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We estimate the magnitude of spillovers generated by 112 academic “super-
stars” who died prematurely and unexpectedly, thus providing an exogenous source
of variation in the structure of their collaborators’ coauthorship networks. Follow-
ing the death of a superstar, we find that collaborators experience, on average,
a lasting 5% to 8% decline in their quality-adjusted publication rates. By ex-
ploring interactions of the treatment effect with a variety of star, coauthor, and
star/coauthor dyad characteristics, we seek to adjudicate between plausible mech-
anisms that might explain this finding. Taken together, our results suggest that
spillovers are circumscribed in idea space, but less so in physical or social space.
In particular, superstar extinction reveals the boundaries of the scientific field to
which the star contributes—the “invisible college.”

“Greater is the merit of the person who facilitates the accomplishments of
others than of the person who accomplishes himself.”

Rabbi Eliezer, Babylonian Talmud, Tractate Baba Bathra 9a

I. INTRODUCTION

Although the production of ideas occupies a central role in
modern theories of economic growth (Romer 1990), the creative
process remains a black box for economists (Weitzman [1998] and
Jones [2009] are notable exceptions). How do innovators actually
generate new ideas? Increasingly, discoveries result from the vol-
untary sharing of knowledge through collaboration, rather than
individual efforts (Wuchty, Jones, and Uzzi 2007). The growth of
scientific collaboration has important implications for the optimal
allocation of public R&D funds, the apportionment of credit among
scientists, the formation of scientific reputations, and ultimately
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the design of research incentives that foster innovation and con-
tinued economic growth. Yet, we know surprisingly little about
the role of collaboration among peers as a mechanism to spur the
creation of new technological or scientific knowledge.

This paucity of evidence is due largely to the empirical chal-
lenges inherent in this line of inquiry. Individual-level data on
the contributors to a particular innovation are generally unavail-
able. Furthermore, the formation of collaborative teams is the
outcome of a purposeful matching process (Mairesse and Turner
2005; Fafchamps, Goyal, and van de Leij 2008), making it dif-
ficult to uncover causal effects. The design of our study tackles
both of these challenges. To relax the data constraint, we focus on
the academic life sciences, where a rich tradition of coauthorship
provides an extensive paper trail of collaboration histories and
research output. To overcome the endogeneity of the collaboration
decision, we make use of the quasi-experimental variation in the
structure of coauthorship networks induced by the premature and
sudden death of active “superstar” scientists.1

Specifically, we analyze changes in the research output of
collaborators for 112 eminent life scientists who died suddenly
and unexpectedly. We assess eminence based on the combina-
tion of seven criteria, and our procedure is flexible enough to
capture established scientists with extraordinary career achieve-
ment, as well as promising young and mid-career scientists. Us-
ing the Association of American Medical Colleges (AAMC) Faculty
Roster as a data source—a comprehensive, longitudinal, matched
employee–employer database pertaining to 230,000 faculty mem-
bers in all U.S. medical schools between 1975 and 2006—we con-
struct a panel data set of 5,267 collaborator–star pairs, and we
examine how coauthors’ scientific output (as measured by publi-
cations, citations, and National Institutes of Health (NIH) grants)
changes when the superstar passes away.2

1. Other economists have used the death of prominent individuals as a source
of exogenous variation in leadership, whether in the context of business firms
(Bennedsen, Pérez-González, and Wolfenzon 2008) or even entire countries (Jones
and Olken 2005). To our knowledge, however, we are the first to use this strategy to
estimate the impact of scientific collaboration. Oettl (2008) builds on our approach
by incorporating helpfulness as implied by acknowledgements to generate a list of
eminent immunologists. Aizenman and Kletzer (2008) study the citation “afterlife”
of 16 economists who died prematurely, shedding light on the survival of scientific
reputation.

2. To be clear, our focus is on faculty peers rather than trainees, and thus
our results should be viewed as capturing inter-laboratory spillovers rather than
mentorship effects. For evidence on the latter, see Azoulay, Liu, and Stuart (2009).
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The study’s focus on the scientific elite can be justified on both
substantive and pragmatic grounds. The distribution of publica-
tions, funding, and citations at the individual level is extremely
skewed (Lotka 1926; de Solla Price 1963) and only a tiny minority
of scientists contribute through their published research to the ad-
vancement of science (Cole and Cole 1972). Stars also leave behind
a corpus of work and colleagues with a stake in the preservation
of their legacy, making it possible to trace back their careers, from
humble beginnings to wide recognition and acclaim.

Our results reveal a lasting 5% to 8% decrease in the quality-
adjusted publication output of coauthors in response to the sudden
and unexpected loss of a superstar. Though close and recent col-
laborators see their scientific output fall even more, these differen-
tial effects are small in magnitude and statistically insignificant.
Therefore, the process of replacing missing skills within ongoing
collaborative teams cannot, on its own, explain our core result.

The importance of learning through on-the-job social interac-
tions can be traced back to the Talmudic era (as evidenced by the
epigraph to this paper), as well as canonical writings by Alfred
Marshall (1890) and Robert Lucas (1988).3 Should the effects of
exposure to superstar talent be interpreted as laying bare the
presence of knowledge spillovers? Because we identify 47 coau-
thors per superstar on average, we exploit rich variation in the
characteristics of collaborative relationships to assess the relative
importance of several mechanisms that could plausibly account
for our main finding.

A jaundiced view of the academic reward system provides
the backdrop for a broad class of stories. Their common thread
is that collaborating with superstars deepens social connections
that might make researchers more productive in ways that have
little to do with scientific knowledge, for example, by connect-
ing coauthors to funding resources, editorial goodwill, or poten-
tial coauthors. Yet we find no differential impact on coauthors of
stars well-connected to the NIH funding apparatus, on coauthors
of stars more central in the collaboration network, or on former
trainees. These findings do not jibe with explanations stressing
the gatekeeping role of eminent scientists.

3. A burgeoning empirical literature examines the influence of peer effects on
shirking behavior in the workplace (Costa and Khan 2003; Bandiera, Barankay,
and Rasul 2005; Mas and Moretti 2009). Because “exposure” does not involve the
transmission of knowledge, these spillovers are conceptually distinct from those
that concern us here.
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Rather, the effects of superstar extinction appear to be driven
by the loss of an irreplaceable source of ideas. We find that coau-
thors proximate to the star in intellectual space experience a
sharper decline in output, relative to coauthors who work on less
related topics. Furthermore, the collaborators of stars whose work
was heavily cited at the time of their death also undergo steeper
decreases, relative to collaborators of superstars of less renown.
Together, these results paint a picture of an invisible college of
coauthors bound together by interests in a fairly specific scientific
area, which suffers a permanent and reverberating intellectual
loss when it loses its star.

The rest of the paper proceeds as follows. In the next section,
we describe the construction of the sample of matched superstars
and collaborators, as well as our empirical strategy. Section III
provides descriptive statistics at the coauthor and dyad level. We
report the results in Section IV. Section V concludes.

II. SETTING, DATA, AND MATCHED SAMPLE CONSTRUCTION

The setting for our empirical work is the academic life sci-
ences. This sector is an important one to study for several reasons.
First, there are large public subsidies for biomedical research in
the United States. With an annual budget of $29.5 billion in 2008,
support for the NIH dwarfs that of other national funding agencies
in developed countries (Cech 2005). Deepening our understand-
ing of knowledge production in this sector will allow us to better
assess the return to these public investments.

Second, technological change has been enormously important
in the growth of the health care economy, which accounts for
roughly 15% of U.S. GDP. Much biomedical innovation is science-
based (Henderson, Orsenigo, and Pisano 1999), and interactions
between academic researchers and their counterparts in industry
appear to be an important determinant of research productivity
in the pharmaceutical industry (Cockburn and Henderson 1998;
Zucker, Darby, and Brewer 1998).

Third, academic scientists are generally paid through soft
money contracts. Salaries depend on the amount of grant revenue
raised by faculty, thus providing researchers with high-powered
incentives to remain productive even after they secure a tenured
position.

Last, introspective accounts by practicing scientists indicate
that collaboration plays a large role in both the creation and
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diffusion of new ideas (Reese 2004). Knowledge and techniques
often remain partially tacit until long after their initial discovery,
and are transmitted within the confines of tightly knit research
teams (Zucker and Darby 2008).

II.A. Superstar Sample

Our basic approach is to rely on the death of superstar scien-
tists to estimate the magnitude of knowledge spillovers onto col-
leagues. From a practical standpoint, it is more feasible to trace
back the careers of eminent scientists than to perform a similar
exercise for less eminent ones. We began by delineating a set of
10,349 elite life scientists (roughly 5% of the entire relevant la-
bor market), who are so classified if they satisfy at least one of the
following criteria for cumulative scientific achievement: (1) highly
funded scientists; (2) highly cited scientists; (3) top patenters; and
(4) members of the National Academy of Sciences.

These four criteria will tend to select seasoned scientists,
because they correspond to extraordinary achievement over an
entire scientific career. We combine these measures with three
others that capture individuals who show great promise at the
early and middle stages of their scientific careers, whether or
not these episodes of productivity endure for long periods of
time: (5) NIH MERIT awardees; (6) Howard Hughes medical
investigators; and (7) early career prize winners. Appendix I
provides additional details regarding these seven metrics of
“superstardom.”

We trace these scientists’ careers from the time they obtained
their first positions as independent investigators (typically after
a postdoctoral fellowship) until 2006. We do so through a com-
bination of curriculum vitaes, NIH biosketches, Who’s Who pro-
files, accolades/obituaries in medical journals, National Academy
of Sciences biographical memoirs, and Google searches. For each
one of these individuals, we record employment history, degree
held, date of degree, gender, and up to three departmental affili-
ations. We also cross-reference the list with alternative measures
of scientific eminence. For example, the elite subsample contains
every U.S.-based Nobel Prize winner in medicine and physiology
since 1975, and a plurality of the Nobel Prize winners in chemistry
over the same time period.

Though we apply the convenient moniker of “superstar” to
the entire group, it should be clear that there is substantial het-
erogeneity in intellectual stature within the elite sample. This
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variation provides a unique opportunity to examine whether the
effects we estimate correspond to vertical effects (spillovers from
the most talented agents onto those who are less distinguished)
or peer effects (spillovers between agents of roughly comparable
stature).

The scientists who are the focus of this paper constitute a
subset of this larger pool of 10,349. We impose several additional
criteria to derive the final list. First, the scientist’s death must
occur between 1979 and 2003. This will enable us to observe at
least four years’ (resp. three years’) worth of scientific output for
every colleague before (resp. after) the death of the superstar col-
laborator. Second, he or she must be 67 years of age or less at the
time of death (we will explore the sensitivity of our results to this
age cutoff later). Third, we require evidence, in the form of pub-
lished articles and/or NIH grants, that these scientists have not
entered a preretirement phase of their careers prior to the time
of death. This constraint is somewhat subjective, but we validate
in the Online Appendix our contention that the final set is limited
to scientists who are “research-active” at the time of their death.
These sequential screens delineate a set of 248 scientists. Finally,
we limit our attention to the subset of stars who died suddenly and
unexpectedly. This is less difficult that it might seem, because the
vast majority of obituaries mention the cause of death explicitly.4

After eliminating 136 scientists whose deaths could have been
anticipated by their colleagues, we are left with 112 extinct super-
stars (their names, cause of death, and institutional affiliations
are listed in Table W1 in the Online Appendix).

Table I provides descriptive statistics for the superstar sam-
ple. The average star received his degree in 1963, died at 57 years
old, and worked with 47 coauthors during his lifetime. On the out-
put side, the stars each received an average of roughly 11 million
dollars in NIH grants (excluding center grants) and published 139
papers that had garnered 8,190 citations as of early 2008.

II.B. The Universe of Potential Colleagues

Information about the superstars’ colleagues stems from the
Faculty Roster of the Association of American Medical Colleges,

4. We exclude from the sample one scientist who took his own life, and a
further two for whom suicide could not be ruled out. In ten other instances, the
cause of death could not be ascertained from the obituaries and we contacted
former collaborators individually to clarify the circumstances of the superstar’s
passing.
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to which we secured licensed access for the years 1975 through
2006. The roster is an annual census of all U.S. medical school
faculty in which each faculty is linked across yearly cross sections
by a unique identifier.5 When all cross sections are pooled, we ob-
tain a matched employee/employer panel data set. For each of the
230,000 faculty members that appear in the roster, we know the
full name, the type of degrees received and the years they were
awarded, gender, up to two departments, and medical school af-
filiation. An important implication of our reliance on the AAMC
Faculty Roster is that the interactions we can observe in the data
take place between faculty members, rather than between fac-
ulty members and trainees (graduate students or postdoctoral
fellows).6

Because the roster only lists medical school faculty, however,
it is not a complete census of the academic life sciences. For in-
stance, it does not list information for faculty at institutions such
as MIT, the University of California at Berkeley, Rockefeller Uni-
versity, the Salk Institute, or the Bethesda campus of the NIH; it
also ignores faculty members in arts and sciences departments—
such as biology and chemistry—if they do not hold joint appoint-
ments at local medical schools.7

Our interest lies in assessing the benefits of exposure to super-
star talent that accrue through collaboration. Therefore, we focus
on the one-degree, egocentric coauthorship network for the sample
of 112 extinct superstars. To identify coauthors, we have developed
a software program, the Stars/Colleague Generator, or S/CGEN.8

The source of the publication data is PubMED, an online resource

5. AAMC does not collect data from each medical school with a fixed due date.
Instead, it collects data on a rolling basis, with each medical school submitting on
a time frame that best meets its reporting needs. Nearly all medical schools report
once a year, whereas many medical schools update once a semester.

6. To the extent that former trainees go on to secure faculty positions, they
will be captured by our procedure even if the date of coauthorship predates the
start of their independent career.

7. This limitation is less important than might appear at first glance. First,
we have no reason to think that colleagues located in these institutions differ in
substantive ways from those based in medical schools. Second, all our analyses fo-
cus on changes in research productivity over time for a given scientist. Therefore,
the limited coverage is an issue solely for the small number of faculty who transi-
tion in and out of medical schools from (or to) other types of research employment.
For these faculty, we were successful in filling career gaps by combining the AAMC
Faculty Roster with the NIH data.

8. The software can be used by other researchers under an open-source (GNU)
license. It can be downloaded, and detailed specifications accessed from the Web
site http://stellman-greene.com/SCGen/. Note that the S/CGEN takes the AAMC
Faculty Roster as an input; we are not authorized to share these data with third
parties. However, they can be licensed from AAMC, provided a local IRB gives
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from the National Library of Medicine that provides fast, free, and
reliable access to the biomedical research literature. In a first step,
S/CGEN downloads from the Internet the entire set of English-
language articles for a superstar, provided they are not letters to
the editor, comments, or other “atypical” articles. From this set of
publications, S/CGEN strips out the list of coauthors, eliminates
duplicate names, matches each coauthor with the Faculty Ros-
ter, and stores the identifier of every coauthor for whom a match
is found. In a final step, the software queries PubMED for each
validated coauthor, and generates publication counts as well as
coauthorship variables for each superstar/colleague dyad, in each
year. In the Online Appendix, we provide details on the matching
procedure, how we guard against the inclusion of spurious coau-
thors, and our approach to addressing measurement error when
tallying the publication output of coauthors with common names.

II.C. Identification Strategy

A natural starting point for identifying the effect of super-
star death is to examine changes in collaborator research output
after the superstar passes away, relative to when he or she was
still alive, using a simple collaborator fixed effects specification.
Because the extinction effect is mechanically correlated with the
passage of time, as well as with the coauthor’s age, our specifi-
cations must include life-cycle and period effects, as is the norm
in studies of scientific productivity (Levin and Stephan 1991). In
this framework, the control group that pins down the counterfac-
tual age and calendar time effects for the coauthors that currently
experience the death of a superstar consists of coauthors whose
associated superstars died in earlier periods, or will die in fu-
ture periods. Despite its long pedigree in applied economics (e.g.,
Grogger [1995]; Reber [2005]), this approach may be problematic
in our setting.

First, coauthors observed in periods after the deaths of their
associated superstars are not appropriate controls if the event
negatively affected the trend in their output; if this is the case,
fixed effects will underestimate the true effect of superstar ex-
tinction. Second, collaborations might be subject to idiosyncratic
life-cycle patterns, with their productive potential first increasing
over time, eventually peaking, and thereafter slowly declining; if

its approval and a confidentiality agreement protects the anonymity of individual
faculty members.
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this is the case, fixed effects will overestimate the true effect of
superstar extinction, at least if we rely on collaborators treated in
earlier or later periods as as an “implicit” control group.

To mitigate these threats to identification, our preferred em-
pirical strategy relies on the selection of a matched control for each
scientist who experiences the death of a superstar collaborator.
These control scientists are culled from the universe of coauthors
for the 10,000 superstars who do not die (see Section II.A). Com-
bining the treated and control samples enables us to estimate the
effect of superstar extinction in a difference-in-differences (DD)
framework. Using a “coarsened exact matching” procedure de-
tailed in Appendix II, the control coauthors are chosen so that
(1) treated scientists exhibit no differential output trends relative
to controls up to the time of superstar death; (2) the distributions
of career age at the time of death are similar for treated and
controls; (3) the time paths of output for treated and control coau-
thors are similar up to the time of death; and (4) the dynamics
and main features of collaboration (number of coauthorships at
the time of death; time elapsed since first and last coauthorship;
status of the superstar collaborator as summarized by cumulative
citations in the year of death) are balanced between treated and
control groups.

However, adding this control group to the basic regression
does not, by itself, yield a specification where the control group
consists exclusively of matched controls. Figure A.1 displays the
trends in average and median number of quality-adjusted publi-
cations, for treated and control collaborators respectively, without
any adjustment for age or calendar time effects. This raw com-
parison is not without its problems, because it involves centering
the raw data around the time of death, thus ignoring the lack
of congruence between experimental and calendar time. Yet it is
completely nonparametric, and provides early evidence that the
loss of a superstar coauthor leads to a decrease in collaborators’
publication output. Furthermore, the magnitudes of the estimates
presented below are very similar whether or not control scientists
are added to the estimation sample.

Another potential concern with the addition of this “explicit”
control group is that control coauthors could be affected by the
treatment of interest. No scientist is an island. The set of coau-
thors for our 10,349 elite scientists comprises 65% of the la-
bor market, and the remaining 35% corresponds in large part
to clinicians who hold faculty appointments but do not publish
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regularly. Furthermore, the death of a prominent scientist could
affect the productivity of noncoauthors if meaningful interactions
take place in “idea space,” as we propose. Thus, in robustness
checks, we check whether eliminating from the estimation sample
treated and control collaborators separated by small path lengths
in the coauthorship network matters for the substance, or even
the magnitude, of our main results.

III. DESCRIPTIVE STATISTICS

When applied to our sample of 112 extinct superstars,
S/CGEN identifies 5,267 distinct coauthors with unique PubMED
names.9 Our matching procedure can identify a control scientist
for 5,064 (96%) of the treated collaborators. The descriptive
statistics in Table II pertain to the set of 2 × 5,064 = 10,128
matched treated and control scientists. The covariates of interest
are measured in the (possibly counterfactual) year of death for
the superstar. We distinguish variables that are inherently dyadic
(e.g., colocation at time of death) from variables that characterize
the coauthor at a particular point of time (e.g., NIH R01 funding
at the time of death).

III.A. Dyadic Variables

Of immediate interest is the distribution of coauthorship in-
tensity at the dyad level. Although the average number of coau-
thorships is slightly less than three, the distribution is extremely
skewed (Figure I). We define “casual” dyads as those that have
two or fewer coauthorships with the star, “regular” dyads as those
with three to nine coauthorships, and “close” dyads as those with
ten or more coauthorships. Using these cutoffs, regular dyads cor-
respond to those between the 75th and the 95th percentile of
coauthorship intensity, whereas close dyads correspond to those
above the 95th percentile.

We focus next on collaboration age and recency. On average,
collaborations begin eleven years before the star’s death, and time
since last coauthorship is slightly more than nine years. In other
words, most of the collaborations in the sample do not involve
active research projects at the time of death. Recent collaborations

9. Whenever a scientist collaborates with more than one extinct superstar
(this is relevant for 10% of the sample), we take into account only the first death
event. We have verified that limiting the estimation sample to collaborators with
one and only one tie to a superstar who dies does not change the substance, or
even the magnitudes, of our core result.
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FIGURE I
Distribution of Coauthorship Intensity

(those that involve at least one coauthorship in the three years
preceding the passing of the superstar) map into the top quartile
of collaboration recency at the dyad level.

The research collaborations studied here occur between fac-
ulty members, who often run their own labs (a conjecture rein-
forced by the large proportion of coauthors with independent NIH
funding). Yet it is interesting to distinguish collaborators who
trained under a superstar (either in graduate school or during a
postdoctoral fellowship) from those collaborations initiated at a
time in which both nodes in the dyad already had a faculty ap-
pointment. Although there is no roster of mentor/mentee pairs,
coauthorship norms in the life sciences provide an opportunity to
identify former trainees. Specifically, we flag first-authored arti-
cles published within a few years of receipt of the coauthor’s degree
in which the superstar appears in last position on the authorship
roster.10 Using this method, we find that roughly 8% of treated
collaborators were former trainees of the associated superstar.

10. The purported training period runs from three years before graduation
to four years after graduation for Ph.D.’s and M.D./Ph.D.’s, and from the year of
graduation to six years after graduation for M.D.’s. Recall that we do not observe
the population of former trainees, but only those trainees who subsequently went
on to get full-time faculty positions in the United States. One concern is selection
bias for the set of former trainees associated with superstars who died when they
had just completed training. To guard against this potential source of bias, we
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We now examine the spatial distribution of collaborations.
Slightly more than 12% of collaborations correspond to scientists
who were colocated at the time of superstar extinction; though
this is not the focus of the paper, the proportion of local collab-
orations has declined over time, as many previous authors have
documented (e.g., Rosenblat and Möbius [2004]). We also provide a
measure of collaborators’ proximity in ideas space. Every publica-
tion indexed by PubMED is tagged by a large number of descrip-
tors, selected from a dictionary of approximately 25,000 MeSH
(Medical Subject Headings) terms. Our measure of intellectual
proximity between members of a dyad is simply the number of
unique MeSH terms that overlap in their noncoauthored publica-
tions, normalized by the total number of MeSH terms used by the
superstar’s coauthor. The time window for the calculation is the
five years that precede the passing of the superstar. The distribu-
tion of this variable is displayed in Figure II.11

Finally, we create a measure of social proximity that relies not
on the quantity of coauthored output, but on the degree of social
interaction it implies. We focus on the pairs involving coauthors
who, whenever they collaborate, find themselves in the middle of
the authorship list. Given the norms that govern the allocation
of credit in the life sciences, these coauthors are likely to share
the least amount of social contact. Of the dyads in the sample,
7.5% correspond to this situation of “accidental coauthorship”—
the most tenuous form of collaboration.

III.B. Coauthor Variables

We briefly mention demographic characteristics that do not
play a role in the econometric results but are nonetheless infor-
mative. The sample is 20% female (only 10% of the superstars
are women); approximately half of all coauthors are M.D.’s, 40%
are Ph.D.’s, and the remainder are M.D./Ph.D.’s; and a third are
affiliated with basic science departments (as opposed to clinical or
public health departments). The coauthors are about eight years
younger than the superstars on average (1971 vs. 1963 for the
year of highest degree).

Coauthors lag behind superstars in terms of publication out-
put at the time of death, but the difference is not dramatic (88

eliminated all former trainees from the sample with career age less than five at
the time of death.

11. Further details on its construction are provided in the Online Appendix,
Section II.
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FIGURE II
Proximity in Ideas Space

Measure of distance in ideas space is defined as the number of unique MeSH
terms that overlap between the colleague’s and superstar’s publications (exclud-
ing coauthored output), normalized by the total number of MeSH terms used
in the colleague’s total publications. This measure is calculated for articles pub-
lished in the five years preceding superstar death. Calculation excludes coauthored
publications.

vs. 140 articles, on the average). Assortative matching is present
in the market for collaborators, as reflected by the fact that
2,852 (28.16%) of our 10,128 coauthors belong to the elite sam-
ple of 10,349 scientists. Of collaborators, 55% had served as PI
on at least one NIH R01 grant when the superstar passed away,
whereas about 8% of the treated collaborators (and 9% of the con-
trols) belong to a more exclusive elite: Howard Hughes medical
investigators, members of the NAS, or MERIT awardees.

The estimation sample pools observations between 1975 and
2006 for the dyads described above. The result is an unbalanced
panel data set with 153,508 collaborator × year observations
(treated collaborators only) or 294,943 collaborator × year ob-
servations (treated and control collaborators).

IV. RESULTS

The exposition of the econometric results proceeds in three
stages. After a brief review of methodological issues, we provide
results that pertain to the main effect of superstar exposure on
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publication rates. Second, we examine whether this effect merely
reflects the adverse impact of losing important skills within ongo-
ing collaborative teams. Third, we attempt to explicate the mech-
anism, or set of mechanisms, responsible for the results. We do
so by exploring heterogeneity in the treatment through the in-
teraction of the postdeath indicator variable below with various
attributes of the superstar, colleague, and dyad.

IV.A. Econometric Considerations

Our estimating equation relates colleague j’s output in year t
to characteristics of j, superstar i, and dyad i j:

E[yjt | Xijt] = exp[β0 + β1AFTER DEATHit(1)

+ f (AGE jt) + δt + γi j],

where y is a measure of research output, AFTER DEATH denotes
an indicator variable that switches to one the year after the su-
perstar dies, f (AGE jt) corresponds to a flexible function of the
colleague’s career age, the δt’s stand for a full set of calendar year
indicator variables, and the γi j ’s correspond to dyad fixed effects,
consistent with our approach to analyze changes in j’s output
following the passing of superstar i.

The dyad fixed effects control for many individual charac-
teristics that could influence research output, such as gender or
degree. Academic incentives depend on the career stage; given the
shallow slope of posttenure salary increases, Levin and Stephan
(1991) suggest that levels of investment in research should vary
over the career life cycle. To flexibly account for life-cycle effects,
we include seventeen indicator variables corresponding to differ-
ent career age brackets, where career age measures the number
of years since a scientist earned his/her highest degree (M.D. or
Ph.D.).12 In specifications that include an interaction between the
treatment effect and some covariates, the models also include a set
of interactions between the life-cycle effects and these covariates.

Estimation. The dependent variables of interest, including
weighted or unweighted publication counts and NIH grants
awarded, are skewed and nonnegative. For example, 24.80% of the

12. The omitted category corresponds to faculty members in the very early
years of their careers (before age −3). It is not possible to separately identify
calendar year effects from age effects in the “within” dimension of a panel in a
completely flexible fashion, because one cannot observe two individuals at the
same point in time who have the same (career) age but earned their degrees in
different years (Hall, Mairesse, and Turner 2007).
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collaborator/year observations in the data correspond to years of
no publication output; the figure climbs to 87.40% if one focuses on
the count of successful grant applications. Following a longstand-
ing tradition in the study of scientific and technical change, we
present conditional quasi–maximum likelihood (QML) estimates
based on the fixed-effect Poisson model developed by Hausman,
Hall, and Griliches (1984). Because the Poisson model is in the
linear exponential family, the coefficient estimates remain consis-
tent as long as the mean of the dependent variable is correctly
specified (Gouriéroux, Montfort, and Trognon 1984).13

Inference. QML (i.e., “robust”) standard errors are consistent
even if the underlying data-generating process is not Poisson. In
fact, the Hausman et al. estimator can be used for any nonnega-
tive dependent variables, whether integer or continuous (Santos
Silva and Tenreyro 2006), as long as the variance/covariance ma-
trix is computed using the outer product of the gradient vector
(and therefore does not rely on the Poisson variance assumption).
Further, QML standard errors are robust to arbitrary patterns
of serial correlation (Wooldridge 1997), and hence immune to the
issues highlighted by Bertrand, Duflo, and Mullainathan (2004)
concerning inference in DD estimation. We cluster the standard
errors around superstar scientists in the results presented below.

Dependent Variables. Our primary outcome variable is a
coauthor’s number of publications. Because SC/GEN matches the
entire authorship roster for each article, we can separate those
publications coauthored with the superstar from those produced
independent of him/her. We perform a quality adjustment by
weighting each publication by its journal impact factor (JIF)—
a measure of the frequency with which the average article in a
journal has been cited in a particular year. One obvious short-
coming of this adjustment is that it does not account for differ-
ences in impact within a given journal. In the Online Appendix
(Section V), we present additional results based on article-level
citation outcomes.

IV.B. Main Effect of Superstar Extinction

Table III presents our core results. Column (1a) examines
the determinants of the 5,267 treated coauthors’ JIF-weighted

13. In the Online Appendix (Section IV), we show that OLS yields results very
similar to QML Poisson estimation for our main findings.



SUPERSTAR EXTINCTION 567

T
A

B
L

E
II

I
IM

P
A

C
T

O
F

S
U

P
E

R
S

T
A

R
D

E
A

T
H

O
N

C
O

L
L

A
B

O
R

A
T

O
R

S
’P

U
B

L
IC

A
T

IO
N

R
A

T
E

S

P
an

el
A

P
an

el
B

A
ll

JI
F

-w
ei

gh
te

d
JI

F
-w

ei
gh

te
d

pu
bl

ic
at

io
n

s
pu

bl
ic

at
io

n
s

w
ri

tt
en

w
it

h
ot

h
er

s

W
it

h
ou

t
ct

rl
s

W
it

h
ct

rl
s

W
it

h
ou

t
ct

rl
s

W
it

h
ct

rl
s

(1
a)

(1
b)

(2
a)

(2
b)

A
ft

er
de

at
h

−0
.0

92
∗∗

−0
.0

86
∗∗

−0
.0

57
∗∗

−0
.0

54
∗

(0
.0

22
)

(0
.0

25
)

(0
.0

22
)

(0
.0

24
)

L
og

ps
eu

do
-l

ik
el

ih
oo

d
−9

74
,2

85
−1

,8
32

,5
94

−9
50

,8
64

−1
,7

83
,9

58
N

o.
of

ob
se

rv
at

io
n

s
15

3,
50

8
29

4,
94

3
15

3,
50

8
29

4,
94

3
N

o.
of

co
ll

ab
or

at
or

s
5,

26
7

10
,1

28
5,

26
7

10
,1

28

N
ot

es
.

E
st

im
at

es
st

em
fr

om
co

n
di

ti
on

al
qu

as
i–

m
ax

im
u

m
li

ke
li

h
oo

d
P

oi
ss

on
sp

ec
ifi

ca
ti

on
s.

D
ep

en
de

n
t

va
ri

ab
le

is
th

e
to

ta
l

n
u

m
be

r
of

JI
F

-w
ei

gh
te

d
ar

ti
cl

es
au

th
or

ed
by

a
co

ll
ab

or
at

or
of

a
su

pe
rs

ta
r

li
fe

sc
ie

n
ti

st
in

th
e

ye
ar

of
ob

se
rv

at
io

n
.A

ll
m

od
el

s
in

co
rp

or
at

e
a

fu
ll

su
it

e
of

ye
ar

ef
fe

ct
s

as
w

el
l

as
se

ve
n

te
en

ag
e

ca
te

go
ry

in
di

ca
to

r
va

ri
ab

le
s

(c
ar

ee
r

ag
e

le
ss

th
an

−3
is

th
e

om
it

te
d

ca
te

go
ry

).
E

xp
on

en
ti

at
in

g
th

e
co

ef
fi

ci
en

ts
an

d
di

ff
er

en
ci

n
g

fr
om

on
e

yi
el

d
n

u
m

be
rs

in
te

rp
re

ta
bl

e
as

el
as

ti
ci

ti
es

.F
or

ex
am

pl
e.

th
e

es
ti

m
at

es
in

co
lu

m
n

(1
a)

im
pl

y
th

at
co

ll
ab

or
at

or
s

su
ff

er
on

av
er

ag
e

a
st

at
is

ti
ca

ll
y

si
gn

ifi
ca

n
t

(1
–

ex
p[

−0
.0

92
])

=
8.

79
%

de
cr

ea
se

in
th

e
ra

te
of

pu
bl

ic
at

io
n

af
te

r
th

ei
r

su
pe

rs
ta

r
co

au
th

or
pa

ss
es

aw
ay

.R
ob

u
st

(Q
M

L
)

st
an

da
rd

er
ro

rs
in

pa
re

n
th

es
es

,c
lu

st
er

ed
at

th
e

le
ve

lo
f

th
e

su
pe

rs
ta

r.
∗ p

<
.0

5.
∗∗

p
<

.0
1.



568 QUARTERLY JOURNAL OF ECONOMICS

publication output. We find a sizable and significant 8.8% decrease
in the yearly number of quality-adjusted publications coauthors
produce after the star dies. Column (2b) adds the set of control
coauthors to the estimation sample. This reduces our estimate
of the treatment effect only slightly, to a statistically significant
8.2% decline.

Columns (1b) and (2b) provide the results for an identical set
of specifications, except that we modify the dependent variable
to exclude publications coauthored with the superstar when com-
puting the JIF-weighted publication counts. The contrast between
the results in Panels A and B elucidates scientists’ ability to sub-
stitute toward new collaborative relationships upon the death of
their superstar coauthor. The effects are now smaller, but they
remain statistically significant.

We also explore the dynamics of the effects uncovered in
Table III. We do so by estimating a specification in which the
treatment effect is interacted with a set of indicator variables cor-
responding to a particular year relative to the superstar’s death,
and then graphing the effects and the 95% confidence interval
around them (Figures IIIA and IIIB, corresponding to Table III,
columns (1b) and (2b)). Following the superstar’s death, the treat-
ment effect increases monotonically in absolute value, becoming
statistically significant three to four years after death. Two as-
pects of this result are worthy of note. First, we find no evidence of
recovery—the effect of superstar extinction appears permanent.
Though we will explore mechanisms in more detail below, this
seems inconsistent with a bereavement-induced loss in productiv-
ity. Second, the delayed onset of the effect makes sense because
it plausibly takes some time to exhaust the productive potential
of the star’s last scientific insights. In addition, the typical NIH
grant cycle is three to five years, and the impact of a superstar’s
absence may not really be felt until it becomes time to apply for a
new grant.

In all specifications, the results with and without controls
are quite similar. In the remainder of the paper, the estimations
sample always include the “explicit” control group, though the
results without it are qualitatively similar.

IV.C. Imperfect Skill Substitution

Collaborative research teams emerge to pool the expertise
of scientists, who, in their individual capacity, face the “burden of
knowledge” problem identified by Jones (2009). Upon the death of
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a key collaborator, other team members might struggle to suitably
replace the pieces of knowledge that were embodied in the star.
Viewed in this light, the effects uncovered in Table III could be
considered unsurprising—a mechanical reflection of the skill sub-
stitution process. The fact that publications with coauthors other
than the superstar are adversely affected and the permanence of
the treatment effect already suggests other forces are at play. The
imperfect skill substitution (ISS) story carries additional testable
implications. First, one would expect coauthors with closer
relationships with the star to suffer steeper decreases in output;
the same would be expected for recent or new collaborations,
which are more likely to involve ongoing research efforts at the
time of death. Table IV examines these implications empirically.

We find that regular and, to a lesser extent, close collabora-
tors are indeed more negatively affected than casual collaborators,
but these differential losses are relatively small in magnitude and
statistically insignificant (column (1a)). The same holds true for
recent collaborations (column (2a), at least one joint publication in
the three years preceding the star’s death) and for young collabo-
rations (those for which the first coauthored publication appeared
in the five years preceding the star’s death, unreported results
available from the authors). Columns (1b) and (2b) provide results
for an identical set of specifications, but excluding publications
coauthored with the superstar. The contrast between the results
in columns (1a) and (1b) (resp. (2a) and (2b)) elucidates scien-
tists’ ability to substitute toward new collaborative relationships
upon the death of their superstar coauthor. The estimates imply
that close and, to a lesser extent, recent coauthors do manage
to find replacement collaborators (or to intensify already exist-
ing collaborations). Close collaborators experience an imprecisely
estimated 6.18% average increase in their quality-adjusted publi-
cations written independent of the star, but this is only a partial
offset for the overall loss documented in column (1a). We find that
casual collaborators and collaborators without a recent coauthor-
ship see their independent output decline respectively by 5.54%
(column (1b)) and 8.25% (column (2b)). Very similar results are
obtained when all these covariates are combined into one specifi-
cation (columns (3a) and (3b)).

Although the differential impacts on the closest and most re-
cent collaborators are not statistically significant, they do appear
to move in the direction that supports the skill substitution hy-
pothesis. However, the inability of scientists to compensate fully
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for the loss of expected future collaborations through alternative
relationships, as well as the permanence of the extinction effect,
demonstrate that something more than the star’s skills disap-
pears upon their death. Taken as a whole, these results suggest
that the treatment effect from Table III cannot be fully explained
by imperfect skill substitution within ongoing teams.

IV.D. Disentangling Mechanisms

We exploit the fine-grained level of detail in the data to sort
between mechanisms which might underlie the extinction effect.
Are collaborative ties with superstars conduits for tangible re-
sources, or for knowledge and ideas? These two broad classes of
explanations are not mutually exclusive, but ascertaining their
relative importance matters because their welfare implications
differ sharply. If superstars merely act as gatekeepers, then their
deaths will lead to a reallocation of resources away from former
collaborators, but may have little impact on social welfare. Con-
versely, if spillovers of knowledge were enabled by collaboration,
their passing might result in significant welfare losses.

Superstars as Gatekeepers. Superstars may matter for their
coauthors because they connect them to important resources ei-
ther within their institution or in the scientific world at large.
These resources might include funding, administrative clout, ed-
itorial goodwill, or other potential collaborators. We attempt to
evaluate the validity of three particular implications of this story
in Table V.

First, we examine whether the superstar’s ties to the NIH
funding apparatus moderate the magnitude of the extinction ef-
fect. Whereas social scientists sometimes emphasize the role that
journal editors can have in shaping individual careers, life scien-
tists are often more concerned that the allocation of grant dollars
deviates from the meritocratic ideal. Therefore, we investigate
whether the treatment effect is of larger magnitude when the
star either sat on NIH review panels in the last five years, or
has coauthorship ties with other scientists who sat on study sec-
tions in the recent past. In column (1), we find that this is not
the case. The differential impacts are relatively small, positive in
magnitude, and not statistically significant.

Second, we address the hypothesis that superstars matter
because they broker relationships between scientists who would
otherwise remain unaware of each other’s expertise. We do so by
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computing the betweenness centrality for the extinct superstars in
the coauthorship network formed by the 10,349 elite scientists.14

We then rank the superstars according to quartile of betweenness
and look for evidence that collaborators experience a more pro-
nounced decline in output if their superstar coauthor was more
central (column (2)). We find that collaborators with stars in the
top quartile suffer additional losses, relative to collaborators of
less central superstars, but this differential effect is statistically
insignificant.

Finally, in column (3), we look for a differential effect of su-
perstar death for coauthors that were also former trainees. It is
possible that mentors continue to channel resources to their for-
mer associates even after they leave their laboratories, in which
case one would expect these former trainees to exhibit steeper and
more precipitous declines following the passing of their adviser.
In fact, the differential effect is large and positive, though not
statistically significant.

The evidence presented in Table V appears broadly inconsis-
tent with the three particular gatekeeping stories whose implica-
tions we could test empirically. Our assessment of the gatekeeping
mechanism must remain guarded for two reasons. First, the effect
of variables used to proxy for the strength of social ties are sub-
ject to alternative interpretations. For instance, a former trainee
effect could also be interpreted as providing evidence of knowl-
edge spillovers, because mentorship can continue into the early
faculty career and be extremely important for a young scholar’s
intellectual development. Furthermore, it is possible to think of
alternative versions of the gatekeeping mechanism; as an exam-
ple, superstars might be able to curry favors with journal editors
on behalf of their protégés, or they might be editors themselves.
We prefer to frame the findings contrapositively: it is hard to
look at the evidence presented so far and conclude that access
to resources is a potent way in which superstars influence their
collaborators’ scientific output.

Knowledge Spillovers. We now examine the possibility that
stars generate knowledge spillovers onto their coauthors. In
Table VI, we build a circumstantial case for the spillover view by

14. Betweenness is a measure of the centrality of a node in a network, and is
calculated as the fraction of shortest paths between dyads that pass through the
node of interest. In social network analysis, it is often interpreted as a measure of
the influence a node has over the spread of information through the network.
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documenting evidence of additional output losses for collabora-
tors who were more proximate with the superstar at the time of
death, using two different meanings of proximity: physical and
intellectual.

In column (1), we investigate the impact of physical proxim-
ity by interacting the treatment effect with an indicator variable
for those collaborators who were colocated with the superstar at
the time of death. We find essentially no difference between the
fates of these coauthors and those of coauthors located further
away—the interaction term is positive, small in magnitude, and
imprecisely estimated. At first blush, this finding appears con-
sistent with some recent work suggesting a fading role for ge-
ographic distance, both as a factor influencing the formation of
teams (Rosenblat and Möbius 2004; Agrawal and Goldfarb 2008),
and as a factor circumscribing the influence of peers (Kim, Morse,
and Zingales 2009; Griffith, Lee, and Van Reenen 2007; Waldinger
2008). However, our estimate of the colocation interaction term
conflates the effect of the loss of knowledge spillovers, the ef-
fect of the loss of help and protection provided by the star in the
competition for internal resources (such as laboratory space), and
the effect of any measure taken by the institution to compensate
for the death of the superstar. As a result, it is unclear whether
our results contradict the more conventional view that spillovers
of knowledge are geographically localized (Zucker, Darby, and
Brewer 1998; Ham and Weinberg 2008).15

In column (2), we investigate whether the death of a super-
star coauthor has a disparate impact on the group of scientists who
work on similar research problems. We proxy intellectual distance
between the superstar and his/her coauthors with our measure of
normalized keyword overlap. Coauthors in the top quartile of this
measure at the time of death suffer output decreases that are
particularly large in magnitude (−12.2%).16 This evidence is con-
sistent with the existence of an “invisible college”—an elite of pro-
ductive scientists highly visible in a research area, combined with
a “scatter” of less eminent ones, whose attachment to the field may
be more tenuous (de Solla Price and Beaver 1966; Crane 1972).
Superstar scientists make their field of inquiry visible to others of
lesser standing who might enter it; they replenish their field with

15. We thank an anonymous reviewer for making this point.
16. Specifications that include four different interactions corresponding to

the four quartiles show that the treatment effect is monotonically increasing in
intellectual distance, but we do not have enough statistical power to reject the
hypothesis that the four coefficients are equal to one another.
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fresh ideas, and their passing causes the processes of knowledge
accumulation and diffusion to slow down, or even decline.

In this view, important interactions for the production of new
scientific knowledge are not rigidly constrained by geographic or
social space, but also take place in an ethereal “idea space.” But
is the act of formal coauthorship necessary for a scientist to be
brought into a superstar’s intellectual orbit? Because our sample
is composed exclusively of coauthors, we cannot definitively an-
swer this question. Yet one can use the norms of authorship in
the life sciences to try to isolate collaborators whose coauthorship
tie to the star is particularly tenuous: “accidental” collaborators—
those who always find themselves in the middle of the authorship
list. As seen in column (3), these accidental collaborators do not
appear to experience net losses after the superstar’s death. This
suggests that full membership in the invisible college may be dif-
ficult to secure in the absence of a preexisting social tie.

Column (4) provides evidence that the effects of physical and
intellectual proximity are independent, because combining them
in the same specification does not alter their magnitudes or sta-
tistical significance. Finally, column (5) demonstrates that these
effects are robust to the inclusion of controls for coauthorship in-
tensity and recency.

Table VII provides additional evidence in favor of the spillover
view by examining the relationship between the magnitude of the
treatment effect and the accomplishments of the star. We rank
superstars according to two metrics of achievement: cumulative
citations and cumulative NIH funding, and we focus on superstars
in the top quartile of either distributions (where these quartiles
are calculated using the population of 10,349 superstars in a given
year). Column (1) shows that collaborators of heavily cited super-
stars suffer more following the superstar’s death, whereas column
(2) shows that this is not true for collaborators of especially well-
funded superstars. Column (3) puts the two effects in a single
specification. Once again, it appears that it is the star’s citation
impact that matters in shaping collaborators’ postextinction out-
comes, rather than his/her control over a funding empire.17 We
interpret these findings as buttressing our argument that it is the
quality of ideas emanating from the stars, rather than simply the
availability of the research funding they control, that goes missing

17. Table VII eliminates from the estimation sample the collaborators of
eleven superstars who are NIH intramural scientists, and as such not eligible
for extramural NIH funding.
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after their deaths. Furthermore, these results suggest that using
the same empirical strategy, but applying it to a sample of “hum-
drum” coauthors who die, would not uncover effects similar in
magnitude to those we observed in Table III. As such, they vali-
date ex post our pragmatic focus on the effect of superstars.

The overall collection of results presented above help build a
circumstantial case in favor of interpreting the effects of super-
star extinction as evidence of missing spillovers. However, they do
not enable us to reject some potentially relevant versions of the
gatekeeping story—such as influence over the editorial process in
important journals—nor do they allow us to learn about the effect
on noncollaborators.

IV.E. Robustness and Sensitivity Checks

The Online Appendix provides additional evidence probing
the robustness of these results. In Table W7, we interact the
treatment effect with three indicators of collaborator status, to
ascertain whether some among them are insulated from the ef-
fects of superstar extinction. Figure W3 provides evidence that
the effect of superstar extinction decreases monotonically with
the age of the collaborator at the time of death, becoming insignif-
icantly different from zero after 25 years of career age. Table W8
performs a number of sensitivity checks. We verify that the effect
(1) is not driven by a few stars with a large number of coauthors;
(2) is robust to the inclusion of indicator variables for the age of
the star; (3) is not overly sensitive to our arbitrary cutoff for the
superstars’ age at death; and (4) is not sensitive to the problem of
leakage through the coauthorship network between treated and
control collaborators. Finally, we perform a small simulation study
to validate the quasi-experiment exploited in the paper. We gen-
erate placebo dates of death for the control collaborators, where
those dates are drawn at random from the empirical distribu-
tion of death events across years for the 112 extinct superstars.
We then replicate the specification in Table III, column (1a), but
we limit the estimation sample to the set of 5,064 control col-
laborators. Reassuringly, the effect of superstar extinction in this
manufactured data is a precisely estimated zero.

V. CONCLUSIONS

We examine the role of collaboration in spurring the creation
of new scientific knowledge. Using the premature and unexpected
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deaths of eminent academic life scientists as a quasi-experiment,
we find that their collaborators experience a sizable and per-
manent decline in quality-adjusted publication output following
these events. Exploiting the rich heterogeneity in these collabo-
rative relationships, we attempt to adjudicate between plausible
mechanisms that could give rise to the extinction effect.

Neither a mechanical story whereby ongoing collaborative
teams struggle to replace the skills that have gone missing, nor a
gatekeeping story where stars merely serve as conduits for tan-
gible resources is sufficient to explain our results. Rather, these
effects appear to be driven, at least in part, by the existence of
knowledge spillovers across members of the research team. When
a superstar dies, part of the scientific field to which he or she con-
tributed dies along with him or her, perhaps because the fount
of scientific knowledge from which coauthors can draw is greatly
diminished. The permanence and magnitude of these effects also
suggests that even collaborations that produce a small number
of publications may have long-term repercussions for the pace of
scientific advance.

In the end, this paper raises as many questions as it answers.
It would be interesting to know whether superstar extinction also
impacts the productivity of noncoauthors proximate in intellec-
tual space, and in which direction. The degree to which exposure
to superstar talent benefits industrial firms is also potentially im-
portant and represents a fruitful area that we are pursuing in
ongoing research. Future work could also usefully focus on iden-
tifying quasi-experiments in intellectual space. For instance, how
do scientists adjust to sudden changes in scientific opportunities
in their field? Finally, collaboration incentives and opportunities
may be different when scientific progress relies more heavily on
capital equipment; an examination of the generalizability of our
findings to other fields therefore merits further attention.

Our results shed light on an heretofore neglected causal
process underlying the growth of scientific knowledge, but they
should be interpreted with caution. Although we measure the im-
pact of losing a star collaborator, a full accounting of knowledge
spillovers would require information on the benefits that accrued
to the field while the star was alive. We can think of no experiment,
natural or otherwise, that would encapsulate this counterfactual.
Moreover, the benefits of exposure to star talent constitute only
part of a proper welfare calculation. Scientific coauthorships also
entail costs. These costs could be borne by low-status collaborators
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in the form of lower wages, or by the stars, who might divert some
of their efforts toward mentorship activities. Though some of these
costs might be offset by nonpecuniary benefits, we suspect that
the spillovers documented here are not fully internalized by the
scientific labor market.

Finally, for every invisible college that contracts following su-
perstar extinction, another might expand to slowly take its place.
Viewed in this light, our work does little more than provide em-
pirical support for Max Planck’s famous quip: “science advances
one funeral at a time.”

APPENDIX I: CRITERIA FOR DELINEATING THE SET OF 10,349
“SUPERSTARS”

We present additional details regarding the criteria used to
construct the sample of 10,349 superstars.

Highly funded scientists. Our first data source is the Consol-
idated Grant/Applicant File (CGAF) from the U.S. National In-
stitutes of Health (NIH). This data set records information about
grants awarded to extramural researchers funded by the NIH
since 1938. Using the CGAF and focusing only on direct costs
associated with research grants, we compute individual cumula-
tive totals for the decades 1977–1986, 1987–1996, and 1997–2006,
deflating the earlier years by the Biomedical Research Producer
Price Index.18 We also recompute these totals excluding large cen-
ter grants that usually fund groups of investigators (M01 and P01
grants). Scientists whose totals lie in the top ventile (i.e., above the
95th percentile) of either distribution constitute our first group of
superstars. In this group, the least well-funded investigator gar-
nered $10.5 million in career NIH funding, and the most well-
funded $462.6 million.19

Highly cited scientists. Despite the preeminent role of the
NIH in the funding of public biomedical research, the above indica-
tor of “superstardom” biases the sample toward scientists conduct-
ing relatively expensive research. We complement this first group
with a second composed of highly cited scientists identified by the

18. http://officeofbudget.od.nih.gov/UI/GDPFromGenBudget.htm.
19. We perform a similar exercise for scientists employed by the intramural

campus of the NIH. These scientists are not eligible to receive extramural funds,
but the NIH keeps records of the number of “internal projects” each intramu-
ral scientist leads. We include in the elite sample the top ventile of intramural
scientists according to this metric.
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Institute for Scientific Information. A Highly Cited listing means
that an individual was among the 250 most cited researchers for
their published articles between 1981 and 1999, within a broad
scientific field.20

Top patenters. We add to these groups academic life scientists
who belong in the top percentile of the patent distribution among
academics—those who were granted seventeen patents or more
between 1976 and 2004.

Members of the National Academy of Sciences. We add to
these groups academic life scientists who were elected to the Na-
tional Academy of Science between 1975 and 2007.

MERIT Awardees of the NIH. Initiated in the mid-1980s, the
MERIT Award program extends funding for up to five years (but
typically three years) to a select number of NIH-funded investiga-
tors “who have demonstrated superior competence, outstanding
productivity during their previous research endeavors and are
leaders in their field with paradigm-shifting ideas.” The specific
details governing selection vary across the component institutes
of the NIH, but the essential feature of the program is that only
researchers holding an R01 grant in its second or later cycle are
eligible. Further, the application must be scored in the top per-
centile in a given funding cycle.

Former and current Howard Hughes medical investigators.
Every three years, the Howard Hughes Medical Institute selects
a small cohort of mid-career biomedical scientists with the po-
tential to revolutionize their respective subfields. Once selected,
HHMIs continue to be based at their institutions, typically leading
a research group of 10 to 25 students, postdoctoral associates, and
technicians. Their appointment is reviewed every five years, based
solely on their most important contributions during the cycle.21

Early career prize winners. We also included winners of the
Pew, Searle, Beckman, Rita Allen, and Packard scholarships for
the years 1981 through 2000. Every year, these charitable founda-
tions provide seed funding to between twenty and forty young aca-
demic life scientists. These scholarships are the most prestigious

20. The relevant scientific fields in the life sciences are microbiology, bio-
chemistry, psychiatry/psychology, neuroscience, molecular biology and genetics,
immunology, pharmacology, and clinical medicine.

21. See Azoulay, Zivin, and Manso (2009) for more details and an evaluation
of this program.
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accolades that young researchers can receive in the first two years
of their careers as independent investigators.

APPENDIX II: CONSTRUCTION OF THE CONTROL GROUP

We detail the procedure implemented to identify the control
collaborators that help pin down the life-cycle and secular time
effects in our DD specification. Because it did not prove possible to
perfectly match treated and control collaborators on all covariates,
the procedure is guided by the need to guard against two specific
threats to identification.

First, collaborators observed in periods before the death of
their associated superstar are more likely to work with a younger
superstar; thus, they are not ideal as a control if research trends
of collaborators differ by the age of the superstar. Collaborators
observed in periods after the death of their associated superstar
are only appropriate controls if the death of their superstar only
affected the level of their output; if the death also negatively af-
fected the trend, fixed effects estimates will be biased toward zero.

Second, fixed effects estimates might be misleading if col-
laborations with superstars are subject to idiosyncratic dynamic
patterns. Happenstance might yield a sample of stars clustered in
decaying scientific fields. More plausibly, collaborations might be
subject to specific life-cycle patterns, with their productive poten-
tial first increasing over time, eventually peaking, and thereafter
slowly declining. Relying solely on collaborators treated earlier
or later as as an implicit control group entails that this dyad-
specific, time-varying omitted variable will not be fully captured
by collaborator age controls.

To address these threats, the sample of control collaborators
(to be recruited from the universe of collaborators for the 10,000
stars who do not die prematurely, regardless of cause) should be
constructed such that the following four conditions are met:

1. treated collaborators exhibit no differential output trends
relative to control collaborators up to the time of superstar
death;

2. the distributions of career age at the time of death are
similar for treated and controls;

3. the time paths of output for treated and controls are simi-
lar up to the time of death;

4. the dynamics of collaboration up to the time of death—
number of coauthorships, time elapsed since first/last
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coauthorship, superstar’s scientific standing as proxied by
his cumulative citation count—are similar for treated and
controls.

Coarsened exact matching. To meet these goals, we have
implemented a “Coarsened Exact Matching” (CEM) procedure
(Iacus, King, and Porro 2008) to identify a control for each treated
collaborator. As opposed to methods that rely on the estimation
of a propensity score, CEM is a nonparametric procedure. This
seems appropriate given that we observe no covariates that pre-
dict the risk of being associated with a superstar scientist who
dies in a particular year.

The first step is to select a relatively small set of covariates
on which the analyst wants to guarantee balance. In our example,
this choice entails judgment but is strongly guided by the threats
to identification mentioned above. The second step is to create
a large number of strata to cover the entire support of the joint
distribution of the covariates selected in the previous step. In a
third step, each observation is allocated to a unique stratum, and
for each observation in the treated group, a control observation
is selected from the same stratum; if there are multiple choices
possible, ties are broken randomly.

The procedure is coarse because we do not attempt to pre-
cisely match on covariate values; rather, we coarsen the support
of the joint distribution of the covariates into a finite number of
strata, and we match a treated observation if and only if a con-
trol observation can be recruited from this strata. An important
advantage of CEM is that the analyst can guarantee the degree
of covariate balance ex ante, but this comes at a cost: the more
fine-grained the partition of the support for the joint distribution
(i.e., the larger the number of strata), the larger the number of
unmatched treated observations.

Implementation. We identify controls based on the following
set of covariates (t denotes the year of death): collaborator’s degree
year, number of coauthorships with the star at t, number of years
elapsed since last coauthorship with the star at t, JIF-weighted
publication flow in year t, cumulative stock of JIF-weighted pub-
lications up to year t − 1, and the star’s cumulative citation count
at t. We then coarsen the joint distributions of these covariates by
creating 51,200 strata. The distribution of degree years is coars-
ened using three year intervals; the distribution of coauthorship
intensity is coarsened to map into our taxonomy of casual (one
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and two coauthors), regular (between three and nine coauthors),
and close collaborators (ten or more coauthors); the distribution
of coauthorship recency is coarsened into quartiles (the first quar-
tile corresponds to recent relationships, i.e., less than three years
since the last coauthorship); the flow of publications in the year
of death is coarsened into five strata (the three bottom quartiles;
from the 75th to the 95th percentile, and above the 95th per-
centile); the stock of publications is coarsened into eleven strata
(0 to 5th; 5th to 10th; 10th to 25th; 25th to 35th; 35th to 50th; 50th
to 65th; 65th to 75th; 75th to 90th; 90th to 95th; 95th to 99th; and
above the 99th percentile); and the distribution of citation count
for the star is coarsened into quartiles.

We implement the CEM procedure year by year, without re-
placement. Specifically, in year t, we

1. eliminate from the set of potential controls all superstars
who die, all coauthors of superstars who die, and all control
coauthors identified for years of death k, 1979 ≤ k < t;

2. create the strata (the values for the cutoff points will vary
from year to year for some of the covariates mentioned
above);

3. identify within strata a control for each treated unit and
break ties at random;

4. repeat these steps for year t + 1.
We match 5,064 of 5,267 treated collaborators (96.15%). In

the sample of 5,064 treated + 5,064 controls = 10,128 collabora-
tors, there is indeed no evidence of prexisting trends in output
(Figure A.1); nor is there evidence of differential age effects in the
years leading up to the death event (Figure A.2). As seen in Ta-
ble II, treated and controls are very well-balanced on all covariates
that pertain to the dynamics of the collaboration: number of coau-
thorships, time since last and first coauthored publication, and
superstar’s citation count. The age distributions are very similar
as well. Furthermore, the CEM procedure balances a number of
covariates that were not used as inputs, such as normalized key-
word overlap and R01 NIH grantee status. For some covariates,
we can detect statistically significant mean differences, though
they do not appear to be substantively meaningful (e.g., 7% of
controls vs. 8.4% of treated collaborators were former trainees of
their associated superstars).

Sensitivity analyses. The analyst’s judgment matters for the
outcome of the CEM procedure insofar as she must draw a list
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FIGURE A.1
Publication Trends for Treated and Control Collaborators

of “reasonable” covariates to match on, as well as decide on the
degree of coarsening to impose. Therefore, it is reasonable to
ask whether seemingly small changes in the details have con-
sequences for how one should interpret our results.

Nonparametric matching procedures such as CEM are prone
to a version of the “curse of dimensionality” whereby the propor-
tion of matched units decreases rapidly with the number of strata.
For instance, requiring a match on an additional indicator vari-
able (i.e., doubling the number of strata from around 50,000 to
100,000) results in a match rate of about 70%, which seems un-
acceptably low. Conversely, focusing solely on degree age and the
flow and stock of the outcome variables would enable us to achieve
pairwise balance (as opposed to global balance, which ignores the
one-to-one nature of the matching procedure) on this narrower set
of covariates, but at the cost of large differences in the features
of collaborations (such as recency and intensity) between treated
and controls. This would result in a control sample that could ad-
dress the first threat to identification mentioned above, but not
the second.

However, we have verified that slight variations in the de-
tails of the implementation (e.g., varying slightly the number of
cutoff points for the stock of publications; focusing on collaboration
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FIGURE A.2
Differential Age Trends for Treated vs. Control Collaborators

Each dot corresponds to the coefficient estimate for the interaction between an
age indicator variable and treatment status in a Poisson regression of weighted
publications onto a full suite of year effects, a full suite of age effects, and age by
treatment status interaction terms. The population includes control and treated
collaborators, but the estimation sample is limied to the years before the death of
the associated superstar. The vertical brackets denote the 95% confidence interval
(corresponding to robust standard errors, clustered around collaborators) around
these estimates.

age as opposed to collaboration recency; or matching on superstar
funding as opposed to superstar citations) have little impact on
the results presented in Table III. To conclude, we feel that CEM
enables us to identify a population of control collaborators ap-
propriate to guard against the specific threats to identification
mentioned in Section II.C.
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On-Line Appendix

I — Matching Superstars and Collaborators

We designed the Stars/Colleague Generator (S/CGen) to harvest coauthors’ names from a superstar’s
bibliome. S/CGen identifies colleagues to the extent that (a) they coauthor at least once; and (b) they can
be matched (based on a combination of a last name and up to two initials) with the AAMC Faculty Roster.
We will describe the matching process using as an example one of our extinct superstars, Jeffrey M. Isner,
MD. Isner, a pioneer of gene therapy for Peripheral Artery Diseases, and a faculty member at the Tufts
University School of Medicine, died in 2001 from a heart attack, at the age of 54.

The matching process begins with the creation of a customized PubMED search query for each superstar. In
the case of Isner, the query is ("isner jm"[au] OR "isner j"[au]) AND 1977:2006[dp], and it returns
373 original publications (the query also returns 24 letters, editorials, interviews, etc., which we ignore).
The process of harvesting bibliomes from PubMED using name variations and queries as inputs is facilitated
by the use of PubHarvester, a software program we specifically designed for this purpose (Azoulay et al.
2006).

Spurious Coauthors. Jeff Isner’s PubMED query accounts for his inconsistent use of the middle initial, but
is otherwise quite simple. For other scientists, queries might factor in their inconsistent use of the suffix “Jr.,”
or name variations coincident with changes in marital status. For yet many others with frequent names,
the queries are more involved, and make use of CV information such as scientific keywords, institutional
affiliation, frequent coauthors’ names, etc. This is essential, since errors of commission will tend to generate
spurious coauthor matches. We guarded against this source of error by devoting hundreds of person-hours
to the design of accurate search queries for each of our 10,349 superstars. This degree of labor-intensive
customization ensures that a superstar’s bibliome excludes publications belonging to homonymous scientists.

Matching process. The second step is to extract the name of coauthors from the star’s bibliome and to
match them with the AAMC Faculty Roster. Unfortunately, PubMED does not record authors’ full names,
nor does it record their institutional affiliations; it only keeps track of authors by using a combination of last
name, two initials, and a suffix (where the suffix and the second initial fields can be empty). The matching
process is automated by SC/Gen, and its outcome in the case of a sample publication authored by Jeff
Isner is illustrated in Figure W1. S/CGen cannot generate a match for each coauthor. Some coauthors
are technicians or undergraduate students; others are graduate students or postdocs who do not go on to
faculty positions; yet others are located in foreign institutions; others still publish under names that differ
from the Faculty Roster listing (for instance by being inconsistent with the use of middle initials, suffixes,
or hyphens). In total, SC/Gen generates 355 matches with the AAMC Faculty Roster for Isner.

Ambiguous Coauthors. Often, SC/Gen can match a given PubMED name with more than one faculty in
the Roster. Notice the case of ramaswamy k on Figure W1. Does it correspond to K. Ramaswamy (University
of Illinois–Chicago), to Karthik Ramaswamy (UMASS School of Medicine), or to Krishna Ramaswamy (Tufts
University School of Medicine)? Several options are available to deal with these ambiguous matches. We
could discard the first two matches, since the third one corresponds to an individual who shared Isner’s
institutional affiliation. Alternatively, we could retain all three matches, but assign each a weight of 1

3 ,
incorporating a guess on the probability that each match is genuine. Finally, we could simply discard all
three matches, and focus instead on those matches that are unambiguous. This is the approach we have
followed to generate the results we present in the paper.1 Out of the 355 matches mentioned above, only

1Trajtenberg et al. (2006) propose algorithms to automate the process of name disambiguation in patent data. Adapting
their approach to publication data lies far beyond the scope of this paper. To fix ideas, Lechleiter JD is an example of unique
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177 correspond to coauthors with unambiguous PubMED names. For the set of 112 superstars, S/CGen
identifies 5,267 distinct coauthors with unambiguous PubMED names — an average of 47 coauthors per
superstar (the median is 37).

Coauthors’ Publication Output. The publication output of coauthors with frequent names will be
measured with error. This source of error is less worrisome, since it involves a dependent variable. Nonethe-
less, we have taken several steps to ascertain the extent to which it biases our results. First, our decision
to eliminate from the sample coauthors with ambiguous PubMED names means that it is almost entirely
composed of individuals with relatively rare names. Second, we have experimented with deleting from the
estimation sample observations corresponding to coauthors with unique PubMED names, but popular last
names.2 Specifically, we dropped from the main analysis all coauthors whose last name appear 160 or more
times in the roster (the 99th percentile of the distribution of last name frequency, which correspond to names
such as Greenwald, McKee, O’Malley, or Fu). This hardly affected the main results. Third, we limit the
estimation sample to elite coauthors (i.e., coauthors who belong to the set of 10,349 “superstars”). Because
we designed custom PubMED queries for these individuals, their output is measured with little (if any) error.
The magnitude of the treatment effect is very similar to the one obtained on the full sample of coauthors.

II — Measuring Proximity in Ideas Space

We describe the construction of our variable to measure distance (or rather, proximity) in intellectual or
“ideas space” between nodes in a dyad of scientists. The boundaries around scientific fields are difficult to
delineate since most scientific research can be classified in numerous ways, and agreement among scientists
regarding the categorization of specific bits of knowledge is often elusive. Our approach is predicated on the
inadequacy of measures based on shared department affiliation, or on coarse distinctions between scientific
fields (e.g., cell vs. molecular biology). Instead of attempting to position individual scientists relative to
some fixed address in ideas space, we provide a method to cheaply and conveniently measure relative position
in this space.

An essential input is provided by the Medical Subject Headings (MeSH) thesaurus, a controlled vocabu-
lary produced by the National Library of Medicine whose explicit statement of purpose is to “provide a
reproducible partition of concepts relevant to biomedicine for the purpose of organizing knowledge and in-
formation.” The MeSH vocabulary consists of 24,767 terms arranged in a hierarchical structure, and these
terms are used by NLM staff to tag all the articles indexed by the PubMED database.3 From our standpoint,
one of the MeSH system’s most attractive feature is its fine-grained level of detail. For instance, the initial
draft of the public human genome project (Lander et al. 2001) is tagged by 26 distinct descriptors, which run
the gamut from the very general (“Humans”, “RNA/Genetics”) to the very specific (“Repetitive Sequences,
Nucleic Acid”, “CpG Islands”, “DNA Transposable Elements”).4

The procedure followed to generate our dyadic measure of intellectual proximity is best explained through
a concrete example. We will focus on a two scientists, Andrew Schally (from Tulane University in New
Orleans, LA) and Roger Guillemin (from the Salk Institute in San Diego, CA). Throughout the 1960s and
1970s, this pair of eminent neuro-endocrinologists was locked in a very public (and often acrimonious) rivalry

PubMED name. In contrast, Weinstein SL corresponds to two distinct faculty in the roster, Miller MJ to ten, and Wang Y to
thirty six.

2For instance, Miller CR is a unique PubMED name, though Miller is the last name for 800 distinct individuals in the
AAMC Faculty Roster.

3At the highest level of the hierarchical structure are very broad headings such as “Anatomy” or “Mental Disorders.”
More specific headings are found at lower levels of the eleven-level hierarchy, such as “Ankle” and “Conduct Disorder.” See
http://www.nlm.nih.gov/mesh/ for more details.

4This stands in sharp contrast to the coarse partition of technological space provided by patent classes, which are often
used in the study of involuntary knowledge spillovers (Benner and Waldfogel 2007).

ii



whose ultimate goal was the synthesis of peptide hormones produced by the brain. Together with Rosalyn
Yalow, the Nobel committee awarded them both the Prize in Medicine and Physiology in 1977 (details of
this celebrated case of a scientific race can be found in Nicholas Wade’s The Nobel Duel). We will focus on
the five-year window that preceded the award of the Prize, i.e., 1973-1977. During this period, Guillemin
and Schally did not collaborate at all, and according to Wade (1981), even actively sought to undermine
each other’s progress.

The calculation is illustrated in Table W2; it is automated by SciDist, an open-source software program we
specifically designed for this purpose.5 Between 1973 and 1977, Schally published 240 articles, and Guillemin
“only” 60. We extract from these publications all MeSH terms, regardless of their position in the descriptor
hierarchy. There are a total of 607 unique MeSH terms tagging the two scientists’ publications, 147 of which
overlap. Table W2 lists the Top 10 overlapping terms with highest and lowest combined use, respectively.6

To compute the proximity of Guillemin to Schally, we simply divide the number of overlapping MeSH terms
(147), by the total number of unique MeSH terms tagging Guillemin’s 60 publications (220). In contrast, the
proximity of Schally to Guillemin is given by 147 divided by 534 (the total number of unique MeSH terms
tagging Schally’s 240 publications). We view this lack of symmetry as an attractive feature of our approach,
since Schally’s research agenda during this period was significantly broader, and in fact encompassed most
of Guillemin’s. In contrast, many of the distance concepts used to date in the literature — for example
to position firms’ research portfolio in technology space — use an Euclidean (hence symmetric) concept of
distance (e.g., Jaffe 1986).

III — Pre-existing Trends in Output for the Superstars

In Table W3, we present results for specifications in which the superstars’ quality-adjusted publication output
is regressed onto a series of indicator variables corresponding to the timing of death: 5 years before the year
of death, 4 years before the year of death, and so on, up until two years after the year of death (a scientist
can, and often does, publish after his death because his/her coauthors will typically steward articles through
the pipeline on his behalf). All models include superstar scientist fixed effects, and we use as a control group
the set of superstars who collaborate with the sample of control collaborators. The inclusion of controls is
important insofar as it enables us to pin down the effect of age and calendar time, which might be correlated
with the death effect.

We use two definitions of the dependent variable. In the first (column (1)), all of the stars’ publications
participate in the calculation of the JIF-weighted count; in the second (column (2)), only the publications in
which the star appears in last position on the authorship roster are considered (last author status is reserved
to the heads of laboratory/research group in the life sciences). In both specifications, we find no evidence
that the superstars’ output trends downward even before their death. In fact, the coefficient estimates turn
negative in sign only in the year that follows the year of death, and reach statistical significance only two
years after the death. In light of these results, we feel confident that our informal screen for research activity
yields a set of 112 extinct superstars still actively engaged in science at the time of their deaths.

5SciDist is available for download at http://www.stellman-greene.com/ScientificDistance/.
6An open question is whether one should weight each term by its frequency of use, or whether it is the number of unique terms

that matters. In practice, these alternatives yield two measures of proximity that are heavily correlated, and the distinction
does not affect the substance of our results.
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IV — Main Results with OLS Estimation

In Table W4, we replicate the results in Table III using linear collaborator fixed effects specifications.
This robustness check is informative insofar as linear specifications enable us to completely saturate the
specifications with age effects (a total of 54 indicator variables, vs. 17 in the QML Poisson specifications
presented in the main body of the paper). The results in column (1a) imply that coauthors suffer a 1.55
yearly decline in JIF-weighted publication output following the death of their superstar collaborator. This
represents a 8.14% decrease relative to the mean of the dependent variable at the time of death. In contrast,
the estimate of the treatment effect in column (1a) of Table III corresponds to a 8.79% decline in the JIF-
weighed publication rate. The magnitudes observed in columns (1b) through (2b) in Table III and W4 are
likewise very similar.

V — Publication-level Quality Adjustment using Citation Data

The quality adjustment used to produce JIF-weighted publication counts is crude. It does not allow us
to learn whether the research that does not get published as a consequence of superstar death is more
likely to be of great vs. marginal significance. Table W5 answers this question by modeling the effect of
superstar extinction for the production of articles falling above various quantiles of the citation distribution.
An important caveat is that the results pertain only to the set of 1,436 controls+1, 416 treated=2, 852
collaborators who are also part of our elite group of 10,349 scientists, since this is the set for which article-
level citation data is available. These 2,852 scientists account for 28.16% of the collaborators in the overall
sample.

Citation data suffer from a well known truncation problem: older articles have had more time to be cited,
and hence are more likely to reach the tail of the citation distribution, ceteris paribus. To overcome this
issue, we compute a different empirical cumulative distribution for the article-level distribution of citations
in each publication year.7 For example, in the life sciences broadly defined, an article published in 1980
would require at least 98 citations to fall into the top ventile of the distribution; an article published in 1990,
94 citations; and an article published in 2000, only 57 citations (this is illustrated in Figure W2). With these
empirical distributions in hand, it becomes meaningful to count the number of articles that fall, for example,
in the top quartile of citations for a given scientist in a particular year. These counts in turn provide the
dependent variables used in Table W5.

We begin by replicating the results of Table III, Model 2b on this restricted set of collaborators. The
treatment effect is slightly lower in magnitude, but remains highly statistically significant (column (1)). The
same result obtains when using the raw (i.e., not JIF-weighted) number of publications as the outcome
variable (column (2)). We then find that the magnitude of the treatment effect increases as one restricts the
dependent variable to publications that fall in higher quantiles of the citation distribution. It hovers between
-6 and -9% when we examine the effect of superstar extinction on publications that fall in the bottom quartile,
below the median, above the median, or in the top quartile of the citation distribution. It increases to -9%
for publications in the top ventile, and still further to -15% when focusing on “blockbuster” publications —
those falling in the top percentile of the citation distribution. At the very least, these results suggest that
superstar exposure is not limited to the production of relatively less significant scientific knowledge.

7We thank Stefan Wuchty and Ben Jones from Northwestern University for performing the computations. These vintage-
specific distributions are not based on in-sample article data, but use the universe of articles published since 1970 in biomedical
and chemical journals indexed by the Web of Science.
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VI — Effect of Superstar Extinction on Receipt of NIH Funding

We present evidence on the effect of superstar extinction on receipt of NIH funding. Grants are typically
awarded for a period of years (three to five is typical), and disbursed in equal yearly amounts over this period.
Only the first of these payments is indicative of successful grantsmanship. We exclude from the calculation
non-research grants (fellowships, training grants, and infrastructure grants), as well as large center research
grants. The CGAF dataset only lists principal investigators (PIs) for each grant; as a result, we are unable
to separate the grants in which coauthor and superstars are co-investigators from those that do not entail
a formal research collaboration. This limitation must be borne in mind when interpreting the results of
specifications relying on grant data. We also eliminate from the estimation sample 318 treated and 260
control collaborators who are NIH employees at some point during their career, and as such not eligible for
receipt of extramural NIH funding.

Table W6 presents the results, using two different dependent variables: the number of research grants
(columns (1a) and (1b)), and the probability of receiving at least one grant in a given year (columns (2a)
and (2b)). The first two models are estimated using conditional collaborator fixed effects quasi-maximum
likelihood. In these specifications, the 3,669 collaborators (38.72% of the controls vs. 36.55% of the treated)
who never receive a grant during the observation period drop out of the observation sample. The last two
models are estimated using a collaborator fixed effects linear probability model, on the entire sample of
grant-eligible collaborators, including 37% among them who never receive (and may not even have applied
for) a grant from the NIH.

The magnitudes of the effects in columns (1a) and (1b) are strikingly similar to those observed for publication
output, though they are only statistically significant at the 10% level. In contrast, the magnitudes of the
extinction effect for the linear probability models are quite small: they suggest that the probability of
receiving a grant falls by a statistically significant 1% after the scientist loses a superstar collaborator. We
must interpret these results with caution: there is obviously large heterogeneity in the quality and importance
of research grants, and our dependent variable does not account for this.

VII — Treatment Effect Heterogeneity: Impact of Collaborator
Status and Age at the Time of Superstar Death

In Table W7, we interact the treatment effect with three indicators of collaborator status, to ascertain whether
some among them are insulated from the effects of superstar extinction documented earlier. Column (1)
focuses on faculty members whose sole elite collaborator was the superstar who died. For these coauthors
with relatively poor substitution opportunities (they account for roughly 27.66% of the dyads in the sample),
the consequences of the superstar’s loss are particularly severe, with an overall 15.3% decline in publication
output. Columns (2) asks whether scientists who are PIs on a NIH R01 grant at the time of their superstar
coauthor’s death are shielded from the adverse effects documented earlier. With independent funding of this
type, these investigators (who account for more than half of the sample) are likely to be less dependent on
the goodwill of their collaborators, but we find no evidence supporting this conjecture: the differential effect
is an small and imprecisely estimated; Independent NIH funding is not enough to insulate scientists from
the loss of an eminent collaborator. In column (3), we present evidence that the “elite among the elite”
(members of the National Academy of Science, Howard Hughes Medical Investigators, and NIH MERIT
awardees who together account for 8.5% of the total number of collaborators) is relatively unaffected by
the loss of a “peer superstar.” The differential impact on elite coauthors is positive, large, and statistically
significant; it offsets almost exactly the main treatment effect.

We conclude that the effect of superstar extinction is heterogeneous with respect to coauthor status, but the
heterogeneity stems from the tails of the status distribution. The loss of a prominent collaborator adversely
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impacts the productivity of investigators even if they are independently funded, unless they have already
achieved great renown at the time of the star’s death.8

We also investigate whether the magnitude of the treatment effect varies with the collaborator’s age at
the time of death for the superstar. To do so, we interact the treatment effect with 8 indicator variables
corresponding to different career age brackets: 5 to 10 years, 10 to 15 years, 15 to 20 years, 20 to 25 years,
25 to 30 years, 30 to 35 years, 35 to 40 years, and more than 40 years of career age at death. We then plot
the corresponding coefficient estimates in Figure W3, along with their 95% confidence interval. The effect
decreases monotonically with the age of the collaborator at death, becoming insignificantly different from 0
after twenty five years of career age. Therefore, researchers appear particularly vulnerable to the loss of a
superstar coauthor in the early part of their scientific career.

VIII — Robustness Checks

In Table W8, we present the results of a number of robustness checks, using Model (1b) of Table III as a
benchmark specification. In column (2), we examine whether a small number of stars with many collaborators
drive the main results. We drop all collaborators for the 7 superstars with the highest number of collaborators
(120 or more) from the estimation sample. The magnitude of the treatment effect drops only slightly, and
remains highly statistically significant. In column (3), we add to the specification 10 indicator variables for
the superstar’s imputed career age. This decreases the magnitude of the treatment effect by from -0.086 to
-.066. In columns (4a) and (4b), we explore the sensitivity of our results to changes in our arbitrary age
cutoff for the the superstar’s age at death. In (4a), we limit the sample to 71 stars who were 60 years old
or younger at the time of their death. This results in an even higher magnitude for the extinction effect
(-.113 instead of -.092). In contrast, we obtain a much smaller magnitude (-0.051) when we focus on the
collaborators of 38 eminent scientists who die beyond the creative stages of their career — at 75 years of age
or older (column (4b)). This effect is also imprecisely estimated.

We then examine the possibility that our control group is contaminated because some of the control collabora-
tors are separated from treated collaborators by a only few degrees in the coauthorship network. Specifically,
we keep in the estimation sample only those scientists that are at least 3 degrees apart in the coauthorship
network formed by all 10,349 superstars. These scientists represent 75% of the overall sample. In column
(5), we find that the treatment effect increases in magnitude, which is consistent with the hypothesis that
the effect of superstar extinction extends beyond the set of direct coauthors, but decays quickly with social
distance.

Finally, we perform a small simulation study to validate the quasi-experiment exploited in the paper (col-
umn (6)). We generate placebo dates of death for the control collaborators, where those dates are drawn at
random from the empirical distribution of death events across years for the 112 extinct superstars. We then
replicate the specification in Table III, column (1a), but we limit the estimation sample to the set of 5,064
control collaborators. Reassuringly, the effect of superstar extinction in this manufactured data (based on
500 replications) is a precisely estimated 0.

8As seen in Table W5, taken as a whole, the set of elite coauthors suffers a decline in output similar to the one observed
for the universe of all coauthors (i.e., in Table III). At the risk of repeating ourselves, the elite sample is very heterogeneous,
and does include young, old, and fading stars.
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IX — Main Results for Anticipated Death

In Table W9 and Figure W4, we present some results pertaining to the 6,515 collaborators of 136 superstars
who died prematurely, but whose particular circumstances imply that their passing was anticipated. The
vast majority of these anticipated deaths are due to cancer. Since coauthors might alter their collaboration
strategies even before the superstar’s death, the case for exogeneity of the extinction event is weaker in this
case.9

The results in Table W9 parallel exactly those presented in Table III. We find that the treatment effect
is of lower magnitude than in the sudden case (especially when the estimation sample includes control
collaborators), and less precisely estimated. We also find very little evidence of impact on the publication
output without the superstar (columns (2a) and (2b)). Figure W4 mirrors Figure IIIA. The trajectory
of output appears to begin its monotonic decline prior the superstar’s death (though the corresponding
interaction terms are very small in magnitude, and statistically insignificant). The treatment effect, though
consistently negative in sign, reaches statistical significance only in the long run — 10 years or so after the
superstar’s death.

These findings suggest that collaborators and quite possibly the superstar him/herself adjust their behavior in
anticipation of the star’s impending death. Though the determinants and particular form of these endogenous
responses are certainly worthy of study, they are beyond the scope of the present paper.

X — An Alternative Interpretation
Based on a Sociological Mechanism:

Ascription

Sociological studies of the scientific reward system have provided some evidence supporting the existence of
the “Matthew Effect,”10 whereby scientists receive differential recognition for a particular scientific contribu-
tion depending on their location in the status hierarchy (Merton 1968; Cole 1970). It is possible that editors
and reviewers ascribe positive qualities to research they are charged with evaluating because of the mere
presence of the superstar’s name on the authorship roster, regardless of the contribution’s intrinsic merits.

The relevance of this dynamic in our setting is doubtful for two reasons. First, we observe a decline in
the output written independently of the star (Table III); second, the treatment effect is not driven by the
collaborators who have recent, or many collaborations; third, its onset is delayed until after the death of the
star. These facts argue against an interpretation of the effect based on ascription.

9Most of the anticipated deaths are due to conditions with relatively short life expectancies; those with longer ones are not
necessarily viewed as terminal until the final stages. Six scientists who died from a neurodegenerative disease constitute an
exception. They were included in the sample because their obituaries implied they had remained actively engaged in research
until a short period before their death. We verified that our results are robust to the omission of these six superstars.

10“For unto every one that hath shall be given, and he shall have abundance; but from him that hath not shall be taken away
even that which he hath” [Matthew 25:29]
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Cause of Death Institutional Affiliation Field
Henry G. Kunkel (1916-1983) MD complications after vascular surgery Rockefeller University identification of MHC Class II molecules
John P. Merrill (1917-1984) MD drowned Harvard Medical School/Brigham & Women’s Hospital role of the immune system in kidney transplantation
Merton F. Utter (1917-1980) PhD heart attack Case Western Reserve University School of Medicine structure and function of pep carboxykinase isozymes
Abraham I. Braude (1917-1984) MD/PhD heart attack UCSD pathogenesis and treatment of life-threatening septic shock
E. Jack Wylie (1918-1982) MD heart attack UCSF development of techniques for the treatment and management of chronic visceral ischemia
Abraham M. Lilienfeld (1920-1984) MD heart attack Johns Hopkins University School of Public Health epidemiological methods for the study of chronic diseases
Sidney Riegelman (1921-1981) PhD drowned while scuba diving UCSF intersubject variation in first pass effect of drugs
Susumu Hagiwara (1922-1989) PhD bacterial infection UCLA evolutionary and developmental properties of calcium channels in cell membranes
Lucille S. Hurley (1922-1988) PhD complications from open heart surgery University of California — Davis genetic and nutritional interactions in development
Lewis W. Wannamaker (1923-1983) MD heart attack University of Minnesota Medical School clinical and epidemiologic aspects of streptococcal infections
Eugene C. Jorgensen (1923-1981) PhD murdered UCSF structure/activity relationships of compounds related to thyroxin
James M. Felts (1923-1988) PhD heart failure UCSF synthesis and processing of plasma lipoproteins
Josiah Brown (1923-1985) MD tragic accident UCLA biochemical studies of lipid and carbohydrate metabolism
Thomas R. Johns, 2nd (1924-1988) MD refractory arrhythmia University of Virginia School of Medicine physiological studies of myasthenia gravis
Robert J. Stoller (1924-1991) MD killed by a reckless teenage driver UCLA clinical studies of gender identity
Lucien J. Rubinstein (1924-1990) MD ruptured intracranial aneurysm University of Virginia School of Medicine differentiation and stroma-induction in neural tumors
William H. Oldendorf (1925-1992) MD complications from heart disease UCLA x-ray shadow radiography and cerebral angiography
Margaret O. Dayhoff (1925-1983) PhD heart attack Georgetown University Medical Center computer study of sequences of amino acids in proteins
Norman Geschwind (1926-1984) MD heart attack Harvard Medical School/Beth Israel Medical Center relationship between the anatomy of the brain and behavior
Norbert Freinkel (1926-1989) MD heart attack Northwestern University metabolic regulation in normal and diabetic pregnancies
Edward V. Evarts (1926-1985) MD heart attack NIH electrophysiological activity of in vivo neurons in waking and sleeping states
Zanvil A. Cohn (1926-1993) MD aortic dissection Rockefeller University macrophage in cell biology and resistance to infectious disease
Daniel Rudman (1927-1994) MD complications from brain surgery Medical College of Wisconsin adipokinetic substances of the pituitary gland
Gerald P. Rodnan (1927-1983) MD complications after vascular surgery University of Pittsburgh renal transport if uric acid and protein
Gustavo Cudkowicz (1927-1982) MD brief illness SUNY Buffalo controls of proliferation specific for leukemias
Gerald D. Aurbach (1927-1991) MD hit in a head by a stone NIH bone metabolism and calcium homeostasis
George Streisinger (1927-1984) PhD scuba-diving accident University of Oregon genetic mutations and the nervous system development in lower vertebrates
Carl Monder (1928-1995) PhD brief illness, acute fulminating leukemia Population Council corticosteroid metabolism in juvenile hypertension
Lucien B. Guze (1928-1985) MD sudden cardiac arrest UCLA pathogenesis of experimental pyelonephritis
Edgar C. Henshaw (1929-1992) MD complications from early-stage cancer treatment University of Rochester intermediary metabolism in animals and in man
Donald J. Magilligan, Jr. (1929-1989) MD short illness Henry Ford Health Sciences Center natural history and limitations of porcine heart valves
Lubomir S. Hnilica (1929-1986) PhD automobile accident Vanderbilt University nuclear antigens in human colorectal cancer
Laurence M. Sandler (1929-1987) PhD heart attack University of Washington School of Medicine cytogenetics of meiosis and development in drosophila
DeWitt S. Goodman (1930-1991) MD pulmonary embolism Columbia University lipid metabolism and its role in the development of heart and artery disease
George B. Craig, Jr. (1930-1995) PhD heart attack University of Notre Dame genetics and reproductive biology of aedes mosquitoes
Hymie L. Nossel (1930-1983) MD/PhD heart attack Columbia University causes of thrombosis and the nature of hemostasis
James W. Prahl (1931-1979) MD/PhD rock climing accident University of Utah structural basis of the functions of human complement
Harold A. Baltaxe (1931-1985) MD heart attack University of California — Davis development of new coronary angiographic techniques
George J. Schroepfer, Jr. (1932-1998) MD/PhD heart attack Rice University regulation of the formation and metabolism of cholesterol
Philip J. Fialkow (1933-1996) MD trekking accident in Nepal University of Washington origins of myeloid leukemia tumors
John C. Seidel (1933-1988) PhD heart attack Boston Biomedical Research Institute actin-myosin interaction in pulmonary smooth muscle
Issa Yaghmai (1933-1992) MD sudden cardiac arrest UCLA-Olive View Medical Center radiological diagnosis of musculoskeletal disorders
Donald C. Shreffler (1933-1994) PhD heart attack Washington University in St. Louis organization and functions of H-2 gene complex
Paul B. Sigler (1934-2000) MD/PhD heart attack Yale University structural analysis of biological macromolecules
Kenneth L. Melmon (1934-2002) MD heart attack Stanford University autacoids as pharmacologic modifiers of immunity
Gerald P. Murphy (1934-2000) MD heart attack Roswell Park Cancer Institute/SUNY Buffalo detection, immunotherapy, and prognostic indicators of prostate cancer
Demetrios Papahadjopoulos (1934-1998) PhD adverse drug reaction/multi-organ failure UCSF phospholipid-protein interactions, lipid vesicles, and membrane function
Takis S. Papas (1935-1999) PhD unexpected and sudden Medical University of South Carolina characterization of ETS genes and retroviral onc genes
Donald T. Witiak (1935-1998) PhD stroke University of Wisconsin stereochemical studies of hypocholesterolemic agents
Shu-Ren Lin (1936-1979) MD plane crash University of Rochester imaging studies of cerebral blood flow after cardiac arrest
James R. Neely (1936-1988) PhD heart attack Penn State University effects of diabetes and oxygen deficiency in regulation of metabolism in the heart
D. Martin Carter (1936-1993) MD/PhD dissecting aortic aneurysm Rockefeller University susceptibility of pigment and cutaneous cells to DNA injury by UV
Dale E. McFarlin (1936-1992) MD heart attack NIH neuroimmunological studies of multiple sclerosis
Roy D. Schmickel (1936-1990) MD died tragically University of Pennsylvania isolation and characterization of human ribosomal DNA
John J. Jeffrey, Jr. (1937-2001) PhD stroke Albany Medical College mechanism of action and the physiologic regulation of mammalian collagenases
Victor J. Ferrans (1937-2001) MD/PhD complications from diabetes NIH myocardial and vascular pathobiology
Sandy C. Marks, Jr. (1937-2002) DDS/PhD heart attack UMASS bone cell biology
A. Arthur Gottlieb (1937-1998) MD pulmonary embolus following surgery Tulane University School of Medicine role of macrophage nucleic acid in antibody production
Patricia S. Goldman-Rakic (1937-2003) PhD struck by a car Yale University development and plasticity of the primate frontal lobe
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Superstar Sample
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Thomas P. Dousa (1937-2000) MD/PhD heart attack Mayo Clinic cellular action of vasopressin in the kidney
William L. McGuire (1937-1992) MD scuba-diving accident University of Texas HSC at San Antonio mechanisms of hormonal control and growth and regression of mammary carcinoma
Roland L. Phillips (1937-1987) MD/PhD glider plane accident Loma Linda University School of Medicine role of lifestyle in cancer and cardiovascular disease among Adventists
Emil T. Kaiser (1938-1988) PhD complications from kidney transplant Rockefeller University mechanism of carboxypeptidase action
John H. Walsh (1938-2000) MD heart attack UCLA gastrointestinal hormones, gastric acid production and peptic ulcer disease
Harold A. Menkes (1938-1987) MD car accident Johns Hopkins University occupational and environmental lung disease
Thomas F. Burks, II (1938-2001) PhD heart attack University of Texas HSC at Houston central and peripheral neuropeptide pharmacology
Verne M. Chapman (1938-1995) PhD died suddenly while attending meeting Roswell Park Cancer Institute/SUNY Buffalo development of cumulative multilocus map of mouse chromosomes
Samuel A. Latt (1938-1988) MD/PhD heart attack Harvard Medical School/Children’s Hospital genetic and cytogenetic studies of mental retardation
Walter F. Heiligenberg (1938-1994) PhD plane crash UCSD neuroethological studies of electrolocation
Dolph O. Adams (1939-1996) MD/PhD heart attack Duke University Development and regulation of macrophage activation
James N. Davis (1939-2003) MD airplane crash SUNY HSC at Stony Brook mechanisms underlying neuronal injury after brain ischemia
Raymond R. Margherio (1940-2000) MD aneurysm Wayne State University School of Medicine clinical studies in age-related eye diseases
Robert M. Macnab (1940-2003) PhD accidental fall Yale University sequence analysis and function of bacterial flagellar motor
D. Michael Gill (1940-1990) PhD heart attack Tufts University biochemistry of cholera toxin and other pathogenic toxins
Anthony Dipple (1940-1999) PhD heart attack NIH metabolic activation and DNA interactions of polycyclic aromatic hydrocarbon carcinogens
Ronald G. Thurman (1941-2001) PhD massive heart attack University of North Carolina hepatic metabolism, alcoholic liver injury and toxicology
Richard E. Heikkila (1942-1991) PhD murder UMDNJ Robert Wood Johnson Medical School oxidation-reduction reactions and the dopamine receptor system
Julio V. Santiago (1942-1997) MD heart attack Washington University in St. Louis role of social factors, lifestyle practices, and medication in the onset of type II diabetes
Pokar M. Kabra (1942-1990) PhD plane crash UCSF application of liquid chromatography to therapeutic drug monitoring
Simon J. Pilkis (1942-1995) MD/PhD heart attack University of Minnesota carbohydrate metabolism and diabetes
Christopher A. Dawson (1942-2003) PhD heart attack Medical College of Wisconsin pulmonary hemodynamics
Bruce M. Achauer (1943-2002) MD gastrointestinal bacterial infection University of California — Irvine non-invasive methods to assess the depth of burn wounds
Roland D. Ciaranello (1943-1994) MD heart attack Stanford University molecular neurobiology and developmental disorders
Fredric S. Fay (1943-1997) PhD heart attack UMASS generation and regulation of force in smooth muscle
Thomas A. McMahon (1943-1999) PhD complications from routine surgery Harvard University orthopedic biomechanics
William D. Nunn (1943-1986) PhD sudden cardiac arrest University of California — Irvine regulation of fatty acid/acetate metabolism in e. coli
Ahmad I. Bukhari (1943-1983) PhD heart attack Cold Spring Harbor Laboratory life cycle of mutator phage μ
James S. Seidel (1943-2003) MD/PhD bacterial infection Harbor-UCLA Medical Center clinical studies in pediatric  life support and cardiopulmonary resuscitation
Jonathan M. Mann (1943-1998) MD plane crash Harvard University School of Public Health AIDS prevention
Lonnie D. Russell, Jr. (1944-2001) PhD swimming accident Southern Illinois University School of Medicine filament regulation of spermatogenesis
Don C. Wiley (1944-2001) PhD accidental fall Harvard University viral membrane and glycoprotein structure
Roger R. Williams (1944-1998) MD airplane crash University of Utah genetics and epidemiology of coronary artery diseases
G. Scott Giebink (1944-2003) MD heart attack University of Minnesota pathogenesis of otitis media and immunizations
Joaquim Puig-Antich (1944-1989) MD asthma attack University of Pittsburgh psychobiology and treatment of child depression
Peter M. Steinert (1945-2003) PhD heart attack NIH structures and interactions of the proteins characteristic of epithelial cells
John P. Merlie (1945-1995) PhD heart failure Washington University in St. Louis molecular genetics of the acetylcholine receptor
Howard S. Tager (1945-1994) PhD heart attack University of Chicago biochemical structure, action, regulation and degradation of the insulin and glucagon molecules
John J. Wasmuth (1946-1995) PhD heart attack University of California — Irvine human-hamster somatic cell hybrids/localization of Hnyington’s disease gene
Stanley R. Kay (1946-1990) PhD heart attack Albert Einstein College of Medicine symptoms and diagnostic tests of schizophrenia
Mary Lou Clements (1946-1998) MD airplane crash Johns Hopkins University development of AIDS vaccines
Ronald E. Talcott (1947-1984) PhD automobile accident UCSF carboxylesterases of toxicologic significance
Lynn M. Wiley (1947-1999) PhD plane crash University of California — Davis morphogenesis in early mammalian embryos
John B. Penney, Jr. (1947-1999) MD heart attack Harvard Medical School/MGH receptor mechanisms in movement disorder pathophysiology
Jeffrey M. Isner (1947-2001) MD heart attack Tufts University therapeutic angiogenesis in vascular medicine, cardiovascular laser phototherapy
Trudy L. Bush (1949-2001) PhD heart attack University of Maryland School of Medicine postmenopausal estrogen/progestins interventions
Neil S. Jacobson (1949-1999) PhD heart attack University of Washington marital therapy, domestic violence, and the treatment of depression
Tsunao Saitoh (1949-1996) PhD murdered UCSD altered protein kinases in alzheimer’s disease
Gary J. Miller (1950-2001) MD/PhD heart attack University of Colorado HSC vitamin D receptors in the growth regulation of prostate cancer cells
Elizabeth A. Rich (1952-1998) MD traffic accident Case Western Reserve University School of Medicine natural history of lymphocytic alveolitis in hiv disease
Matthew L. Thomas (1953-1999) PhD died while travelling Washington University in St. Louis function and regulation of leukocyte surface glycoproteins
Mu-En Lee (1954-2000) MD/PhD complications from routine surgery Harvard Medical School/MGH characterization of vascular smooth muscle LIM protein
Alan P. Wolffe (1959-2001) PhD car accident NIH role of DNA methylation in regulating gene expression in normal and pathological states
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Table W2 
Measuring Proximity in Ideas Space 

  
Andrew 
Schally 

Roger 
Guillemin Dyad 

Top 10 overlapping MeSH terms 
with highest combined use  

Animals 170 49 
Rats 127 33 
Male 131 23 
Gonadotropin-Releasing Hormone 121 9 
Luteinizing Hormone 121 8 
Humans 94 23 
Female 106 8 
Follicle Stimulating Hormone 81 6 
Pituitary Gland 65 19 
Time Factors 54 8 

Top 10 overlapping MeSH terms 
with lowest combined use  

Molecular Weight 1 1 
Somatomedins 1 1 
Peptide Chain Termination, Translational 1 1 
Steroids 1 1 
Arginine Vasopressin 1 1 
Propylthiouracil 1 1 
Neural Pathways 1 1 
Electric Stimulation 1 1 
Cerebellum 1 1 
Fatty Acids, Nonesterified 1 1 

Number of Publications 240 60 
Number of MeSH Terms (freq.-unweighted) 534 220 
Number of MeSH Terms (freq.-weighted) 3,035 750 
Number of Ovrlp. MeSH Terms (freq.-unweighted) 147
Number of Ovrlp. MeSH Terms (freq.-weighted) 609
Proximity of Guillemin to Schally (freq.-unweighted) 0.668
Proximity of Schally to Guillemin (freq.-unweighted) 0.275
Proximity of Guillemin to Schally (freq.-weighted) 0.812
Proximity of Schally to Guillemin (freq.-weighted) 0.201
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Table W3 
Trends in Stars’ Publication Output Around the Time of Death 

 All 
Pubs. 

Last-Authored 
Pubs. 

2 years after year of death -0.988** 
(0.159) 

-1.238** 
(0.246) 

1 year after year of death -0.103 
(0.111) 

-0.143 
(0.165) 

year of death 0.047 
(0.123) 

0.079 
(0.167) 

1 year before year of death 0.125 
(0.101) 

0.209 
(0.129) 

2 years before year of death 0.103 
(0.093) 

0.063 
(0.129) 

3 years before year of death 0.201* 
(0.099) 

0.200 
(0.129) 

4 years before year of death 0.077 
(0.100) 

0.057 
(0.147) 

5 years before year of death 0.130† 
(0.075) 

0.141 
(0.095) 

Log Quasi-Likelihood -831,596 -626,787 
Nb. of Obs. 104,154 103,959 
Notes: The estimates above are taken from a conditional fixed effects Poisson specification that also include 54 career 
age indicator variables and a full suite of calendar year effects (estimates not reported). The estimate in column (1) 
implies a statistically significant (1-exp[-.988]))=62.77% decrease in the rate of publication two years after a superstar 
scientist passes away (regardless of cause of death), relative to years prior to the last 5 years of his/her life. The 
dependent variable in column 1 is the weighted article count for the superstar. Columns 2 restricts the count to 
publications in which the superstar appears in last position on the authorship roster. The weights used to create these 
counts are Journal Impact Factors (JIF) published by the Institute for Scientific Information. Robust (QML) 
standard errors are reported in parentheses. 
†p < 0.10, *p < 0.05, **p < 0.01 
 

Table W4 
Impact of Superstar Death on Collaborators’ Publication Rates – OLS 

 All JIF-Weighted 
Publications 

JIF-Weighted Pubs. 
Written with others 

 Without 
Ctrls 

With 
Ctrls 

Without 
Ctrls 

With 
Ctrls 

 (1a) (1b) (2a) (2b) 

After Death -1.553** 
(0.513) 

-1.528** 
(0.531) 

-0.947† 
(0.501) 

-0.980† 
(0.514) 

R2 0.574 0.566 0.576 0.569 
Nb. of Obs. 153,508 294,943 153,508 294,943 
Nb. of Collaborators 5,267 10,128 5,267 10,128 
 
Notes: Estimates stem from collaborator fixed effects linear specifications. Dependent variable is the total number of 
JIF-weighted articles authored by a collaborator of a superstar life scientist in the year of observation. All models 
incorporate a full suite of year effects as well as 54 age category indicator variables (career age less than -3 is the 
omitted category). Robust standard errors in parentheses, clustered at the level of the superstar. 
†p < 0.10, *p < 0.05, **p < 0.01 
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Table W5 
Impact of Superstar Death on Collaborators’ Citation Impact [Elite Subsample] 

 JIF-wghtd. 
Pubs All Pubs 

Pubs 
in Bottom 
Quartile 

Pubs 
below the 
Median 

Pubs 
above the 
Median 

Pubs 
in Top 
Quartile 

Pubs 
in Top 
Ventile 

Pubs 
in Top 

Percentile 
 (1) (2) (3) (4) (5) (6) (7) (8) 

After Death -0.062* 
(0.028) 

-0.068** 
(0.024) 

-0.089† 
(0.052) 

-0.071 
(0.044) 

-0.069** 
(0.023) 

-0.073** 
(0.022) 

-0.105** 
(0.028) 

-0.161** 
(0.044) 

Log Pseudo-Likl. -773,535 -226,069 -46,236 -98,925 -207,452 -185,282 -125,897 -69,291 
Nb. of Obs. 86,457 86,457 86,457 86,457 86,457 86,457 86,457 86,457 
Nb. of Collabs. 2,852 2,852 2,852 2,852 2,852 2,852 2,852 2,852 
Notes: Conditional fixed effects quasi-maximum likelihood estimates for the determinants of publication rates among coauthors of “superstar” academic life scientists. 
We bin their publications according to the various quantiles of the vintage-specific, article-level distribution of citations they fall into. For instance, an article that 
garnered 100 citations by 2008 would fall above the top ventile of the 1980 citation distribution, but above the top percentile of the 2000 distribution. The underlying 
empirical distributions were computed using the universe of publications and citations in the biomedical and chemical journals indexed by ISI/Web of Science (Table 
W2). Because article-level citation data is only available for scientists in the elite subsample (n=10,349), we restrict the estimation sample to elite coauthors, which 
account for a 28.16% of the collaborators in the overall sample. All models incorporate year effects and 17 age category indicator variables (career age less than -3 is 
the omitted category). Robust (QML) standard errors in parentheses, clustered at the level of the superstar. 
†p < 0.10, *p < 0.05, **p < 0.01 
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Table W6 
Impact of Superstar Death on Receipt of NIH Funding 

 Nb. of Grants At Least One Grant 

 Without 
Ctrls 

With 
Ctrls 

Without 
Ctrls 

With 
Ctrls 

 (1a) (1b) (2a) (2b) 

After Death -0.096† 
(0.050) 

-0.095† 
(0.050) 

-0.010** 
(0.004) 

-0.010** 
(0.004) 

Log Quasi-Likelihood/R2 -44,166 -83,644 0.230 0.221 
Nb. of Obs. 92,014 175,062 143,727 277,922 
Nb. of Collaborators 3,140 5,965 4,949 9,574 
 
Notes: Estimates stem from collaborator fixed effects QML Poisson specifications (columns (1a) and (1b)) and 
collaborator fixed effects linear probability model specifications (columns (2a) and (2b)). Estimates stem from 
conditional quasi-maximum likelihood Poisson specifications. The dependent variable in columns 1a and 1b is the 
total number of NIH research grants and contracts (R, U, N, or K codes, new grants or competitive renewals) 
awarded in the year of observation. In columns (2a) and (2b), the dependent variable is an indicator for award of at 
least one such grant or contract. All models incorporate a full suite of year effects as well as 17 age category indicator 
variables (career age less than -3 is the omitted category). Robust standard errors in parentheses, clustered at the 
level of the superstar. 
 
†p < 0.10, *p < 0.05, **p < 0.01 
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Table W7 
Impact of Collaborator Status at the Time of Superstar Death 

 No Other Elite 
Coauthor 

R01 
Grantee 

MERIT, NAS, 
or HHMI 

All Covariates 
Combined 

 (1) (2) (3) (4) 

After Death -0.077** 
(0.026) 

-0.096* 
(0.040) 

-0.109** 
(0.029) 

-0.091* 
(0.042) 

After Death × 
Coauthor has no other superstar collaborator 

-0.089* 
(0.039) 

 
 

 
 

-0.069 
(0.042) 

After Death × Coauthor Holds R01 Grant  
 

0.014 
(0.037) 

 
 

-0.015 
(0.037) 

After Death × Coauthor “Elite”  
 

 
 

0.118** 
(0.042) 

0.114** 
(0.043) 

% of Collabs. Affected 27.66 56.50 8.48  
Log Pseudo-Likelihood -1,832,458 -1,832,586 -1,832,104 -1,832,022 
Nb. of Obs. 294,943 294,943 294,943 294,943 
Nb. of Collabs. 10,128 10,128 10,128 10,128 
Notes: Estimates stem from conditional quasi-maximum likelihood Poisson specifications. Dependent variable is the total number of JIF-weighted articles 
authored by a collaborator of a superstar life scientist in the year of observation. We interact the treatment variable with indicator variables capturing 
various aspects of coauthor status: poor substitution opportunities, i.e., coauthors with no other elite coauthor save the extinct superstar; R01 grantee 
status at the time of death; and a composite “Elite” indicator variable combining membership in the National Academy of Science, MERIT Award from 
the NIH, and HHMI investigatorship. All models incorporate year effects and 17 age category indicator variables (career age less than -3 is the omitted 
category), as well as 17 interaction terms between the age effects and the covariate of interest. Robust (QML) standard errors in parentheses, clustered 
at the level of the superstar. 
†p < 0.10, *p < 0.05, **p < 0.01 
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Table W8 
Sensitivity Checks 

 Benchmark 
Specification 

Without 
“Gregarious” 
Superstars 

Superstar 
Age Ctrls. 

Superstar Age at Death 
Cutoff 

Leakage through 
Coauthorship 

Network 

Placebo 
Test 

 (1) (2) (3) (4a) (4b) (5) (6) 

After Death -0.086** 
(0.025) 

-0.084** 
(0.022) 

-0.066** 
(0.024) 

-0.113** 
(0.032) 

-0.051 
(0.048) 

-0.096** 
(0.025) 

-.00009 
(0. 0162) 

Robustness Table III, 
Column (1b) 

w/o stars with 
120 coauthors 

or more 

with star 
age 

indic. vars. 
<60 yrs old >75 yrs old path length>2 Only 

Controls 

Log Likelihood -1,832,594 -1,517,842 -1,827,615 -1,048,026 -627,820 -1,338,509 -914,468 
Nb. of Obs. 294,943 246,405 294,943 165,635 106,696 218,400 147,339 
Nb. of Collabs. 10,128 8,488 10,128 5,694 3,594 7,510 5,064 

Notes: Estimates stem from conditional quasi-maximum likelihood Poisson specifications. Dependent variable is the total number of JIF-weighted articles authored 
by a collaborator of a superstar life scientist in the year of observation. All models incorporate year effects and 17 age category indicator variables (career age less 
than -3 is the omitted category). Robust (QML) standard errors in parentheses, clustered at the level of the superstar. 
 
†p < 0.10, *p < 0.05, **p < 0.01 
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Table W9 
Impact of Superstar Death on Collaborators’ Publication Rates 

(136 stars whose premature deaths could be anticipated) 
 All JIF-Weighted 

Publications 
JIF-Weighted Pubs. 
Written with others 

 Without 
Ctrls 

With 
Ctrls 

Without 
Ctrls 

With 
Ctrls 

 (1a) (1b) (2a) (2b) 

After Death -0.057** 
(0.021) 

-0.038† 
(0.021) 

-0.016 
(0.020) 

0.001 
(0.020) 

Log Pseudo-Likelihood -1,186,953 -2,213,193 -1,159,119 -2,152,735 
Nb. of Obs. 191,771 370,166 191,771 370,166 
Nb. of Collaborators 6,515 12,592 6,515 12,592 

 
Notes: Estimates stem from conditional quasi-maximum likelihood Poisson specifications. Exponentiating the coefficients and differencing from one yield numbers 
interpretable as elasticities. For example. the estimates in column (1a) imply that collaborators suffer on average a statistically significant (1-exp[-0.092])=8.79% 
decrease in the rate of publication after their superstar coauthor passes away. All models incorporate a full suite of year effects as well as 17 age category indicator 
variables (career age less than -3 is the omitted category). Robust (QML) standard errors in parentheses, clustered at the level of the superstar. 
†p < 0.10, *p < 0.05, **p < 0.01 
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Figure W1 
Coauthor Matching for a Sample Publication 

R. Eugene Langevin, MD. Radiology.
Tufts School of Medicine.
2 coauthorships.

Bernard D. Kossowsky, MD.
Medicine. Tufts School of 

Medicine.
6 coauthorships.

Ambiguous: 3 possible matches
in the roster

Unmatched

John O. Pastore, MD. Medicine.
Tufts School of Medicine.
7 coauthorships.

Syed Razvi, MD. Surgery. Tufts 
School of Medicine.

1 coauthorship.

Douglas W. Losordo, MD.
Medicine.

Tufts School of Medicine.
62 coauthorships.

 

 

 

 

Figure W2 
Vintage-specific Empirical Distributions of Citations 

at the Article Level 
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Figure W3 

Magnitude of the Treatment Effect as a Function of 
Collaborator Age at Time of Superstar Death 

-0.75

-0.50

-0.25

0.00

0.25

5 10 15 20 25 30 35 40
 

Collaborator Age at Death

 
Notes: The solid blue lines in the above plot correspond to coefficient estimates of a conditional fixed effects 
quasi-maximum likelihood Poisson specification in which the weighted publication output of a collaborator is 
regressed onto year effects, 17 indicator variables corresponding to different age brackets, and interactions of the 
treatment effect with 8 indicator variables corresponding to different brackets for the career age of the 
collaborator at the time of superstar death: 5 to 10 years, 10 to 15 years, 15 to 20 years, 20 to 25 years, 25 to 30 
years, 30 to 35 years, 35 to 40 years, and more than 40 years of career age. The 95% confidence interval 
(corresponding to robust standard errors, clustered around superstars) around these estimates is plotted with 
dashed red lines. The baseline specification is that of Table III, Column (1b). 
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Figure W4 
Dynamics of the Treatment Effect 

(136 stars whose premature deaths could be anticipated) 
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The solid blue lines in the above plot correspond to coefficient estimates of a conditional fixed effects quasi-
maximum likelihood Poisson specification in which the weighted publication output of a collaborator is regressed 
onto year effects, 17 indicator variables corresponding to different age brackets, and interactions of the 
treatment effect with 27 indicator variables corresponding to 11 years before the year of death and prior, 10 
years before the year of death, 9 years before the year of death,…, 14 years after the year of death, and 15 
years after the year of death and above (the indicator variable for treatment status interacted with the year of 
death is omitted). The 95% confidence interval (corresponding to robust standard errors, clustered around 
superstars) around these estimates is plotted with dashed red lines. The figure uses Column (1b) of Table W9 as 
a baseline (i.e., treated and control collaborators, the dep. var. includes all of the collaborator’s publications) 

 




