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Despite its presumed role as an engine of economic growth, we know surprisingly little about
the drivers of scientific creativity. We exploit key differences across funding streams within
the academic life sciences to estimate the impact of incentives on the rate and direction of
scientific exploration. Specifically, we study the careers of investigators of the Howard Hughes
Medical Institute (HHMI), which tolerates early failure, rewards long-term success, and gives
its appointees great freedom to experiment, and grantees from the National Institutes of Health
(NIH), who are subject to short review cycles, predefined deliverables, and renewal policies
unforgiving of failure. Using a combination of propensity-score weighting and difference-in-
differences estimation strategies, we find that HHMI investigators produce high-impact articles
at a much higher rate than a control group of similarly accomplished NIH-funded scientists.
Moreover, the direction of their research changes in ways that suggest the program induces them
to explore novel lines of inquiry.

1. Introduction

B In 1980, a scientist from the University of Utah, Mario Capecchi, applied for a grant at
the National Institutes of Health (NIH). The application contained three projects. The NIH peer
reviewers liked the first two projects, which were building on Capecchi’s past research efforts, but
they were unanimously negative in their appraisal of the third project, in which he proposed to
develop gene targeting in mammalian cells. They deemed the probability that the newly introduced
DNA would ever find its matching sequence within the host genome vanishingly small and the
experiments not worthy of pursuit. The NIH funded the grant despite this misgiving, but strongly
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recommended that Capecchi drop the third project. In his retelling of the story, the scientist
writes that despite this unambiguous advice, he chose to put almost all his efforts into the third
project: “It was a big gamble. Had I failed to obtain strong supporting data within the designated
time frame, our NIH funding would have come to an abrupt end and we would not be talking
about gene targeting today” (Capecchi, 2008). Fortunately, within four years, Capecchi and his
team obtained strong evidence for the feasibility of gene targeting in mammalian cells, and in
1984 the grant was renewed enthusiastically. Dispelling any doubt that he had misinterpreted
the feedback from reviewers in 1980, the critique for the 1984 competitive renewal started, “We
are glad that you didn’t follow our advice.” The story does not stop there. In September 2007,
Capecchi shared the Nobel Prize for developing the techniques to make knockout mice with Oliver
Smithies and Martin Evans. Such mice have allowed scientists to learn the roles of thousands of
mammalian genes and provided laboratory models of human afflictions in which to test potential
therapies.

Across all of the social sciences, researchers often model the creative process as the
cumulative, interactive recombination of existing bits of knowledge in novel ways (Weitzman,
1998; Burt, 2004; Simonton, 2004). But the combinatoric metaphor does not speak directly
to the important tradeoff illustrated by the anecdote above. Some discoveries are incremental
in nature, and reflect the fine-tuning of previously available technologies or the exploitation
of established scientific trajectories. Others are more radical and require the exploration of new,
untested approaches. Both forms of innovation are valuable, but we still have a poor understanding
of what drives radical innovation. One view is that radical innovation happens by accident. From
Archimedes’ eureka moment to Newton’s otherworldly contemplation interrupted by the fall
of an apple, luck (and sometimes talent) play an essential role in lay theories of breakthrough
innovation. Of course, if luck and talent exhaust the list of ingredients necessary to produce
breakthroughs, then there is little for economists to contribute.

In the anecdote reported above, the scientist was undeterred by his peers’ advice to “play
it safe,” and eventually saw his bold ideas prevail. If incentives play an important role in the
production of novel ideas, this heroic story might be atypical. In this article, we provide empirical
evidence that nuanced features of incentive schemes embodied in the design of research contracts
exert a profound influence on the subsequent development of breakthrough ideas. The challenge
is to find a setting in which (i) radical innovation is a key concern; (ii) agents are at risk of
receiving different incentive schemes; and (iii) it is possible to measure innovative output and to
distinguish between incremental and radical ideas. We argue that the academic life sciences in
the United States provides an excellent testing ground.

Specifically, we study the careers of researchers who can be funded through two very distinct
mechanisms: investigator-initiated R0O1 grants from the NIH, or support from the Howard Hughes
Medical Institute (HHMI) through its investigator program. HHMI, a non-profit medical research
organization, plays a powerful role in advancing biomedical research and science education in
the United States. The institute commits almost $700 million a year—a larger amount than the
National Science Foundation biological sciences program, for example. HHMI’s stated goal is to
“push the boundaries of knowledge” in some of the most important areas of biological research.
To do so, the HHMI program has adopted practices that according to Manso (2011) should
provide strong incentives for breakthrough scientific discoveries: the award cycles are long (five
years, and typically renewed at least once); the review process provides detailed, high-quality
feedback to the researcher; and the program selects “people, not projects,” which allows (and in
fact encourages) the quick reallocation of resources to new approaches when the initial ones are
not fruitful.! This stands in sharp contrast with the incentives faced by life scientists funded by
the NIH. The typical RO1 grant cycle lasts only three years, and renewal is not very forgiving
of failure. Feedback on performance is limited in its depth. Importantly, the NIH funds projects

! Though not part of Manso’s (2011) initial analysis, we extend his model in Appendix A to show that providing
the researcher greater latitude in her search activities encourages exploration.
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with clearly defined deliverables, not individual scientists, which could increase the costs of
experimentation.

The contrast between the HHMI and NIH grant mechanisms naturally leads to the question
of whether HHMI-style incentives result in a higher rate of production of particularly valuable
ideas. Three significant hurdles must be overcome to answer this question.

First, we need to identify a group of NIH-funded scientists who are appropriate controls
for the researchers selected into the HHMI program. Given the high degree of accomplishment
exhibited by HHMI investigators at the time of their appointment, a random sample of scientists
of the same age, working in the same fields, would not be appropriate. In the absence of a
plausible source of exogenous variation for HHMI appointment, we estimate the treatment effect
of the program by contrasting HHMI-funded scientists’ output with that of a group of NIH-funded
scientists who focus their research on the same subfields of the life sciences as HHMI investigators
and received prestigious early career prizes. Furthermore, using an in-depth understanding of
the HHMI appointment process, we cull from this control group scientists who look similar
to the HHMI investigators on the observable factors that we know to be relevant for selection into
the HHMI program.

Second, we must be able to distinguish particularly creative contributions from incremental
advances. Although we investigate the effect of the program on the raw number of original
research articles published, the bulk of our analysis focuses on the number of publications that
fall into different quantiles of the vintage-specific, article-level distribution of citations (see
Figure 1): top quartile, top five percentiles, and top percentile. We also use these scientists’
own citation impact in the pre-appointment period to ask whether they often outperform their
most heavily cited article, and conversely, whether they often publish articles that garner less
citations than their least-cited article. Another prong in our attempt to measure creativity is to
measure explorative behavior directly. Specifically, we examine whether the research agenda of

FIGURE 1
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HHMI investigators changes after their appointment; we measure the novelty (both relative to
the universe of published research and to the scientists themselves) of the keywords tagging their
publications; and we also assess whether the impact of their research broadens, as inferred by the
range of journals that cite it.

Third, we need to ascertain whether it is the incentive features of the program that explain
its effects, or some alternative mechanism, such as increased resources, ascription dynamics
(whereby HHMI investigators get cited more due to their enhanced status), peer effects, or the
sorting of talented trainees into HHMI-supported labs. We tackle these issues (to the extent
possible) in the discussion.

Our results provide support for the hypothesis that appropriately designed incentives
stimulate exploration. In particular, we find that the effect of selection into the HHMI program
increases as we examine higher quantiles of the distribution of citations. Relative to early career
prize winners (ECPWs), our preferred econometric estimates imply that the program increases
overall publication output by 39%; the magnitude jumps to 96% when focusing on the number
of publications in the top percentile of the citation distribution. Success is also more frequent
among HHMI investigators when assessed with respect to scientists’ own citation impact prior
to appointment, rather than relative to a universal citation benchmark. Symmetrically, we also
uncover robust evidence that HHMI-supported scientists “flop” more often than ECPWs: they
publish 35% more articles that fail to clear the (vintage-adjusted) citation bar of their least well
cited pre-appointment work. This provides suggestive evidence that HHMI investigators are not
simply rising stars annointed by the program. Rather, they appear to place more risky scientific
bets after their appointment, as theory would suggest.

We bolster the case for the exploration hypothesis by focusing on various attributes of these
scientists’ research agendas. We show that the work of HHMI investigators is characterized by
more novel keywords than controls. These keywords are also more likely to change after their
HHMI appointment. Moreover, their research is cited by a more diverse set of journals, both
relative to controls and to the pre-appointment period.

The rest of the article proceeds as follows. In the next section, we present the theoretical
motivation for our hypothesis. Section 3 describes the construction of the sample and presents
descriptive statistics. Section 4 lays out our econometric methodology. Section 5 reports and
discusses the results of the analysis. Section 6 concludes.

2. Theoretical background

B The bulk of the literature on incentives for innovation has focused on the problems inherent
to the measurement and contractability of output that plague most innovative activities. For
example, Holmstrom (1989) observes that most innovation projects are risky, unpredictable, long
term, labor intensive, and idiosyncratic. In such settings, performance measures are likely to
be extremely noisy and contracting particularly challenging. This leads him to see virtue in the
adoption of low-powered incentives when creativity is what is required of the agent, for salary is
less likely to distort the agent’s attention away from the less-easily measurable tasks that compete
for her attention. This view stands in sharp contrast with the standard prescription to adopt piece
rates whenever an agent’s individual contributions are easy to measure, such as in the case of
the windshield installers studied by Lazear (2000). A substantial body of experimental and field
research in psychology reaches a similar conclusion, but for different reasons: the worry is that
pay for performance might encourage the repetition of what has worked in the past, at the expense
of the exploration of untested approaches (Amabile, 1996).

In a recent article, Manso (2011) explicitly models the innovation process as the result of
learning through experimentation. In this setting, the tradeoff between the exploitation of well-
known approaches and the exploration of new untested approaches first emphasized by March
(1991) arises naturally. The main insight of his contribution is that the optimal incentive scheme
to motivate exploration exhibits substantial tolerance for early failure and rewards for long-term
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success. Tolerance for early failure allows the agent to explore in the early stages of the contractual
relationship without incurring the usual negative consequences of lower pay or termination. At
the same time, reward for long-term success prevents the agent from shirking early on and induces
the agent to explore new ideas that will allow him to perform well in the longrun. The principal
can more effectively motivate exploration if he can commit not to terminate an agent after poor
short-term performance, even if it is ex post efficient for the principal to do so. Another important
ingredient of Manso’s model is timely feedback on performance. Providing information to the
agent about how well he is doing allows the agent to explore more efficiently, reducing the costs
of experimentation. An agent who does not get feedback on performance may waste more time
on unfruitful ideas.

Empirical evidence on the effects of long-term incentives is scant. Most relevant to the
findings presented below is Lerner and Wulf’s (2007) study of corporate R&D lab heads.
They show that higher levels of deferred compensation are associated with the production of
more heavily cited patents, whereas short-term incentives bear no relationship to firm innovative
performance. In a similar vein, Tian and Wang (2010) show that start-up firms backed by more
failure-tolerant venture capitalists are more innovative ex post. The present article presents the
first systematic attempt to isolate, in a field setting, the effect of the bundle of incentive practices
identified by Manso (2011) on exploration and creativity at the individual level (see Ederer and
Manso, 2010 for experimental evidence with a similar flavor). We believe that the academic
life sciences in the United States provide an appropriate setting, first and foremost because it
provides naturally occurring variation in incentives that closely matches the contrast between
pay-for-performance and exploration-type schemes emphasized by Manso (2011).

Most academic life scientists must rely on grants from the NIH, the largest public funder of
biomedical research in the United States. With an annual budget of $28.4 billion in 2007, support
from the NIH dwarfs that available from other public or private funders, including the National
Science Foundation ($6 billion in 2007) or the American Cancer Society ($147 million in 2007).
The most common type of NIH grant for investigator-initiated projects is the RO1 grant. In 2007,
their average amount was $225,000 in annual direct costs, and the awards last for a typical three to
five years before coming up for renewal (see Figure 2). The NIH “study sections,” or peer-review
panels in charge of allocating awards, are notoriously risk averse and often insist on a great deal of
preliminary evidence before deciding to fund a project. This often leads researchers to resubmit
their applications several times and to multiply the number of applications, taking time away
from productive research activities. It is an often-heard complaint among academic biomedical
researchers that study sections’ prickliness encourages them to pursue relatively safe avenues
that build directly on previous results, at the expense of truly exploratory research (Kaplan, 2005;
Kolata, 2009; McKnight, 2009).

An alternative funding mechanism is provided by the investigator program of the HHMI.
This program “urges its researchers to take risks, to explore unproven avenues, to embrace the
unknown—even if it means uncertainty or the chance of failure.”” New appointments are based
on nominations from research institutions; once selected, researchers continue to be based at their
institutions, typically leading a research group of 10-25 students, postdoctoral associates, and
technicians. In its stated policies, HHMI departs in striking fashion from NIH’s funding practices,
in ways that should bring incentives in line with the type of schemes suggested by Manso (2011).
HHMI investigators are initially appointed for five years,® and in the case of termination, there is
a two-year phase-down period during which the researcher continues to be funded, allowing her
to search for other sources of funding without having to close down her lab.

Moreover, HHMI investigators appear to share the perception that their first appointment
review is rather lax, with reviewers more interested in making sure that they have taken on new

2 See www.hhmi.org/research/investigators/
3 Appointment lengths have varied over the history of the program; more detailed information will be provided in
the data section.
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FIGURE 2

LENGTH OF NIH RO1 GRANTS VERSUS HHMI APPOINTMENTS
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projects with uncertain payoffs, rather than insisting on achievements. Below, we validate this
perception by showing that the second review is much more sensitive to performance than the
first. The review process is also streamlined, lasting a mere six weeks. Investigators are asked to
submit a packet containing their five most notable articles in the past five years, along with a short
research proposal for the next five years. In contrast, NIH grants take at a minimum three months
to be reviewed, and success typically depends upon a rather exhaustive list of accomplishments
by the primary research team members.

Because HHMI researchers publish 29 articles on average in the five years that follow their
initial appointment (the median is 25), constraining their renewal packet to contain only five
articles ensures that only what they see as their most meaningful achievements matters for the
renewal decision. The review process culminates in an oral defense in front of an elite panel
especially convened for the occasion. The reviewers must not be HHMI researchers, and are of
very high caliber (e.g., members of the National Academies). The richness of the feedback is yet
another point of departure between HHMI and NIH practices. Besides the intensity and quality
of the advice generated by the review process, HHMI-funded scientists participate in annual
science meetings during which they can interact with other HHMI investigators. This gives them
access to a deep level of critique, encouragement, ideas, and potential collaborations. Although
NIH-funded researchers receive a critique of their grant applications, these vary widely in quality
and depth. Furthermore, the federal agency does not provide any meaningful feedback between
review cycles.

Finally, an important distinction between the two sources of funding is the unit of selection.
The NIH funds specific projects. Applicants need to map out experiments far into the future, and
have limited flexibility to change course between funding cycles. Together with study sections’
insistence on preliminary results, this has led many NIH grantees to submit research that is already
quite developed. In contrast, HHMI insists on funding “people, not projects.” This allows HHMI
researchers to quickly reallocate effort and resources away from avenues that do not bear fruit.

© RAND 2011.
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TABLE 1 Comparison between the Two Sources of Funding

NIH RO1 Grants HHMI Investigator Program
Three- to five-year funding Five-year funding

First review is similar to any other review First review is rather lax

Funds dry up upon nonrenewal Two-year phase-down upon nonrenewal
Some feedback in the renewal process Feedback from renowned scientists
Funding is for a particular project “People, not projects”

The economics literature (e.g., Aghion, Dewatripont, and Stein, 2008) views unfettered control
over one’s research agenda as the key distinguishing feature of innovative activities performed
in academia (relative to the private sector). Variation in the unit of selection reminds us that
the degree of effective control experienced by academic researchers often depends on the arcane
details of funding mechanisms. Although not part of Manso’s (2011) initial analysis, we extend
his model in Appendix A to show that providing the researcher greater latitude in her search
activities encourages exploration. Table 1 summarizes the main differences between the two
sources of funding.

3. Data and sample characteristics

B This section provides a detailed description of the process through which the data used in
the econometric analysis were assembled. In order, we describe (i) the Howard Hughes Medical
investigator sample; (ii) the set of control investigators against which the HHMI scientists will
be compared; and (iii) our metrics of scientific creativity. We also present relevant descriptive
statistics.

O HHMI sample. We begin with a basic description of the criteria necessary for nomination
and appointment as an HHMI investigator. To be eligible, a scientist must be tenured or on the
tenure track at a major research university, academic medical center, or research institute. The
subfields of the life sciences of interest to HHMI investigators are quite broad, but have tended to
concentrate on cell and molecular biology, neurobiology, immunology, and biochemistry. Career-
stage considerations have varied over time, although HHMI typically has not appointed scientists
until they have had enough independent experience so that their work can be distinguished from
that of their postdoctoral or graduate school adviser.

Upon receipt of nominations from participating institutions, HHMI empanels a jury that
reviews these nominations in two sequential steps. In a first step, the number of nominees is
whittled down to a manageable number, mostly based on observable characteristics. For example,
NIH-funded investigators have an advantage because the panel of judges interprets receipt of
federal grants as a signal of management ability. The jury also looks for evidence that the
nominee has stepped out of the shadow cast by his/her mentors: an independent research agenda,
and a “big hit,” that is, a high-impact publication in which the mentor’s name does not appear
on the coauthorship list. In a second step, each remaining nominee’s credentials and future plans
are given an in-depth qualitative look.* Finally, until recently, appointment contracts varied in
their initial length. Assistant investigators (assistant professors in their home institution) were
appointed for three years; associate investigators, for five years; and investigators, for seven years.’

4 Although an input into this process is a letter grade, the review does not provide a continuous score that could
be used in a regression discontinuity-type framework. Moreover, the cutoff that separates successful from unsuccessful
nominees is endogenous in the sense that it depends on the overall quality of the applicant pool.

> In our sample, these categories respectively account for 15%, 70%, and 15% of the total number of scientists in
the treatment group. Of course, such variation raises the specter that appointment length might be endogenous. In fact,
the length of the initial term is purely a function of the scientist’s academic rank in his/her home institution.
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Our analysis focuses on HHMI investigators appointed in 1993, 1994, and 1995. We exclude
the three researchers that withdrew from the program voluntarily, leaving us with a sample of 73
scientists.®

O Control sample: early career prize winners. In the absence of information on the runners-
up of the HHMI competitions, we must rely on observable characteristics to create viable control
groups. The main challenge is that HHMI investigators are extremely accomplished at the time of
their appointment. Controls should not only be well matched with HHMI investigators in terms
of fields, age, gender, and host institutions; their accomplishments should also be comparable at
baseline. Our control group is drawn from early career prize winners in the life sciences.

The Pew, Searle, Beckman, Packard, and Rita Allen scholarships are early career prizes that
target scientists in the same life science subfields and similar research institutions as HHMI.
Every year, these charitable trusts provide seed funding to around 60 life scientists in the first two
years of their independent careers. These scholarships are among the most prestigious accolades
that young researchers can receive as they are building a laboratory, but they differ from HHMI
investigatorships in one essential respect: they are structured as one-time grants (e.g., $60,000
a year over four years for the Pew Scholarship; $80,000 a year for three years for the Searle
Scholarship, etc.). These amounts are relatively small, roughly corresponding to 35% of a typical
NIH RO1 grant. As a result, these scholars must still attract grants from other funding sources
(especially NIH) if they intend to further their independent research career. After a screen to
eliminate investigators whose age places them outside the age range of the treatment group,
and a second screen to exclude researchers working in idiosyncratic fields, we are left with 393
scientists awarded one of these scholarships.

Before presenting descriptive statistics, it is useful to discuss broad features of the control
group that will influence the interpretation of the treatment effect. The process that results in the
selection of HHMIs and controls is very similar. In both cases, an elite jury of senior scientists is
given the mission to identify individuals with an impressive track record as well as exceptional
promise; in particular, they are not asked to evaluate the merits of an individual project. The main
difference between these programs is that ECPWs are selected at the very start of their independent
career, when it is difficult to distinguish their output from that of their postdoctoral mentor. In
contrast, the modal HHMI investigator stands at the cusp of the tenure decision when s/he is ap-
pointed. As a result, there is more variability in the expected performance of ECPW scholars than
is the case among HHMI investigators but, as we will show, it is possible to cull from this group
a subsample of scientists whose characteristics match well those of HHMI scientists at baseline.

O  Measuring scientific creativity. Creativity is a loaded term. The Wikipedia entry informs
us that more than 60 different definitions can be found in the psychological literature, none of
which is particularly authoritative. Furthermore, there exists no agreed-upon metrics or techniques
to measure creative outputs.

The perspective adopted in this article is very pragmatic, and guided by the constraints put
on us by the availability of data. Amabile (1996) suggests that whereas innovation “begins with
creative ideas...creativity by individuals and teams is a starting point for innovation, the first is a
necessary but not sufficient condition for the second.” Although we certainly agree with this view
at a conceptual level, the measurement of scientific productivity—an already well-established
discipline—makes it hard to recognize this nuance. A crucial development in the bibliometric
literature has been the use of citation information to adjust raw publication counts for quality.
Such an approach is not entirely satisfying here, as both “humdrum” and “breakthrough” research

® One accepted a top administrative position in his/her university (HHMI rules prevent investigators from holding
major administrative posts), and one moved to an institution that had no relationship with HHMI. Yet another wished
to move to a different institution during his/her first appointment. To prevent the eruption of bidding wars over HHMI
investigators, the institute forces such investigators to resign their appointment.
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generate publications and citations. Moreover, some types of publications, like review articles,
tend to generate a number of citations not commensurate with their degree of originality. It
has long been noted that the distributions of publications and citations at the individual level is
extremely skewed, and typically follows a power law (Lotka, 1926). The distribution of citations
at the article level exhibits even more skewness. In this article, we make use of the wide variation
in impact across the publications of a given scientist to compute measures of creative output.
Specifically, we sum the number of distinct contributions that fall into the higher quantiles (top
quartile, top five percentiles, or top percentile) of the article-level distribution of citations for an
individual scientist in a given time period.

One practical hurdle is truncation: older articles have had more time to be cited, and hence
are more likely to reach the tail of the citation distribution. To overcome this issue, we compute a
different empirical cumulative distribution function in each year.” For example, in the life sciences
broadly defined, an article published in 1980 would require at least 98 citations to fall into the top
five percentiles of the distribution; an article published in 1990, 94 citations; and an article pub-
lished in 2000, only 57 citations (this is illustrated in Figure 1). With these empirical distributions
in hand, it becomes meaningful to count the number of articles that fall, for example, in the top
percentile over a scientist’s career. Counting the number of contributions that fall “in the tail” is
predicated on the idea that exploration is more likely to result in high-impact publications, relative
to exploitation.® We also assess impact relative to each scientist’s own pre-appointment citation
performance. Because there are not enough data to estimate individual, vintage-specific citation
distributions, we use the entire corpus of work published up until the year of appointment (1993,
1994, or 1995) to compute the citation quantile corresponding to each scientist’s most heavily
cited article. We then count the number of times a scientist exceeds this level after appointment.

We rely on two additional metrics of scientific excellence. We tabulate elections to the
National Academy of Sciences. We also measure the number of students and fellows trained in a
scientist’s lab that go on to win a Pew, Searle, Beckman, Packard, or Rita Allen scholarship.’

HHMI appointments might also fatten the left-hand tail of the outcome distribution, because
pushing the boundaries of one’s field is a riskier endeavor than cruising along an already-
established scientific trajectory. To test this prediction, we compute the number of contributions
that fall in the bottom quartile of the vintage-specific, article-level distribution of citations (about
three citations or fewer).!"” We also count the number of times each scientist underperforms,
relative to the pre-appointment article corresponding to his/her lowest citation quantile. Because
HHMI investigators remain eligible for NIH grants, we also examine how funding outcomes
change following appointment, relative to ECPW controls. In particular, our data enable us to
separate whether funding levels differ because of a change in application behavior or because
HHMI investigators’ grant applications are scored differently by NIH’s review panels in the
post-appointment regime.

Finally, explorative behavior should have implications for the direction of research endeavors,
independently of the success or failure of the associated projects. To investigate this issue, we
construct a battery of measures designed to capture potential changes in the scientists’ research
trajectories. Most of these measures use MeSH keywords as an essential input.'! First, we calculate
the average age of MeSH keywords for the published research of every scientist in the sample,

7 We thank Stefan Wuchty and Ben Jones from Northwestern University for performing these computations.

8 We exclude review articles, editorials, and letters from the set when computing these measures. We also eliminate
articles with more than 20 authors.

° We do not emphasize the results pertaining to these outcomes, because they seem particularly subject to alternative
interpretations: National Academy of Sciences members are elected, and the large contingent of HHMI investigators among
the incumbent membership might skew the results in favor of the treated scientists; similarly, it is plausible that better
students match with HHMI principal investigators (Pls) after their appointment.

19 Too few investigators exit science altogether to make exit a useful indicator of failure.

' MeSH is the National Library of Medicine’s controlled vocabulary thesaurus; it consists of sets of terms naming
descriptors in a hierarchical structure that permits searching at various levels of specificity. There are 24,767 descriptors
in the 2008 MeSH.
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separately for each year of their independent career. A keyword is said to be born the first year it
appears in any article indexed by PubMed. This measure captures the extent to which a scientist’s
research is novel relative to the world’s research frontier. Equally important is to document the
extent to which scientists place new scientific bets in the post-appointment period (1995-2006)
relative to the pre-appointment period (1986-1994).2 We do so by (i) computing the degree of
overlap in MeSH keywords corresponding to articles published in both periods; (ii) computing
the Herfindahl index of MeSH keywords in both periods (a proxy for variety in topic choice);
and (iii) computing one minus the Herfindahl index of citing journal diversity in both periods
(a measure of impact breadth, rather than impact depth as with the citation quantiles). If HHMI
investigators are induced to explore novel approaches following their appointment, we would
expect this behavior to be reflected in these measures.

O  Descriptive statistics. For each scientist, we gathered employment and basic demographic
data from CVs, sometimes complemented by Who’s Who profiles or faculty web pages. We record
the following information: degrees (MD, PhD, or MD/PhD); year of graduation; mentors during
graduate school or postdoctoral fellowship; gender; and department(s).

We obtain publication and citation data from PubMed and Thomson Scientific’s Web of
Science, respectively. Funding information stems from NIH’s Compound Applicant Grant File,
and is available for the entire length of these scientists’ careers. In contrast, grant applications
and their associated priority scores (the “grades” awarded to applications by NIH review panels)
are available solely for years 2003—-2008.

Finally, we categorize the type of laboratory run by each scientist into four broad types:
macromolecular labs, cellular labs, organismal labs, and translational labs. For the first three
types, the taxonomy is based on the level of analysis at which most of the research is performed
in the lab. Some scientists work mostly at the molecular level (i.e., in test tubes). This type of
research does not require living cells, and includes fields such as molecular biology, biochemistry,
and structural biology. Others do most of their research at the cellular level (i.e., in Petri dishes),
and ask questions that require living cells. Prominent subfields include subcellular trafficking,
cell morphology, cell motility, and some aspects of cell signalling. Yet others work with model
organisms (mice, flies, monkeys, worms, etc.), asking questions that require, if not a whole
organism, at least the interaction of multiple cells. The translational label is given to labs run by
physician-scientists whose research has both a laboratory and a clinical component.

HHMI and control samples at baseline. Table 2 presents baseline descriptive statistics. Approx-
imately 37% of the HHMI sample is female, versus 20% of the ECPW sample. They are of the
same career age on average, but better funded than ECPW scholars at baseline ($1.45 million vs.
$1.10 million on average). In terms of raw publication output, the pattern is very similar, with
HHMI investigators leading ECPW scholars. The breadth of impact and diversity of topics studied
by these scientists appears similar for both groups of scientists. ECPWs and HHMI investigators
appear to be drawn from a similar set of academic employers in a dimension relevant for HHMI
appointment: the number of slots allocated to their institution at the nomination stage.

Of course, these averages tell only part of the story. Figure 3 A plots the distribution of
baseline publications in the top 5% of the citation distribution. Note that we are only including here
publications for which the scientist is the senior author, that is, where s/he appears in last position
on the authorship list. The distribution for ECPW scholars appears significantly more skewed
than that for HHMI investigators. Similarly, Figure 3B plots the distribution of NIH funding at
baseline for treatment and control scientists; the shapes of these distributions are very similar.

In summary, characteristics that determine selection into the HHMI program are not
especially well balanced at baseline between treatment and control scientists. However, the region
of common support is wide, indicating that it should be possible to create “synthetic” control
scientists who will be good matches for HHMI investigators on these important dimensions.

12 For investigators appointed in 1993 (resp. 1995), the “after” period begins in 1994 (resp. 1996).
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TABLE 2 Descriptive Statistics: Baseline

Standard
Mean Median Deviation Minimum Maximum
Controls (N = 393)
Degree year 1983.689 1984 3.738 1974 1991
Female 0.199 0 0.400 0 1
MD 0.076 0 0.265 0 1
PhD 0.799 1 0.401 0 1
MD/PhD 0.125 0 0.331 0 1
Macromolecular 0.232 0 0.422 0 1
Cellular 0.394 0 0.489 0 1
Organismal 0.265 0 0.441 0 1
Translational 0.104 0 0.305 0 1
No. of nomination slots 2.179 2 1.296 0 8
Cum. NIH funding ($) 1,106,790 676,249 1,375,588 0 11,634,552
Highest citation quantile 40.001 36 24.352 1 100
Lowest citation quantile 99.202 100 2.748 62 100
Cum. no. of pubs. 24.775 20 20.764 2 200
Cum. no. of pubs. in the bottom 25% 0.647 0 1.410 0 15
Cum. no. of pubs. in the top 25% 18.718 15 14.146 0 123
Cum. no. of pubs. in the top 5% 9.647 8 7.822 0 51
Cum. no. of pubs. in the top 1% 3.712 3 3.875 0 27
Average MeSH age 23.376 23 2.808 18 35
Citing journal diversity, 1986—1994 0.963 1 0.020 0.837 0.992
HHMIs (N = 73)

Degree year 1983.723 1984 4.002 1974 1991
Female 0.369 0 0.486 0 1
MD 0.082 0 0.274 0 1
PhD 0.753 1 0.431 0 1
MD/PhD 0.164 0 0.370 0 1
Macromolecular 0.288 0 0.453 0 1
Cellular 0.329 0 0.470 0 1
Organismal 0.274 0 0.446 0 1
Translational 0.110 0 0.313 0 1
Nb. of nomination slots 2.194 2 1.222 0 8
Cum. NIH funding ($) 1,502,810 1,005,176 1,768,341 0 7,852,110
Highest citation quantile 33.626 28 23.197 1 89
Lowest citation quantile 99.762 100 0.847 93 100
Cum. no. of pubs. 32.657 23 27.399 3 172
Cum. no. of pubs. in the bottom 25% 0.627 0 0.902 0 4
Cum. no. of pubs. in the top 25% 26.866 19 23.398 3 148
Cum. no. of pubs. in the top 5% 16.910 13 16.889 1 119
Cum. no. of pubs. in the top 1% 8.478 5 10.224 0 73
Average MeSH age 22.824 23 2.253 17 29
Citing journal diversity, 1986-1994 0.965 1 0.018 0.921 0.992

Career achievement. Although the differences between treatment and control samples are
relatively modest at baseline, their magnitude increases when we examine achievements over
the entire career. In Table 3, we see that HHMI scientists publish many more articles than ECPW
scientists, with this output of higher quality, regardless of the quantile threshold one chooses to
focus on. Of course, these accomplishments should be viewed in light of HHMI investigators’
funding advantage: although they have garnered fewer resources from NIH by the end of the
sample period than ECPW scholars, they also benefit from HHMI’s relatively lavish research
budgets. In fact, HHMI scientists apply less for RO1 grants than controls who have no alternative
sources of funding: 3.2 versus 5.1 applications on average between 2003 and 2008. On the other
hand, conditional on applying, these same applications are judged more harshly by NIH study
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TABLE 3 Descriptive Statistics: Career Achievement

Standard
Mean Median Devision Minimum Maximum
Early career prize winners (N = 393)
Early career prize winners trained 0.229 0 0.630 0 1
Nobel Prize winner 0.003 0 0.050 0 1
Elected NAS member 0.041 0 0.198 0 1
Career no. of articles 65.003 53 43.444 11 314
Career no. of citations 4,489 3,504 3,489 242 21,448
Career no. of articles in the top 25% 47.952 40 30.829 7 212
Career no. of articles in the top 5% 22.214 18 15.760 0 96
Career no. of articles in the top 1% 7.926 6 7.410 0 38
Number of post-appointment hits 4.087 2 6.150 1 69
Number of post-appointment flops 3.448 2 5.287 0 41
Career NIH funding () 5,229,193 4,805,193 3,458,834 160,249 23,350,194
Avg. length (in years) for RO1 grants 3.680 3.500 1.151 2 6
No. of RO1 grant apps., 2003-2008 5.119 4 3.339 1.000 23.000
Avg. priority score, 2003-2008 161.842 158 36.637 100.000 283.000
Citing journal diversity, 1995-2006 0.968 1 0.025 0.667 0.992
Normalized MeSH keyword overlap 0.104 0 0.062 0 0.462
HHMI investigators (N = 73)

Early career prize winners trained 1.137 0 2.388 0 1
Nobel Prize winner 0.014 0 0.117 0 1
Elected NAS member 0.329