smoking on infant health are believed to be due to the CO

contained in cigarette smoke (World Health Organization, 2000). The degree to which these physiological

impacts translate into cognitive outcomes is entirely unknown and the focus of this study.

A common challenge for all non-laboratory studies of the impacts of air pollution is confounding

due to other pollutants. Some pollutants are co-emitted as a byproduct of combustion processes. Others

follow opposing seasonal patterns due to heating and cooling patterns and weather more generally. During

our study period, Santiago regularly experienced episodes where carbon monoxide, particulate matter (PM),

and ozone pollution levels were elevated. While neither PM or ozone cross the placental barrier, it is still

possible that they could damage fetal health through respiratory and cardiovascular impacts on the mother.

A recent study that found CO to be the only pollutant to consistently impair infant and child health (Currie,

Neidell, and Schmieder 2009) bolsters the case for our focus on CO, but also underscores the importance of

utilizing a multi-pollutant framework to address potential confounding.

In our setting, environmental confounding could take several distinct forms. In Santiago, like most

urban environments, CO exhibits a strong seasonal pattern, with high levels in winter and lower levels in

summer. Ozone exhibits the opposite pattern, with high levels in summer and lower levels in winter. Thus,
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if ozone exposure also inhibits cognitive formation, ignoring it would lead us to understate the impacts of

CO pollution. As such, all of our regressions will control for seasonality as well as directly control for ozone

pollution levels. Ideally, we would include similar controls for PM, but given the extremely high correlation

between ambient levels of CO and PM in our setting, which typically exceeds 0.9, that is not possible.

Rather, we urge the reader to view our results as the composite effect of CO and PM, recognizing that the

epidemiological literature points toward CO as the primary culprit in this population.5 Finally, we note that

weather, particularly temperature, can impact pollution formation as well as child health (Deschenes et al.,

2009). Thus, we add a wide range of controls for weather in order to isolate the deleterious effect of CO.

Additional details on these controls can be found in Section 4 where we discuss our empirical specification

and strategy.

3. DATA

In order to measure the effect of in utero pollution exposure on middle school test scores, we

require data from several broad categories. This section describes how we construct a dataset that links

data on births, environmental conditions, and test scores. Our analysis is based on the universe of births in

Santiago, Chile between 1992 and 2001 and their subsequent test scores in 2002-2010.

3.1. Birth Data

Birth data come from a dataset (essentially the Vital Statistics of Chile) provided by the Health

Ministry of the government of Chile. This dataset includes information on all the children born in the

years 1992-2001. It provides data on the sex, birth weight, length, and weeks of gestation for each birth.

It also provides demographic information on the parents, including their age, education and marital status.

Importantly, these data contain a unique code for the mother, allowing us to identify offspring from the same

mother, and thus implement sibling fixed effects.

5As will be clarified later, our results are largely unchanged when we repeat our core analyses using PM rather than CO as our
dependent variable.
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3.2. Environmental Data

Air pollution data for the period from 1998-2001 come from the Sistema de Informacion Nacional

de Calidad del Aire (SINCA), a network of monitoring stations operated by the Chilean Ministry of En-

vironment. Data from 1992-1997 come from the Monitoreo Automatica de Contaminantes Atmosfericos

Metropolitana (MACAM1) network, also operated by the Ministry.

Given concerns about the endogeneity of monitor “births” and “deaths” (Auffhammer and Kellogg,

2011), our analysis is based on data from the balanced panel of 3 monitors that operate during our entire

study period. Two of the monitors – Parque O’Higgins and La Independencia – are centrally located and

representative of general pollution patterns in metropolitan Santiago (Osses, Gallardo, and Faundez, 2013).

The third monitor is located in Las Condes, a wealthy suburb in the foothills of the Andes that sits at high

elevation. Pollution patterns at this monitor are quite different in this municipality since inversion layers,

which are correlated with extremely high pollution events, occur at altitudes that are lower than this monitor

(Gramsch, Cereceda-Balic, Oyola, and Von Baer, 2006). As a result, we limit our assignment of pollution

from the Las Condes monitor to residents in the Las Condes municipality. All other residents in Santiago

are assigned the pollution readings from the nearest monitor based on municipality centroids.6

CO data during our study period is reported as an 8-hour moving average. We construct a daily

average measure of CO from these readings and then compute the mean exposure at the trimester level. Data

on particulate matter less than 10 microns in diameter (PM10, measured as a 24-hour moving average) and

ozone (O3, measured hourly) come from the same monitoring sites as our CO data. We follow a similar

procedure to construct mean exposure at the trimester level.

In order to provide a sense of aggregate pollution patterns in Santiago, we use data on CO, PM10

and O3, to compute a daily Air Quality Index (AQI) using the algorithm developed by the U.S. Environmen-

tal Protection Agency (EPA 2006). The AQI is a composite measure of pollution that ranges from 0 to 500

in order to rank air quality based on its associated health risks. Seasonality in the AQI correlates well with

the patterns seen in CO during the year, as is evident from Figure 1. Air quality is worst during the winter

months in Santiago when thermal inversions are common.

6We have also constructed an alternative exposure measure by taking an inverse-distance weighted average over the remaining two
monitors for births outside Las Condes. Results are qualitatively similar. In addition, assigning all high elevation municipalities (as
determined by the mean or median altitude of the municipality) to the Las Condes monitor and using nearest monitor assignment
among remaining municipalities yields very similar results.
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Figure 1 also shows long-run levels of CO and the AQI. As in the seasonal graphs, the two series

track each other closely. The steep declines that occur in the mid- to late-90s are the result of a concerted

government effort to address the serious pollution concerns from the previous decade. The most serious of

these measures started in 1997 under the PPDA (Mullins and Bharadwaj 2014). Meteorological data for

this study period come from the NOAA Summary of the Day for the monitor at Comodoro Arturo Merino

Benitez International Airport (SCL). Our analysis makes use of daily maximum temperature measures as

well as daily average data on rainfall, dew point, wind speed, and an indicator for the presence of fog. Each

is converted to a trimester level measure and used as a non-linear control in our regressions, as detailed in

Section 4.

3.3. Education Data

The data on school achievement are obtained from the SIMCE database, which includes adminis-

trative data on test scores for every student in the country between 2002 and 2010.7 The SIMCE is a national

standardized test administered in all schools in Chile. The SIMCE test covers three main subjects: math-

ematics, language, and science. It is administered to every student in grade 4, and episodically in grades

8 and 10. The SIMCE scores are used to evaluate the progress of students against the national curriculum

goals set out by MINEDUC, and is constructed to be comparable across schools and time. The education

data sets were subsequently matched to the birth data using individual level identifiers.8

4. ECONOMETRIC APPROACH

Our goal is to estimate the effect of in utero pollution exposure on human capital outcomes later in

life. The primary estimating equation uses test scores as the dependent variable and pollution exposure in

each trimester as the independent variables of interest. Trimesters are computed using the birth date and the

baby’s estimated gestational age. The median gestational age in our data is 39 weeks. We assign weeks 1-13

to trimester 1, weeks 14-26 to trimester 2, and weeks 27-birth to trimester 3.9 Since we have the exact date of

birth and gestational age, we are able to accurately construct the history of gestational exposure to ambient

7This database was kindly provided by the Ministry of Education of Chile (MINEDUC).
8More details on the match quality can be found in Bharadwaj, Loken and Neilson, 2013.
9While it is easier to interpret and aggregate coefficients at the trimester level, analysis at the gestational month level yields similar
results.



8 BHARADWAJ, GIBSON, GRAFF ZIVIN & NEILSON

air quality. We include all trimester exposure measures in a single specification, along with temperature and

other weather variables. Our basic estimating equation is:

Sijrt = βEmt + θt + αχijrt + γWt + εijrt(1)

The dependent variable Sijrt is 4th grade test score in either math or language of child i, born to

mother j, in municipality r, at time t. θt is a vector of year and month dummies interacted with three monitor

dummies (month dummies capture important seasonal effects, which differ markedly by monitor), and χijrt

is a gender dummy. Wt includes a host of weather controls (temperature, precipitation, fog, dewpoint and

wind), measured at the trimester level. We use a polynomial in the trimester average of precipitation, fog,

dew point and wind in order to capture potential nonlinear impacts. Since temperature extremes can have a

direct effect on maternal behavior and fetal health (Deschenes et al., 2009), and also play a role in pollution

formation, we control for temperature more flexibly. In particular, we create 10 degree bins based on daily

maximum temperatures and count the number of days per trimester in each bin. For example, we include

three variables (one per trimester) counting the number of days with a maximum temperature between 70

and 80 degrees Fahrenheit.

Emt contains the average level of pollution, also measured at the level of gestational trimester

based on the nearest monitor assignment. As discussed in the previous section, our analysis will focus on

the impacts of carbon monoxide on educational outcomes, but will also include controls for ozone pollution

levels. As a robustness check, we will repeat the same analysis using PM10 as our primary pollutant, with

controls for ozone levels.10 We will also take a more structured approach to the multi-pollutant problem by

using the air quality index, which provides a composite measure of environmental conditions based on the

health dangers associated with CO, PM10, and O3 levels (EPA, 2006).

The seasonal patterns in pollution in Santiago are an important reason behind the inclusion of

month and year fixed effects in equation 1. As mentioned earlier, Figure 1 shows that there are strong

monthly patterns to CO and overall air quality as captured by the AQI. Since these seasonal patterns could

exist for other unmeasured variables that might impact our outcome of interest (e.g. income-specific timing

of childbirth), month fixed effects are an important control in all our specifications. Our approach requires

10Recall that the correlation between CO and PM10 levels are 0.9.
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residual variation in the measures of pollution after controlling for seasonality (month fixed effects) and

year fixed effects. Figure 2 shows the distribution of CO after removing these fixed effects; we see that

substantial variation remains in the pollution measures. It is this variation that drives the identification in

this paper.

The first modification we make to equation 1 is the introduction of observable mother’s character-

istics. Hence, we estimate:

Sijrt = βEmt + θt + αχijrt + γWt + δXj + εijrt(2)

Where Xj includes mother’s characteristics like age and education.

The identifying assumption in the above equation is that after controlling for observable maternal

characteristics, seasonality and flexible weather controls, exposure to pollution is uncorrelated with εijrt.

One concern with this assumption is that parents may respond to pollution levels, either directly by limiting

exposure to pollution or indirectly through ex post investments designed to mitigate harmful effects. While

such responses would not bias our results, they imply that all estimates will capture pollution impacts net of

these potentially costly behaviors.11 To clarify the interpretation of β in our estimation strategy, it is useful

to describe a simple education production function.

We begin by specifying a production function for school achievement, similar in spirit to Todd

and Wolpin (2007). Test score achievement of student i born to mother j in region r at time t 12 is a

function of early childhood health (H), investments made from birth to time of test taking (P ) and parental

characteristics (X).

Sijrt = f(Hijrt,
k=T∑
k=t

Pijrk, Xj)(3)

Early childhood health is a function of in utero pollution exposure E, weather conditions W (e.g.

rainfall, temperature, etc.) and parental characteristics X . Individual environmental conditions are a func-

tion of ambient pollution measured at the nearest monitor (Emt), mitigated by individual level avoidance

behavior (A).

11See Graff Zivin and Neidell (2012) for a detailed conceptual model of the environmental health production function.
12In our specification, t always refers to time of birth, not time of test taking. For the most part everyone born at time t takes the
test at the same later time (T ), since we use scores from the national fourth grade exam.
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Hijrt = h(Eijrt,Wijrt, Xj)(4)

Eijrt = e(Emt, Aijrt)(5)

Taking a linear approach to estimating equation 3 and plugging in linear functions of equations 4

and 5, and recognizing that weather variables are observed at the city wide, we can express student perfor-

mance as:

Sijrt = βEmt + γWt +
k=T∑
k=t

νkPijrk + ηAijrt + δXj + εijrt(6)

Equation 1 is essentially a modified version of equation 6. While test scores still depend on fetal en-

vironmental conditions and parental characteristics, they also depend on time-varying parental investments

in human capital as well as pollution avoidance behaviors during the prenatal period. While educational

investments in response to early life insults are not observable in our setting (they will be subsumed in our

error term), studies in other similar contexts have found those responses to be small and if anything largely

compensatory (see Bharadwaj, Eberhard and Neilson (2013) and Halla and Zweimüller (2014)). Thus, to

the extent that Chilean parents make investments to overcome cognitive deficiencies due to in utero pollu-

tion exposure, they will be reflected in our estimated effects from pollution. This is desirable - it captures

the realized impacts of pollution - but it is worth noting that the costs of those parental investments may

constitute a sizable welfare cost due to pollution.

Avoidance behavior can take two broad forms and we employ two main techniques to capture them

in our analysis. Since residential sorting can lead to non-random assignment of pollution, we employ family

fixed effects models to make within household comparisons that hold geography fixed. This is a particu-

lar concern as air quality is capitalized into housing values (Chay and Greenstone 2005, Figueroa, Rogat,

Firinguetti 1996), since families with higher income are more likely to sort into neighborhoods with better

air quality and invest in human capital. Family fixed effects in this setting also play an important role insofar

as our limited data on maternal characteristics is missing important unobservable family characteristics that

might matter for test outcomes as well as pollution exposure (Currie, Neidell, and Schmieder 2009). Our

estimating equation using family fixed effects (indexing another sibling i′ born at t′) is essentially a first

difference across siblings and takes the form:
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∆Sijrt−i′jrt′ = β∆Emt−mt′ + γ∆Wt−t′ + ∆uijrt−i′jrt′(7)

Note that the above equation will capture all time-invariant investments in children, but ignores

time-varying investments since we do not have data on parental investments across siblings. One time-

varying activity that may influence outcomes is averting behavior. In the short run, individuals can take

deliberate actions to reduce their realized exposure to pollution by spending less time outside, wearing face

masks, or engaging in a number of other activities (Neidell 2005, Neidell 2009). Such short-run responses

require knowledge about daily or even hourly pollution levels. In our context, that knowledge is made avail-

able through a well-publicized system of air quality alerts based on PM10 levels (which are highly correlated

with CO levels). For example, during May-August, the peak pollution months in Santiago, PM10 forecasts

are broadcast on a regular basis, with alerts announced when this pollutant reaches certain thresholds (see

Mullins and Bharadwaj 2014 for details). To the extent that these alerts generate behavioral responses,

we can account for them by including controls for the number of alert days during the pregnancy for each

trimester.13 If individuals engage in avoidance behavior, controlling for avoidance should make the estimates

larger relative to estimates where this is not explicitly taken into account (Moretti and Neidell 2011).

We modify equation 7 to take transient avoidance into account as follows:

∆Sijrt−i′jrt′ = β∆Ert−rt′ + γ∆Wrt−rt′ + κ∆Alertsrt−rt′ + ∆uijrt−i′jrt′(8)

All of our core analyses will follow the same basic structure. The OLS regression described in equation

(2) will serve as our base model specification. This will be followed by estimates of the sibling fixed effect

regressions described in equation (7). Finally, we will present estimates of our fully saturated model, which

includes sibling fixed effects and controls for air quality alerts to capture time-varying avoidance behavior,

as described in equation (8).

13Of course, individuals may also engage in avoidance behavior based on the visible signs of pollution (or its correlates). While we
cannot control for those behaviors in this setting, they can be viewed as conceptually similar to unmeasured parental investments
in human capital. They create a wedge between the “biological” and “in situ” impacts of pollution, and represent a potentially
significant welfare cost attributable to pollution.
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5. RESULTS

We begin our analysis by examining the impact of CO on test scores in Table 2. Panel A presents

the estimates using for 4th grade math scores as the dependent variable and Panel B uses 4th grade language

scores as the dependent variable. Column 1 is our base OLS specification where we control for seasonality

(year and month fixed effects interacted with monitor dummies), environmental controls at the trimester

level (maximum temperature in 10 degree F bin days and a second degree polynomial in mean precipitation,

fog, wind speed and dew point), demographic controls (mother’s age and education, student gender) and

trimester average ozone levels. Standard errors for OLS specifications are clustered at the year of birth and

month of birth level. We add to this base model, sibling fixed effects in column 2 and further add the total

number of trimester level air quality alert days in column 3. Standard errors for specifications including

sibling fixed effects are clustered at the family level.

Table 2 Panel A shows negative and significant effects of in utero CO exposure on 4th grade math

test scores in specifications that account for sibling fixed effects.14 The effects are concentrated in trimesters

2 and 3 (although estimates for trimester 2 are not statistically significant). Moving from Column 1 to

Column 2 illustrates the importance of accounting for sorting behavior and other time-invariant unobserved

family characteristics in this setting, as the magnitude of our estimates increase significantly in Column 2.

A 1 SD increase in CO in the third trimester is associated with a statistically insignificant 0.003 SD decrease

in 4th grade math scores (column 1); however adding sibling FE in Column 2 increases the estimates to a

statistically significant 0.034 SD. Adding air quality alerts to our sibling fixed effects specification (Column

3) increases the magnitude of the estimates slightly (by about 6 to 8 percent in most cases), suggesting

that insofar as the alerts induce avoidance behavior, this appears to have a rather modest impact on child

outcomes. Panel B shows similar effects in both direction and magnitude on language test scores.

Taken as whole, the results in Table 2 reveal a strong negative effect from fetal exposure to CO.

While the magnitudes may appear small, it is important to note that test performance is notoriously difficult

to move, even via input based schooling policies (Hanushek 2003). To place the magnitudes of these ef-

fects in context, they are roughly one-fifth the magnitude of successful interventions that specifically target

educational outcomes in developing countries (JPAL 2014). The economic importance of these results is

14As described later in this section, our results remain qualitatively similar when we repeat our core analysis replacing CO with
PM10 or with AQI.
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underscored by the size of the exposed population – far more children are exposed to pollution than well-

designed education-specific programs in developing countries. It is also worth noting that our effects are

quite a bit larger than estimates based on changes in total suspended particulates pollution within the U.S.

(Sanders 2012). 15

In Table 3, we examine heterogeneity in these human capital impacts by mother’s education. For

both math and language test scores, we see that the effects of CO exposure are quite a bit larger for children

of mothers without a high school diploma. Indeed, the point estimates under the sibling FE specifications

are roughly 2.5 times larger for children of less-educated mothers. While the diminished sample size drives

the sibling FE results for math to statistical insignificance, the statistical significance for language remains.

A direct comparison of coefficients for the third-trimester across the education gradient is presented in the

bottom row of Table 3. The OLS estimates for language are significantly different from one another; and the

sibling FE estimates are nearly significantly different at the 10% significance level. Together, these results

provide suggestive evidence that less educated families are more vulnerable to the detrimental effects of

pollution. Whether this is due to increased exposure or a diminished ability to invest in their children to help

offset early life deficits remains an open question.

All of our previous analysis treated the relationship between CO exposure and test scores as lin-

ear. In Table 4, we explore this relationship by using the U.S Environmental Protection Agency’s National

Ambient Air Quality thresholds for CO (9 parts-per-million for an 8-hr average).16 In particular, for each

trimester we sum the number of days on which the EPA’s safety threshold is exceeded. For both math and

language, we find that for every extra day of EPA threshold violation during the third trimester, test scores

decrease significantly, with a consistent magnitude around 0.002 SD using the fixed effects estimates. It is

worth noting that violations of the EPA standard were a regular occurrence in the 1990s in Santiago. For

example, in 1997 approximately 47 days exceeded the EPA CO limit, which, linearly would imply an effect

of nearly 0.1SD. The average number of EPA violations during a third trimester in our sample is 2.3, which

translates to a 0.004 SD reduction in test scores for the average child exposed to such a third trimester.

Thus far our analysis has largely been silent on the various mechanisms that might underpin our

results. While our data do not allow us to formally disentangle possible channels, they do allow us to probe

15The estimates in Sanders (2012) may be smaller due to measurement error issues. Sanders (2012) infers in utero pollution by
assuming all students were born in the place they attended high school.
16The average CO levels over a trimester in our sample is approximately 1 part-per-million.
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an important one. Since birth weight has been shown to be an important determinant of school performance

(Figlio et al. 2013, Bharadwaj et al. 2013), we directly explore the effects of in utero pollution exposure

on birth weight in a specification similar in spirit to Equations 7 and 8. Our OLS specifications in Table 5

show that exposure to in utero pollution significantly decreases birth weight. The magnitude of these effects

is amplified in the sibling FE framework, which also finds modest and marginally significant effects on the

probability of being low birth weight (less than 2500 grams). While these results suggest that some of the

long term effects seen are via the channel of health at birth, it is important to note that these birth weight

effects are much too small to explain all of the relationship between pollution and scores. Indeed, point

estimates from Bharadwaj, Eberhard and Neilson (2013) of the impact of birthweight on test scores imply

that this channel explains no more than 10% of the cognitive impacts due to pollution.

5.1. Robustness Checks

We begin our assessment of the robustness of our results, by confirming that the differences be-

tween our OLS and sibling FE estimates are not being driven by sample composition. Table 6 reproduces

our core analysis (from Table 2), with our OLS sample restricted to the population of siblings (i.e. we omit

singletons,17 just as when we estimate siblings FE models). Reassuringly, our OLS coefficients change very

little, thus preserving the basic pattern as we move from our OLS (column 1) to our sibling FE specifications

(columns 2 and 3) in our analysis.

As mentioned earlier, due to the high correlation between CO and PM10, our main specifications

do not control for PM10. Hence, replacing CO with PM10 should yield qualitatively similar results. In

Table 7, we find that this is indeed the case. Across all three of our specifications, we find that exposure to

PM10 in utero is associated with significant negative effects on 4th grade math and language scores. The

coefficient again increases in size across columns 1 and 2, suggesting that residential sorting and underlying

family characteristics are confounding OLS estimates.

An alternative approach to addressing multiple pollutants is to aggregate them into a single index.

In this case, we use the U.S. Environmental Protection Agency’s Air Quality Index (AQI), which is con-

structed by taking the maximum over piecewise-linear transformations of daily readings for all individual

pollutants (EPA, 2006). As can be seen in Table 8, higher AQI exposure in utero leads to lower test scores.

17Note that ‘singletons’ in our sample are not necessarily only children, but rather those that cannot be matched to siblings during
the time period that spans our data.
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While this approach does not allow us to identify which particular pollutant is driving the index on any given

day, these results follow the same patterns as prior tables – most of the effects are concentrated in the second

and third trimester and the coefficients are much larger after accounting for sibling fixed effects.

Finally, Table 9 shows that CO exposure in trimesters prior to conception does not play a role in

determining test scores. This is important and reassuring, as it shows that our time dummies and other

controls are effective in capturing serial correlation in pollution exposure.

6. CONCLUSION

In this paper, we merge data from the Chilean ministries of health and education with pollution

and meteorological data to assess the impact of fetal air pollution exposure on human capital outcomes

later in life. Data on air quality alerts and the use of siblings fixed effects estimation allow us to address

several potentially important concerns about endogenous exposure to poor environmental quality. We find a

strong and robust negative effect from fetal exposure to CO on math and language skills. Our richest model

specification suggests that a 1 standard deviation increase in CO exposure during the third trimester of

pregnancy is associated with a 0.036 standard deviation decrease in 4th grade math test scores and a 0.042

SD decrease in 4th grade language test scores. Given the inherent challenges associated with improving

education outcomes, these impacts are sizable - roughly one-fifth the magnitude of successful interventions

that directly target educational performance in developing countries (JPAL 2014).

Since school performance is an important driver of employment and wage outcomes later in life

(Chetty et al 2011, Currie and Thomas 2012), the legacy of these acute pollution exposures in utero can be

long lasting and economically significant. In developing countries where pollution levels tend to be higher,

those impacts may be particularly large. In that regard, the dramatic transformation of air quality in Chile

from the early-1990s to the mid-2000s is instructive. During this period, which can be viewed as a transition

from typical developing country urban pollution levels to levels that are closer to those found in typical

developed country cities, average CO levels in Santiago dropped by more than 50 percent. A back-of-the

envelope calculation using our estimated human capital effects and estimates on the returns to test scores

from the U.S. (Blau and Kahn, 2005) suggests that, ceteris paribus, this drop could account for as much as

$1000 additional lifetime earnings per child born under the cleaner regime. During our sample period on

average 100,000 children are born every year in Santiago, suggesting a lifetime increase of 100 million USD
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per cohort.18 It is important to realize that most of the costs of pollution exposure might be borne by the

less fortunate. Such results may help explain patterns of wealth accumulation around the world, where the

poor tend to live in neighborhoods with low environmental quality, which diminishes cognitive attainment

and thus limits opportunities to rise out of poverty. The sizable non-pecuniary benefits from education

(Oreopoulos and Salvanes 2011) only serve to magnify these welfare impacts.

Our empirical results are also of direct importance for policy makers. Carbon monoxide is directly

regulated throughout the developed and an increasing share of the developing world. Nearly all of these

regulations are based on the benefits associated with reductions in pollution-related health, mortality and

hospitalizations.19 Our results suggest that such an approach underestimates regulatory benefits for at least

two reasons. First, it completely ignores the human capital effects, which have been largely invisible, but

may well rival the more dramatic health effects in magnitude since they affect a much broader swath of the

population. Second, it fails to account for the costs of short- and long-run avoidance behaviors for which

we find evidence. While our empirical framework does not allow us to assess the magnitude of these costs,

they have been found to be substantial in other settings (Graff Zivin et al., 2011). The degree to which these

“additional” benefits imply stricter regulation will, of course, depend upon the costs of pollution reduction.

While this paper provides new evidence in support of the fetal origins hypothesis and its lasting

legacy on human capital formation, many questions remain unanswered. From a scientific perspective, the

mechanisms behind these impacts remain murky. Our evidence suggests that birth weight is one important

channel for these impacts, but it offers only a partial explanation. In more economic matters, much more

work is needed to understand the role that households play in shaping outcomes. The effects we measure are

net of any parental investments that take place between birth and test taking. The scale of these investments

18This number is calculated as follows. The change in average CO levels between 1992 and 2002 is equivalent to a 1 standard
deviation change in CO pollution levels. Using our sibling FE results for math performance in the third trimester (this is conser-
vative, as the improvement we imagine will apply for the entirety of the pregnancy, rather than a specific trimester) implies that
this change in pollution levels generates a 0.036 SD improvement in test scores. Blau and Kahn (2005) find that a 1 SD change in
U.S. adult test scores averaged across math and verbal reasoning yields a 16.36 percent change in adult earnings after controlling
for education levels (see table 2, column 4 in Blau and Kahn 2005). Applying this relationship between U.S. adult test scores and
earnings to Chilean children yields an annual wage increase of 0.58%. Finally, we apply this figure to average adult wages in Chile
(around 11000 USD) and discount at a 5% rate over 30 years.
19Two examples of such work in the context of Santiago, Chile are worth mentioning. The first is Dessus and O’Connon (2003)
who examine the welfare implications of climate policy in Santiago by including health costs. The second is the work of Figueroa,
Gomez-Lobo, Jorquera and Labrin (2012), who estimate the benefits due to reduced pollution in Santiago due to better public transit
infrastructure.
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as well as their costs and effectiveness are largely unknown. Do they vary by identifiable household char-

acteristics or over the lifecycle of a child? A deeper understanding of the persistence of these effects within

and across generations is of paramount importance. Together these comprise a future research agenda.
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Descriptive �gures

Figure 1: Pollution over time
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Top panel shows CO and AQI are higher in the winter months (Chile, being in

the southern hemisphere, experiences winters from March through August).

Figure 2: Residualized pollution (year and month dummies)
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Main results

Table 1: Descriptive statistics

Mean Stdev Min Max

CO - trimester avg 1.30 0.96 0.16 4.85
PM10 - trimester avg 90.87 29.86 39.73 197.85
O3 - trimester avg 31.67 9.93 9.78 85.73
EPA CO violations - trimester avg 0.17 0.73 0.00 5.00
AQI - trimester avg 65.03 15.92 31.91 109.82
Temperature - trimester avg 58.43 7.27 45.79 70.28
Rainfall - trimester avg 1.64 1.15 0.00 4.57
Gestational age (weeks) 38.88 1.33 33.00 41.00
Birth weight (g) 3362.51 483.58 240.00 6395.00
Low birth weight (<2.5kg) 0.04 0.19 0.00 1.00
Mother's age 27.19 6.44 11.00 59.00
Sex (1=female) 0.50 0.50 0.00 1.00

Observations 627530



Table 2: CO e�ects on scores

Panel A: Math
OLS Sib FE Sib FE

CO - trimester 1 -0.004 -0.001 -0.000
(0.011) (0.017) (0.017)

CO - trimester 2 0.000 -0.021 -0.022
(0.010) (0.015) (0.016)

CO - trimester 3 -0.003 -0.034∗∗ -0.036∗∗

(0.011) (0.015) (0.016)

Panel B: Language
OLS Sib FE Sib FE

CO - trimester 1 -0.012 -0.018 -0.018
(0.012) (0.018) (0.018)

CO - trimester 2 -0.008 -0.015 -0.018
(0.010) (0.016) (0.017)

CO - trimester 3 -0.019∗ -0.040∗∗ -0.042∗∗∗

(0.010) (0.016) (0.016)
Sibling FE No Yes Yes
Air quality alerts No No Yes

Observations 627545 204486 204486

Standard errors are in parentheses, clustered on birth year-month in column 1

and clustered on family in columns 2-3. The dependent variable is the 4th grade

math/language SIMCE test score. All regressions include year and month �xed

e�ects interacted with monitor dummies. Demographic controls include student

gender, log of mother's age, and dummmies for mother's education. Environ-

mental controls include second-degree polynomials in precipitation, fog, wind

speed, and dew point. Temperature enters as a set of 10-degree F indicators in

maximum daily temperature. We also control for ozone pollution (level). All

environmental variables are averaged within each trimester of pregnancy. We

represent an air quality alert with a dummy and sum within each trimester. *

(p<0.10), ** (p<0.05), *** (p<0.01)



Table 3: CO e�ects on math scores, by mother's education

Panel A: less than HS
Math Math Math Language Language Language
OLS Sib FE Sib FE OLS Sib FE Sib FE

CO - trimester 1 -0.022 -0.017 -0.015 -0.040∗∗ -0.096∗∗ -0.100∗∗

(0.017) (0.046) (0.047) (0.017) (0.048) (0.049)
CO - trimester 2 -0.008 -0.021 -0.013 0.006 -0.023 -0.025

(0.018) (0.040) (0.044) (0.018) (0.042) (0.045)
CO - trimester 3 -0.019 -0.052 -0.047 -0.046∗∗∗ -0.082∗∗ -0.081∗

(0.016) (0.039) (0.040) (0.014) (0.040) (0.041)

Observations 125588 37513 37513 125588 37513 37513

Panel B: HS or more
OLS Sib FE Sib FE OLS Sib FE Sib FE

CO - trimester 1 0.008 0.012 0.013 0.004 0.004 0.006
(0.010) (0.019) (0.019) (0.011) (0.020) (0.020)

CO - trimester 2 0.002 -0.021 -0.023 -0.012 -0.017 -0.017
(0.009) (0.017) (0.017) (0.009) (0.018) (0.018)

CO - trimester 3 -0.001 -0.018 -0.021 -0.014 -0.029∗ -0.032∗

(0.011) (0.017) (0.018) (0.011) (0.018) (0.018)
Sibling FE No Yes Yes No Yes Yes
Air quality alerts No No Yes No No Yes

Observations 501295 166838 166838 501295 166838 166838

p-value, 3rd trim. t-test 0.177 0.212 0.277 0.036∗∗ 0.113 0.137

Standard errors are in parentheses, clustered on birth year-month in column 1 and clustered on family in columns 2-3.

The dependent variable is the 4th grade math/language SIMCE test score. All regressions include year and month

�xed e�ects interacted with monitor dummies. Demographic controls include student gender, log of mother's age, and

dummmies for mother's education. Environmental controls include second-degree polynomials in precipitation, fog, wind

speed, and dew point. Temperature enters as a set of 10-degree F indicators in maximum daily temperature. We also

control for ozone pollution (level). All environmental variables are averaged within each trimester of pregnancy. We

represent an air quality alert with a dummy and sum within each trimester. �p-value, 3rd trim. t-test� denotes p value

from a t-test of the di�erence between coe�cients on 3rd-trimester CO, across education levels, against a null hypothesis

of zero di�erence. * (p<0.10), ** (p<0.05), *** (p<0.01)



Table 4: EPA CO violations: e�ects on scores

Panel A: Math
OLS Sib FE Sib FE

EPA CO violations - trimester 1 -0.0010 -0.0002 0.0003
(0.0006) (0.0010) (0.0011)

EPA CO violations - trimester 2 0.0001 -0.0019∗ -0.0019∗

(0.0008) (0.0010) (0.0011)
EPA CO violations - trimester 3 -0.0001 -0.0019∗∗ -0.0020∗

(0.0006) (0.0009) (0.0011)

Panel B: Language
OLS Sib FE Sib FE

EPA CO violations - trimester 1 -0.0011∗ -0.0001 0.0003
(0.0006) (0.0011) (0.0012)

EPA CO violations - trimester 2 -0.0013∗∗ -0.0016 -0.0012
(0.0006) (0.0011) (0.0012)

EPA CO violations - trimester 3 -0.0013∗∗ -0.0023∗∗ -0.0024∗∗

(0.0006) (0.0010) (0.0011)
Sibling FE No Yes Yes
Air quality alerts No No Yes
Ozone violations Yes Yes Yes

Observations 627545 218871 218871

Standard errors are in parentheses, clustered on birth year-month in column 1 and clustered

on family in columns 2-3. The dependent variable is the 4th grade math/language SIMCE test

score. All regressions include year and month �xed e�ects interacted with monitor dummies.

Demographic controls include student gender, log of mother's age, and dummmies for mother's

education. Environmental controls include second-degree polynomials in precipitation, fog, wind

speed, and dew point. Temperature enters as a set of 10-degree F indicators in maximum daily

temperature. We also control for ozone pollution (level). All environmental variables are aver-

aged within each trimester of pregnancy. We represent an air quality alert with a dummy and

sum within each trimester. EPA violation dummy constructed based on 8hr standard of 9ppm,

in force since the 1971 Clean Air Act. * (p<0.10), ** (p<0.05), *** (p<0.01)



Table 5: CO e�ects on birth weight

Birth weight Birth weight (sibFE) Low BW Low BW (sibFE)

CO - trimester 1 -6.72∗∗ -18.1∗∗ 0.00072 0.0061∗

(3.37) (7.17) (0.0016) (0.0036)
CO - trimester 2 -8.19∗∗ -6.13 0.0028 0.0038

(3.82) (6.68) (0.0018) (0.0033)
CO - trimester 3 -4.71 -18.1∗∗∗ 0.0010 0.0062∗

(3.72) (6.53) (0.0015) (0.0034)
Sibling FE No Yes No Yes
Air quality alerts Yes Yes Yes Yes

Observations 627532 204485 627545 204486

Standard errors are in parentheses, clustered on birth year-month in columns 1 and 3 and on family in columns 2 and

4. The dependent variables are birth weight in grams and an indicator for birth weight below 2500g. All regressions

include year and month �xed e�ects interacted with monitor dummies. Demographic controls include student gender,

log of mother's age, and dummmies for mother's education. Environmental controls include second-degree polynomials

in precipitation, fog, wind speed, and dew point. Temperature enters as a set of 10-degree F indicators in maximum

daily temperature. We also control for ozone pollution (level). All environmental variables are averaged within each

trimester of pregnancy. We represent an air quality alert with a dummy and sum within each trimester. * (p<0.10), **

(p<0.05), *** (p<0.01)



Table 6: CO e�ects on scores - restricted to sibling FE sample

Panel A: Math
OLS Sib FE Sib FE

CO - trimester 1 -0.024 -0.001 -0.000
(0.015) (0.017) (0.017)

CO - trimester 2 -0.001 -0.021 -0.022
(0.012) (0.015) (0.016)

CO - trimester 3 -0.005 -0.034∗∗ -0.036∗∗

(0.015) (0.015) (0.016)

Panel B: Language
OLS Sib FE Sib FE

CO - trimester 1 -0.040∗∗ -0.018 -0.018
(0.015) (0.018) (0.018)

CO - trimester 2 -0.017 -0.015 -0.018
(0.013) (0.016) (0.017)

CO - trimester 3 -0.026∗ -0.040∗∗ -0.042∗∗∗

(0.015) (0.016) (0.016)
Sibling FE No Yes Yes
Air quality alerts No No Yes

Observations 204486 204486 204486

Standard errors are in parentheses, clustered on birth year-month in column 1

and clustered on family in columns 2-3. The dependent variable is the 4th grade

math/language SIMCE test score. All regressions include year and month �xed

e�ects interacted with monitor dummies. Demographic controls include student

gender, log of mother's age, and dummmies for mother's education. Environ-

mental controls include second-degree polynomials in precipitation, fog, wind

speed, and dew point. Temperature enters as a set of 10-degree F indicators in

maximum daily temperature. We also control for ozone pollution (level). All

environmental variables are averaged within each trimester of pregnancy. We

represent an air quality alert with a dummy and sum within each trimester. *

(p<0.10), ** (p<0.05), *** (p<0.01)



Table 7: PM10 e�ects on scores

Panel A: Math
OLS Sib FE Sib FE

PM10 - trimester 1 -0.0004 0.0001 0.0001
(0.0004) (0.0005) (0.0005)

PM10 - trimester 2 -0.0000 -0.0006 -0.0006
(0.0003) (0.0004) (0.0004)

PM10 - trimester 3 0.0002 -0.0009∗∗ -0.0011∗∗

(0.0004) (0.0005) (0.0005)

Panel B: Language
OLS Sib FE Sib FE

PM10 - trimester 1 -0.0010∗∗ -0.0006 -0.0005
(0.0004) (0.0005) (0.0005)

PM10 - trimester 2 -0.0004 -0.0005 -0.0005
(0.0003) (0.0004) (0.0004)

PM10 - trimester 3 -0.0005 -0.0011∗∗ -0.0011∗∗

(0.0004) (0.0005) (0.0005)
Sibling FE No Yes Yes
Air quality alerts No No Yes

Observations 666947 218202 218202

Standard errors are in parentheses, clustered on birth year-month in column 1

and clustered on family in columns 2-3. The dependent variable is the 4th grade

math/language SIMCE test score. All regressions include year and month �xed

e�ects interacted with monitor dummies. Demographic controls include student

gender, log of mother's age, and dummmies for mother's education. Environ-

mental controls include second-degree polynomials in precipitation, fog, wind

speed, and dew point. Temperature enters as a set of 10-degree F indicators in

maximum daily temperature. We also control for ozone pollution (level). All

environmental variables are averaged within each trimester of pregnancy. We

represent an air quality alert with a dummy and sum within each trimester. *

(p<0.10), ** (p<0.05), *** (p<0.01)



Table 8: AQI e�ects on scores

Panel A: Math
OLS Sib FE Sib FE

AQI - trimester 1 -0.0005 -0.0005 -0.0004
(0.0007) (0.0007) (0.0007)

AQI - trimester 2 -0.0010∗ -0.0013∗∗ -0.0013∗∗

(0.0006) (0.0005) (0.0006)
AQI - trimester 3 0.0009 -0.0013∗ -0.0015∗∗

(0.0007) (0.0007) (0.0007)

Panel B: Language
OLS Sib FE Sib FE

AQI - trimester 1 -0.0011∗ -0.0010 -0.0009
(0.0006) (0.0007) (0.0008)

AQI - trimester 2 -0.0014∗∗ -0.0015∗∗∗ -0.0014∗∗

(0.0006) (0.0005) (0.0006)
AQI - trimester 3 -0.0004 -0.0022∗∗∗ -0.0023∗∗∗

(0.0007) (0.0007) (0.0008)
Sibling FE No Yes Yes
Air quality alerts No No Yes

Observations 668627 218871 218871

Standard errors are in parentheses, clustered on birth year-month in column 1

and clustered on family in columns 2-3. The dependent variable is the 4th grade

math/language SIMCE test score. All regressions include year and month �xed

e�ects interacted with monitor dummies. Demographic controls include student

gender, log of mother's age, and dummmies for mother's education. Environ-

mental controls include second-degree polynomials in precipitation, fog, wind

speed, and dew point. Temperature enters as a set of 10-degree F indicators in

maximum daily temperature. We also control for ozone pollution (level). All

environmental variables are averaged within each trimester of pregnancy. We

represent an air quality alert with a dummy and sum within each trimester. Per

EPA guidelines, AQI is the maximum over piecewise linear transformations of

CO, PM10, and O3 readings. * (p<0.10), ** (p<0.05), *** (p<0.01)



Table 9: CO e�ects on scores, placebo trimesters

OLS Sib FE Sib FE

CO - trimester -3 0.004 0.014 0.016
(0.014) (0.025) (0.026)

CO - trimester -2 0.010 -0.019 -0.013
(0.014) (0.028) (0.028)

CO - trimester -1 0.017 -0.008 -0.010
(0.018) (0.029) (0.030)

Sibling FE No Yes Yes
Air quality alerts No No Yes

Observations 561852 182799 182799

Standard errors are in parentheses, clustered on birth year-month in column 1

and clustered on family in columns 2-3. The dependent variable is the 4th grade

math SIMCE test score. All regressions include year and month �xed e�ects in-

teracted with monitor dummies. Demographic controls include student gender,

log of mother's age, and dummmies for mother's education. Environmental con-

trols include second-degree polynomials in precipitation, fog, wind speed, and

dew point. Temperature enters as a set of 10-degree F indicators in maximum

daily temperature. We also control for ozone pollution (level). All environmen-

tal variables are averaged within each trimester of pregnancy. We represent an

air quality alert with a dummy and sum within each trimester. Sample size is

smaller than for our primary estimates because pollution data do not extend far

enough to construct placebo trimesters for some early births. * (p<0.10), **

(p<0.05), *** (p<0.01)
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