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Abstract:We provide the first estimates of the potential impact of climate change on
cognitive performance and attainment, focusing on the impacts from both short-run
weather and long-run climate. Exploiting the longitudinal structure of the NLSY79
and random fluctuations in weather across interviews, we identify the effect of tem-
perature in models with child-specific fixed effects. We find that short-run changes in
temperature lead to statistically significant decreases in cognitive performance on
math (but not reading) beyond 26°C (78.8°F). In contrast, our long-run analysis,
which relies upon long-difference and rich cross-sectional models, reveals an impre-
cisely estimated effect that is significantly smaller than the short-run relationship be-
tween climate and human capital.
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THE THREAT OF CLIMATE CHANGE and its increasing prominence in public dis-
course has inspired a significant body of economic research that explores the potential
consequences of such change on a variety of outcomes.1 Inspired by the neurological
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literature that documents the brain’s sensitivity to temperature (Bowler and Tirri 1974;
Schiff, and Somjen 1985; and Hocking et al. 2001), we provide the first estimates of
the potential impacts of climate change on cognitive performance and attainment, fo-
cusing on the impacts from both short-run weather and long-run climate. Given the
importance of human capital as a principal driver of economic growth (e.g., Nelson
and Phelps 1966; Romer 1986), these relationships represent an important and un-
explored channel through which climate change may impact economic well-being.

Our analysis, which focuses on the same study population over both the short and
long run, is to our knowledge the first of its kind and serves an important purpose.2

Comparisons across the two models provide a framework through which we can ex-
amine the potential offsetting effects from adaptive behaviors, which are expected to
play a critical role in determining the ultimate impacts of a gradual changing climate in
the coming century (IPCC 2007; Libecap and Steckel 2011). As such, our analysis has
significant implications for the interpretation of other results in the literature, as most
economic studies of climate change impacts rely on identification from short-run weather
phenomena.3

We begin our analysis by focusing on the relationship between weather and cog-
nitive performance. We use assessments of cognitive ability from the children of the
National Longitudinal Survey of Youth (NLSY79) and merge these data with mete-
orological conditions at the county level on the day of the assessment. We take advan-
tage of the longitudinal nature of the survey to estimate models with child fixed effects,
exploiting the exogenous interview date and daily fluctuations in weather across the
same children over time to identify the causal effect of temperature on cognitive per-
formance.

Using a flexible specification for temperature, we find that math performance de-
clines linearly above 21°C (70°F), with the effect statistically significant beyond 26°C
(79°F).4 We do not find a statistically significant relationship with the two assess-
ments of reading performance. The disparity across mathematics and other subjects
is consistent with differences in the heat sensitivity of the regions within the brain
on which they rely (Hocking et al. 2001; Kiyatkin 2007). These differential effects
across cognitive tasks also generally support a neurological rather than behavioral ex-
planation for our results, a finding further bolstered by evidence that child’s time to
completion of each assessment is not related to temperature.
2. A similar approach has been taken to examine adaptation in the very different context of
agriculture (Burke and Emerick 2012). As we describe below, our approach differs due to the
dynamic accumulation of impacts in the human capital context.

3. See Dell et al. (2014) for discussion of the key conceptual challenges in translating results
from short-run analyses to the long run.

4. Note that assessments were only conducted during the spring and summer, so we cannot
explore the effects of colder temperatures on performance.
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While the negative impacts from idiosyncratic and short-lived weather shocks have
potentially important implications for the optimal scheduling of cognitively demand-
ing tasks, the key policy question regarding long-run human capital impacts under cli-
mate change depends on the impact of a permanent shift in the distribution of weather
outcomes. As such, the second stage of our analysis exploits two approaches to capture
the long-run effects: long-difference fixed effects models that examine the impacts of
average weather exposure between tests and cross-sectional regressions with extremely
rich controls, including parental and grandparental human capital, to examine the im-
pacts of climate exposure from birth until test taking.

Despite large effects on cognitive performance in the short run, we fail to find ev-
idence that climate is significantly related to human capital accumulation in the long
run. While the imprecision of these estimates does not allow us to rule out econom-
ically meaningful effects in the long run, the effects are significantly smaller than the
projections based on short-run estimates. Moreover, allowing for a flexible functional
form for temperature reveals a flat relationship between temperature and human cap-
ital over the entire temperature range, further corroborating the lack of a relationship
between temperature and human capital in the long run.

The difference between our approaches for the short and long run is important be-
cause they potentially capture two distinct adaptation channels that have generally
been conflated in the literature.5 Ex ante avoidance behavior, such as technological adop-
tion, mobility, and cultural changes designed to buffer against the effects of climate,
may limit exposure to temperature extremes.6 Our short-run regressions will net out
all such avoidance at least insofar as they have been adopted based on historical climate
up until the time of the test. Ex post compensatory behavior occurs when individuals
respond to insults on hot days through subsequent investments that partially or fully
offset short-run effects, thus minimizing their enduring impact. For example, if a child
learns less material during a hot day, parents or teachers may invest additional time or
the child may increase her effort in the following days, potentially offsetting the effect of
lost learning. This compensating behavior encompasses a wide range of potential re-
sponses, and is almost certainly costly, but persistent human capital effects may thus
be minimized in the long run. Such ex post behaviors will only be captured by our
5. This distinction is conceptually similar to that made by Graff Zivin and Neidell (2013)
with respect to the health effects from pollution. Individuals can engage in avoidance behavior
by spending more time indoors or ameliorate the impacts of exposure through the use of med-
ical inputs, such as asthma inhalers.

6. See Deschênes and Moretti (2009), Deschênes and Greenstone (2011), and Barreca et al.
(2013) for evidence on the impacts of adaptation on the relationship between temperature ex-
tremes and mortality. An example of a cultural change that reflects adaptation is differences in
school schedules throughout the country: schools in southern states typically end in May, a
month before schools in northern states.
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long-run analysis since responses are predicated on the feedback from earlier tests and
thus only depend on weather/climate indirectly.

That said, we would be remiss if we did not offer an alternative explanation for the
absence of a long-run effect. Test scores are a composite measure of knowledge and
performance, and the intertemporal dependencies of one on the other are largely un-
known. Thus, it is possible that short-run changes in performance simply do not add
up to sizable long-run changes in learning. Given our parameter estimates and simu-
lations, the plausibility of this explanation hinges on a near-zero relationship between
the two, but absent a clear mapping between our short-run and long-run outcome
measures, such an explanation remains a possibility. Further research is required to
draw a more definitive conclusion regarding the precise mechanism that underlies
our results. Nonetheless, our analysis highlights the caution needed when using results
from short-run weather shocks to project long-run climate impacts.

This paper unfolds as follows. In section 1, we provide some relevant neurological
information on temperatures and brain functioning. Section 2 provides a simple con-
ceptual framework for our econometric models. In section 3, we describe our data in
more detail. Section 4 discusses the empirical strategy for the short-run analysis and
presents results on the relationship between temperature and test scores. Section 5
describes the empirical strategy for the long-run analysis and presents results on the
relationship between climate and human capital. Section 6 offers concluding remarks.

1. SCIENTIFIC BACKGROUND

In order for climate to affect human capital, we need a plausible mechanism that re-
lates brain function to ambient temperature. A particularly important and likely path-
way is through the environment’s effect on brain temperature. The brain’s chemistry,
electrical properties, and function are all temperature sensitive (Bowler and Tirri 1974;
Schiff and Somjen 1985; Deboer 1998; Yablonskiy et al. 2000; Hocking et al. 2001),
with theory suggesting that the brain’s performance as a computational network will
be influenced by these parameters (Doya et al. 2007; Moore and Cao 2008; Varshney
2011). Furthermore, both warm environmental temperatures and cognitive demands
can elevate brain temperature. Despite being only 2% of its mass, approximately 20%
of the heat released by a human body originates in brain tissue, of which four-fifths
is a direct by-product of neuronal signaling (Raichle andMintun 2006). Under normal
conditions, most excess heat diffuses into the bloodstream and is transported to either
the skin or lungs, where it is then transferred to the environment.When environmental
temperatures rise, heat transfer at the skin and lungs slows, reducing the flow of cool
blood to the brain, which can temporarily elevate brain temperatures up to 2.5°C
(Nybo and Secher 2004; Kiyatkin 2007).

Higher temperatures could have different effects on different subject areas because
they use distinct parts of the brain that are differentially affected by temperature. For
example, mathematical problem solving relies on the ability to retain and manipulate
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abstract numerical information, functions that are largely housed in the prefrontal cor-
tex, which stores these data in neural circuits. This region of the brain appears partic-
ularly sensitive to heat. Recent work finds that neuronal activity—a measure of mental
effort—in the prefrontal cortex increases under elevated temperatures in order to achieve
the same level of performance on a series of cognitive and psychometric tests as under
cooler temperatures (Hocking et al. 2001). As such, it appears that the costs of a given
level of cognitive performance rises as temperature increases and that this effect is par-
ticularly acute for the set of activities that rely heavily on this region of the brain, for
example, mathematical reasoning.

That high temperatures could impair cognitive function is also consistent with ex-
perimental evidence that documents impaired brain function in a wide range of do-
mains as a result of heat stress. Military research has shown that soldiers executing
complex tasks in hot environments make more errors than soldiers in cooler condi-
tions (Fine and Kobrick 1978; Froom et al. 1993). Exposure to heat has also been
show to diminish attention, memory, information retention, and processing, and the
performance of psycho-perceptual tasks (e.g., Hyde et al. 1997; Hocking et al. 2001;
Vasmatzidis et al. 2002). The impacts of thermal stress on working memory perfor-
mance are especially relevant as cognitively challenging tasks rely more heavily on
the working memory for multi-step processing.

This heat-related impairment has potentially important implications in both the
short and long run. In the short run, inattention, lack of focus, and diminished cog-
nitive function due to high temperatures can harm cognitive performance. Students
are not any less intelligent on hot days, they simply struggle to access that intelligence.
In the longer run, as children are repeatedly exposed to high temperatures, this lack of
focus and diminished cognitive function can inhibit learning and thus retard knowl-
edge accumulation and cognitive attainment. Clearly, the mapping from performance
to learning need not be perfect, a point we further elaborate at the end of section 4.

2. CONCEPTUAL FRAMEWORK

Given the dynamic nature of human capital production, insults from warmer tempera-
tures may accumulate, leading to decreases in human capital attainment levels. One of
the key questions in this paper is whether sustained exposure to warmer temperatures,
as is expected under climate change, results in accumulated effects on cognitive ability.
As noted in the introduction, it is possible that short-run test performance and long-
run learning are the result of two distinct processes that have little to dowith one another.
On the other hand, it is also plausible that short-run performance is an indication of im-
paired cognitive function that leads to diminished attainment in the long run.7 In this
7. While there is no empirical evidence to indicate which is more likely, we find the latter
explanation more plausible because the point of tests, however imperfect they may be, is to mea-
sure learning.
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section, we outline a framework for conceptualizing these effects in order to facilitate the
interpretation of our econometric models.

We begin with a simple two-period model of cognitive performance. In the first
period, performance y is defined as follows:

y1 5 f k1, 1 – a1 w1ð Þ½ �∗ w1ð Þ, (1)

where k1 represents human capital endowments at birth, w1 is weather exposure in
period 1, and a1 is avoidance behavior in period 1. Avoidance behavior is a transient
action, such as turning on air conditioning or staying indoors, which depends upon
weather. As such, the second argument in the performance production function
(½1 – a1(w1)�∗ w1) can be viewed as a measure of the effective exposure to ambient
temperatures that results from this behavioral response to local weather conditions.
Any time-invariant changes in behavior, such as the adoption of air conditioning, are
excluded from this model because they will be captured empirically through the use
of various fixed effects.

Performance in the second period is defined similarly to first-period performance
with two key distinctions. Human capital accumulates from earlier periods and indi-
viduals now have the opportunity to respond to feedback embodied in their first-
period performance through compensatory behaviors. As such, second-period perfor-
mance is expressed as follows:

y2 5 f k2, 1 – a2 w2ð Þ½ �∗ w2, b y1ð Þð Þ: (2)

As with the initial period, performance will depend on human capital levels and expo-
sure to weather conditions, which depends upon ambient weather and avoidance be-
havior. For simplicity, we assume that k2 5 k1 1 g(y1) to reflect human capital accu-
mulation between periods, where the function g reflects the growth in human capital,
which depends on prior period learning as reflected by test performance. Compensa-
tory behaviors b are an ex post response to performance in period 1. They could in-
clude activities such as spending additional time studying or the devotion of time and
resources to a more formal tutoring relationship. As noted earlier, a key feature of this
behavior is that it does not require that individuals understand that their performance
depends on weather.

Our short-run analysis focuses on the impact of weather on the day of the assess-
ment on cognitive performance. Since we do not observe avoidance behavior, our
short-run estimate reflects the total derivative of yt with respect to wt, as follows:

dyt/dwt 5 1 – atð Þ∗ f 02 :ð Þ – wt ∗ f 02 :ð Þ∗ dat/dwt, (3)

where f 02(.) is the partial derivative of f(.) with respect to the second argument. The
first term represents the direct (neurological) effect of temperature on performance.
The second term represents the ex ante behavioral effect of temperature, which de-
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pends upon the effectiveness of that avoidance behavior in diminishing the impacts on
cognitive performance and the extent of that avoidance behavior.8 Our empirical es-
timates of the short-run impacts will capture the direct effect of temperature net of
any avoidance.

Our long-run analysis is focused on the impacts of climate on test performance. In
our simple framework, climate is simply a combination of weather exposure in both
periods. If we define climate as the vector of weather states {w1, w2}, the impacts of
climate on test performance in period 2 can be interpreted as the sum of impacts from
contemporaneous and past period weather, plus any component of the ex post re-
sponse to observed first-period performance b(y1) that is affected by first-period
weather and the dynamic accumulation of human capital. Thus, our long-run estimate
reflects the total derivative of y2 with respect to both elements in c, which can be ex-
pressed as follows:

dy2/dw1 1 dy2/dw2 5 1 – a2ð Þ∗ f 02 :ð Þ – w2 ∗ f 02 :ð Þ∗ da2/dw2

1 f 01 :ð Þ∗ dg/dy1 ∗ dy1/dw1

1 f 03 :ð Þ∗ db/dy1 ∗ dy1/dw1,

(4)

where dy1/dw1 is as defined in equation (3).
The first two terms are identical to those in equation (3) and reflect the contem-

poraneous effect of weather on second-period performance—both the direct and ex
ante avoidance impacts. The third term ( f 01(:)∗ dg/dy1 ∗ dy1/dw1) captures the im-
pacts of first-period weather on learning and thus human capital accumulation by pe-
riod 2. The fourth term ( f 03(:)∗ db/dy1 ∗ dy1/dw1) captures the impacts of ex post
behavioral responses. It appears in this climate analysis precisely because compensatory
behavior responds to prior period performance. Thus, the difference between the
short-run estimates characterized in equation (3) and the long-run estimates described
by equation (4) will reflect the accumulated impacts of weather extremes on learning
plus the impacts of any ex post compensatory behaviors undertaken.

3. DATA

The National Longitudinal Survey of Youth (NLSY) is a nationally representative
sample of over 12,000 men and women in the United States aged 14–22 in 1979, with
participants surveyed annually until 1994 and biannually thereafter. The survey was
designed to collect detailed social and economic information for a transitioning demo-
graphic. Beginning in 1986, all children of women in the initial sample were surveyed
in their homes, with various developmental assessments conducted biannually on a pre-
arranged date. We focus on examinations in mathematics, reading recognition, and
reading comprehension, which are derived from the Peabody Individual Achievement

(4)
8. This expression is identical for both first- and second-period performance.
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Tests (PIAT) and transformed into age-specific standardized scores.9 These tests are
designed to measure cognitive achievement and capture gains in knowledge over time,
making them a popular measure of human capital in the economics literature (e.g.,
Todd andWolpin 2007). All three tests, which were administered to children age five
and over, have been found to have high test-retest and concurrent validity (Rodgers
et al. 1994). Each child is tested across multiple waves for as long as the child is part
of the survey, with test data available as early as 1988 and as late as 2006 depending
on the age of the child. In our sample of 8,003 children, 80.9% were tested more than
once and 41.2% were tested at least four times, enabling us to precisely estimate within-
child effects of temperature. Since these tests were predominantly given during the
warmer periods of the year,10 our analysis of short-run temperature effects will only
be informative for temperatures in this range.

Using eight waves of the geocoded version of the NLSY, which contains the child’s
county of residence at each survey wave, we match data on each child’s test scores with
the average temperature in their county on the day of their assessment using data from
Schlenker and Roberts (2009), who linearly interpolated temperatures at each county
centroid using the seven nearest stations with daily temperature data. County temper-
ature is defined as (maximum temperature 1 minimum temperature)/2, computed
daily at the geographic centroid of each county and matched to the county of residence
for each child for each wave of the survey. We also assign precipitation, specific hu-
midity, wind speed, and pressure in an analogous fashion. We repeat a similar proce-
dure for assigning climate, except that we match the full history of temperature (and
the other meteorological variables) between successive tests and from birth until the
date of the test.

Since temperature is likely to have a nonlinear relationship with our outcomes of
interest, we use various definitions in our analysis. In the short-run analysis, we use
both the number of degree days above 21°C (DD > 21) and below 21°C (DD < 21),
as well as a nonparametric specification with a full set of indicator variables for every
2°C. As will become clear, our choice of 21°C for the degree day model was chosen based
on the nonparametric analysis that revealed a kink at that level. This degree day measure
is useful in studies of temperature impacts when (1) a response to daily temperature is
roughly constant across days but changes nonlinearly in temperature and (2) the response
to daily temperature can be well approximated by a piece-wise linear function, with kinks
9. Despite the availability of additional assessments, we focus solely on these three assess-
ments because they were the most frequently administered across the widest age range, thus
yielding the largest sample size and greatest opportunity to explore long-run outcomes.

10. Assessments were conducted between May and October, except for 1986, which was
conducted between February and April. To ensure common overlap across seasons and years,
however, we exclude the 1986 wave.
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at the specified cut-off temperatures.11 The use of indicator variables is even more flex-
ible, allowing for a nonparametric relationship between temperature and performance.

For the long-run analysis, we use three measures of climate for the between test
and lifetime exposure models. First, we take the average of the number of degree days
above 21°C over the relevant time period. Second, we take the average of the 2°C in-
dicator bins for temperature, which amounts to the percentage of days in each bin.
Third, we calculate the mean January–February and July–August temperatures over
the relevant time period to provide estimates with a more intuitive interpretation. We
also compute the same time-period averages for humidity, precipitation, wind speed,
and pressure.

Table 1 contains summary statistics for the data used in this study. Our final sam-
ple includes 8,003 children across 951 counties in 48 states that received exams during
multiple survey waves. The average child completes 3.66 exams with an average of
2.15 years between them. Children’s test scores are at roughly the national median.
Since assessments were conducted in warmer months, average temperature exposure
on the day of the test is relatively warm, at 22.8°C (73°F), reflecting the fact that the
assessments were conducted during the warmer months. Although children were given
the PIAT assessments for all three subjects, discrepancies in sample sizes largely reflect
differences in the ability to convert raw scores into standardized and percentile scores
(Baker and Mott 1989). Since weather is unrelated to the probability of a test score
being available (shown below), we are not concerned that these differences induce a
sample selection bias.

4. THE SHORT RUN: TEMPERATURE AND

COGNITIVE PERFORMANCE

To explore the short-run relationship between temperature and cognitive perfor-
mance, we estimate linear fixed effects regression models of the following form:

yi,t 5 f βSR,Tc ið Þ,t
� �

1 h1Xit 1 h2Zc ið Þ,t 1 p t, s ið Þð Þ 1 ac ið Þ 1 εi,t: (5)

The test score (y) of child i on date t is regressed on the temperature faced by that
child in county c on the same day (Tc(i),t).

12 The term βSR reflects dyt/dwt from equa-
tion (3). We include the child’s age (Xi,t) and other meteorological variables (Zc(i),t)
that may confound the relationship between temperature and test scores. Our regres-
sion models also control for the month and weekday of the assessment and state-
11. Degree days are defined as the number of degrees by which the average daily temperature
exceeds 21°C, with values below 21°C assigned a value of 0. The degree day approach has been
widely used to study the nonlinear impact of temperature on crop yields (e.g., Schlenker and
Roberts 2009), electricity demand (e.g., Auffhammer and Aroonruengsawat 2011), and GDP
growth (Hsiang 2010).

12. We also explore lagged temperatures as well, shown below.
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specific nonlinear time trends in order to capture time-varying factors that influence
performance (p(t,s(i))). Importantly, these time trends will capture any changes in time-
invariant adaptive behaviors during our period, such as air-conditioning penetration
or other avoidance “technologies,” to the extent they are common to families in each
Table 1. Summary Statistics

A. Cognitive Outcomes

N Mean SD Within SD

Math Percentile 24,361 49.70 27.45 14.37
Length 10,389 9.98 4.91 3.14
Energy 24,260 .11 .31 .25

Reading comprehension Percentile 20,439 51.60 27.74 14.34
Length 8,557 10.19 5.26 3.15
Energy 20,041 .16 .36 .28

Reading recognition Percentile 24,229 56.52 28.50 13.00
Length 10,367 3.59 1.92 1.25
Energy 22,814 .15 .35 .28

No. of tests per child 24,361 3.66 1.20 . . .
No. of years between tests 16,304 2.15 .64 . . .

B. Temperature Measures

N °C SD Within SD °F

Day of test:
Temperature 24,361 22.77 4.96 3.12 72.99
Degree days ≥ 21 24,361 3.05 3.12 1.85 5.49
Degree days < 21 24,361 1.28 2.65 1.92 2.30

Between tests:
Degree days ≥ 21 16,304 1.21 .99 .22 2.18
Degree days < 21 16,304 13.07 3.75 .71 23.52
January–February 16,304 4.61 6.86 1.33 40.30
July–August 16,304 24.57 3.03 .63 76.23

From birth:
Degree days ≥ 21 24,294 1.23 .98 . . . 2.22
Degree days < 21 24,294 13.08 3.68 . . . 23.54
January–February 24,294 4.12 6.85 . . . 39.42
July–August 24,294 24.53 2.95 . . . 76.15
This content dow
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state.13 The longitudinal nature of the survey enables us to specify child fixed effects
(ac(i)), which controls for all time invariant characteristics of a child. The disturbance
term (εi,t) consists of an individual idiosyncratic component and a clustered compo-
nent by state, which serves three purposes: to allow for arbitrary spatial correlation
across counties within a state, to allow for autocorrelation in test scores over time,
and to account for the fact that the same temperature measure can be assigned to mul-
tiple children. Since the date the child has the assessment is prearranged, it is unlikely
to respond to short-run changes in temperature and thus plausibly exogenous, allow-
ing us to identify the causal effect of temperature on performance.14

As described earlier, temperature is included in our model using two distinct ap-
proaches to explore its potentially nonlinear relationship with performance: (1) a se-
ries of indicator variables for temperatures in 2°C bins from 12°C to 32°C, with 20°C–
22°C as the reference category; and (2) a linear function in heating and cooling degree
days with a cutoff at 21°C, so chosen because the temperature bin at 20°C–22°C was
the local maximum in the first approach.

Table 2 presents the core short-run results for our three test outcomes of interest:
math, reading comprehension, and reading recognition. Given our interest in temper-
ature extremes at the high end, we begin with a specification that only includes degree
days above 21°C. We then add degree days below 21°C to capture any effects that
might occur at lower temperatures. Columns 1 and 3 present results with mother fixed
effects (since siblings are in the sample). Columns 2 and 4 present results with child
fixed effects. The math results, shown in panel A, indicate that warmer temperatures
lead to a statistically significant decrease in performance. The results are insensitive to
whether we include degree days below 21°C and to the type of fixed effect used.15 The
estimate of –0.219 in the first row of column 4 implies that each degree day above
21°C lowers the math score by 0.219 of a percentile.
13. According to the 2001 American Housing Survey, 79.5% of all households had some
form of air conditioning, with the rate of ownership much higher in warmer regions (Graff
Zivin and Neidell 2014). We directly probe the role of air conditioning in blunting the
short-run impacts of temperature on cognition in the appendix, available online. While the re-
sults are statistically insignificant, our coefficients change in the expected direction, that is, air
conditioning appears to be protective against cognitive harm, though small in magnitude.

14. We test our exogeneity assumption by separately regressing the probability that a child is
male, Hispanic, black, the child’s age in months, the child’s height in inches, the mothers age at
the child’s birth, and the birth order of the child, on our full suite of temperature dummies as
well as county and state-by-year fixed effects (results available upon request). We find no sys-
tematic or significant patterns of selection by these observables with respect to the temperature
on the day of the interview and exam.

15. The insignificance of degree days below 21 should be interpreted with caution since very
few exams occur on cold days. As such the coefficient on DD < 21 largely reflects the impacts of
moderate temperatures on test performance.
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In contrast, we find that temperature does not have a statistically significant rela-
tionship with reading recognition or reading comprehension, regardless of the speci-
fication, shown in panels B and C.16 As described earlier, one potential explanation
for the discrepancy in impacts by subject is that mathematical problem solving utilizes
Table 2. Fixed Effect Estimates of Relationship between Short-Run
Temperature and Cognitive Performance

(1) (2) (3) (4)

A. Math:
Degree days ≥ 21 –.211* –.205* –.240** –.219*

[.0903] [.0960] [.0925] [.0984]
Degree days < 21 –.151 –.0749

[.0899] [.0934]
Fixed effect mother child mother child
Observations 24,361 24,361 24,361 24,361
R-squared .551 .737 .551 .737

B. Reading comprehension:
Degree days ≥ 21 .0607 .0611 .0524 .0711

[.102] [.102] [.104] [.104]
Degree days < 21 –.0434 .0509

[.0942] [.0985]
Fixed effect mother child mother child
Observations 20,439 20,439 20,439 20,439
R-squared .601 .779 .601 .779

B. Reading recognition:
Degree days ≥ 21 –.027 .0441 –.0325 .0461

[.0899] [.0875] [.0919] [.0896]
Degree days < 21 –.0286 .0101

[.0856] [.0828]
Fixed effect mother child mother child
Observations 24,229 24,229 24,229 24,229
R-squared .587 .802 .587 .802
16. Our core results remain unch
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functions of the brain that are distinct from the other subject areas, and different parts
of the brain are differentially affected by temperature.17

Figure 1 plots estimates for each of our three outcome variables using the more
flexible specification for temperature. Shown in panel A, we find that child perfor-
mance in mathematics shows a monotonic decline in outdoor temperatures above
22°C (71.6°F) but is relatively flat and statistically insignificant for temperatures below
this point. Furthermore, two of the estimates in the four highest bins are individually
statistically significant at the 5% level, with the other two at the 10% level. This mono-
tonic relationship at the high end reassures us that the significant estimates for math in
table 2 are not simply the result of a Type I error. We interpret the magnitude of our
estimates as follows: changing the temperature of the outdoor environment from
20°C–22°C (68°F–71.6°F) to 30°C–32°C (86°F–89.6°F) decreases a child’s mathe-
matics score by 1.6 percentile points, which is a sizable 0.12 of a standard deviation.
The predicted effect using estimates from our degree days specification matches these
results quite closely, suggesting that our math estimates are largely insensitive to how
we specify our temperature variable.

The nonparametric results for both reading outcomes, shown in panels B and C of
figure 1, are consistent with the results in table 2. The coefficients are small, statisti-
cally insignificant, and relatively flat across the entire temperature range, providing ad-
ditional support for the conclusion that performance on these measures is unaffected
by temperature.

One potential concern about the results thus far relates to migration. The inclusion
of movers could bias our results if moving to a location with a very different climate
were correlated with other factors that determine test scores. To address this concern,
we classify any individual as a “mover” if the difference in average July–August tem-
peratures between their origin and destination location is >2 degrees Celsius. We then
use this new variable to address potential concerns about bias using two approaches.
Panel A of table 3 presents results when we include mover status as a covariate in our
regression by defining it as a time-varying variable that takes the value of 1 when some-
one moves (and 0 otherwise). Our point estimates are identical to those found in table 2.
Panel B of table 3 limits our analysis to those who never move and here again the re-
sults are very similar to those obtained when we include the full sample of subjects.
Together, these results suggest that migration-induced bias is not a significant concern
in this setting.

Another issue relates to the interpretation of these results since weather may affect
the child’s value from alternative activities, which may affect the child’s effort on the
exam. For example, warmer weather makes playing outside more attractive, and a child
17. We note that math is always the first of the three exams, so increased fatigue cannot
explain this pattern.

This content downloaded from 137.110.035.188 on December 08, 2017 06:51:20 AM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



Fi
gu
re
1.
R
el
at
io
ns
hi
p
be
tw
ee
n
sh
or
t-
ru
n
te
m
pe
ra
tu
re
an
d
co
gn
iti
ve

pe
rf
or
m
an
ce
.A

,M
at
he
m
at
ic
s.
B
,R

ea
di
ng

co
m
pr
eh
en
si
on
.C

.R
ea
di
ng

re
co
gn
iti
on
.

T
he

so
lid

lin
e
sh
ow

s
co
ef
fi
ci
en
t
es
tim

at
es

of
th
e
ef
fe
ct

of
te
m
pe
ra
tu
re

on
th
e
da
y
of

th
e
te
st
of

co
gn
iti
ve

pe
rf
or
m
an
ce
,w

ith
95
%
co
nfi
de
nc
e
in
te
rv
al
s
in

do
tt
ed

lin
es
.T

he
re
gr
es
si
on

in
cl
ud
es

in
di
ca
to
rs

fo
r
ea
ch

2°
C
,l
in
ea
r
co
nt
ro
ls
fo
r
pr
ec
ip
ita
tio

n,
pr
es
su
re
,w

in
d
sp
ee
d,

hu
m
id
ity
,d

um
m
y
va
ri
ab
le
s
fo
r
da
y

of
w
ee
k,
m
on
th
,y
ea
r,
an
d
st
at
e
by

ye
ar
,a
nd

ch
ild

fi
xe
d
ef
fe
ct
s.
T
he

pr
ed
ic
te
d
ef
fe
ct
us
in
g
de
gr
ee

da
ys

ab
ov
e
an
d
be
lo
w
21
°C

is
sh
ow

n
in

th
e
da
sh
ed

lin
e

an
d
is
ba
se
d
on

a
re
gr
es
si
on

us
in
g
th
e
sa
m
e
se
t
of

co
nt
ro
ls
.

This content downloaded from 137.110.035.188 on December 08, 2
All use subject to University of Chicago Press Terms and Conditions (http://www
017
.jo
 06
urna
:51
ls.u
:20 
chic
AM
ago
.edu/t-and-c).



Temperature and Human Capital Graff Zivin, Hsiang, and Neidell 91
may rush through the assessment in order to play outside, which lowers her perfor-
mance.18 Given the differential effect by subject, such a mechanism seems unlikely
in this setting. Nonetheless, we probe this channel using data on the speed at which
children complete tests. If children hurry to finish the assessment in warmer weather,
then time to completion will fall as temperatures rise. Such data were collected in the
1994, 1996, and 1998 waves, thus providing a useful test for detecting changes in the
child’s effort on the day of the test.

Consistent with the differential effects by subject, we fail to find evidence to sup-
port this channel. Column 1 of table 4 fails to find a statistically significant relationship
between temperature and assessment completion time for all three assessments. Al-
lowing for a more flexible specification for temperature, shown for math in figure 2,
we see a generally flat relationship between temperature and time to completion, with
only a decline at the highest temperature bin, though it is not statistically significant.
This drop at the highest bin, while large in magnitude, does not coincide with the gen-
eral pattern of temperature effects on performance, suggesting that completion time is
unlikely to explain our short-run findings.
Table 3. Migration and the Short-Run Temperature Relationship

Math Reading Comprehension Reading Recognition

A. Controlling for moving status:
Degree days ≥ 21 –.219** .0712 .0465

[.0867] [.116] [.0814]
Degree days < 21 –.0745 .0501 .0104

[.0878] [.181] [.117]
Observations 24,361 20,439 24,229
R-squared .737 .779 .802
18. In the conceptual framewor
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Table 4 also provides two additional robustness checks. First, the different sample
sizes across the subjects (as seen in table 1), which indicates that some scores are un-
available for children, is a potential concern. In particular, one might worry about sam-
ple selection bias if the missing test scores correlate with warmer temperatures, per-
haps because families cancel the visit or the child scored below a certain value,
making a standardized score infeasible. To assess this, we regress our weather variables
on score availability. As shown in column 2 of table 4, we find that probability of com-
pleting the assessment is unrelated to warmer weather, suggesting that sample compo-
sition across subjects is unlikely to bias our results. Second, one might be concerned
Table 4. Robustness Checks for Estimates of Short-Run Temperature Relationship

Time to Completion
(1)

Assessment Completed
(2)

Start Time
(3)

A. Math:
Degree days ≥ 21 –.011 –.0012 .0138

[.054] [.0012] [.0447]
Degree days < 21 .004 –.0015 –.0282

[.052] [.0013] [.0418]
Observations 8,620 26,091 8,621
R-squared .663 .566 .707

B. Reading comprehension:
Degree days ≥ 21 –.038 –.0008

[.064] [.0019]
Degree days < 21 –.025 –.0038*

[.069] [.0019]
Observations 7,092 26,062
R-squared .725 .52

C. Reading recognition:
Degree days ≥ 21 –.011 –.0010

[.023] [.0013]
Degree days < 21 –.051* –.0015

[.024] [.0014]
Observations 8,597 26,089
R-squared .65 .55
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that exams are shifted to cooler times of the day to avoid peak exposure, thereby min-
imizing the effect on performance. In column 3, we show results using the start time of
the assessment as the dependent variable, and find the start time is unrelated to the
temperature on the day of the test.19

Our analysis has thus far focused solely on the effects of weather on the day of the
assessment, thereby ignoring potential lagged effects. While the neurological mecha-
nisms discussed in section 1 suggest a rather immediate effect from exposure, lagged
exposure has been shown to affect health and thus might also affect performance.20

Figure 3 presents results when we add three lags of temperature, and also one lead of
Figure 2. Relationship between short-run temperature and time to completion for math as-
sessment. The solid line shows coefficient estimates of the effect of temperature on the day of
the test, with 95% confidence intervals in dotted lines. The regression includes indicators for
each 2°C, linear controls for precipitation, pressure, wind speed, humidity, dummy variables
for day of week, month, year, and state by year, and child fixed effects. The predicted effect
using degree days above and below 21°C is shown in the dashed line and is based on a regression
using the same set of controls.
19. We only show results for math because it is always the first test given.
20. Furthermore, since we do not know the exact time assessments were given for all years,

we may be assigning weather with error. A lagged specification may better capture exposure for
those with, for example, morning exams. We note, however, that for the sample years in which
we observe assessment times, the average start time is 2:41 p.m.
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temperature as a falsification test. The coefficient on contemporaneous temperature is
largely unchanged (though precision is compromised) and the coefficients on lagged tem-
perature are considerably smaller than our main estimate for math.21 The wide confi-
dence intervals are likely the result of multicollinearity since weather is highly correlated
across consecutive days.22 The absence of an effect for lead temperature offers further
assurance that our results are not driven by unobserved confounding. For the two reading
outcomes, we fail to find a statistically significant effect from any period. In the end, and
despite moderate to high levels of air-conditioning penetration, these results provide
strong evidence for a contemporaneous and negative effect of warmer temperatures
on mathematical performance.23

Before turning to our long-run analysis, we simulate the potential long-run effects
based on our short-run estimates to give a sense for the potential magnitude of the
effects we might find. To do so, we need to make some assumptions about the human
capital accumulation process (the function g( ) in our conceptual model). First, we as-
sume that children’s percentile performance on the test is equivalent to a ranking in
human capital. Absent negative shocks, children accumulate human capital at compa-
rable rates so that their rank remains unchanged. Second, exposure to a simulated dis-
tribution of weather shocks, measured in 2°C bins, leads to a reduction in rank. We
assume this reduction is permanent. Further, we assume that a change in performance,
absent compensatory behaviors, amounts to a change in learning as described in sec-
tions 1 and 2. Although our short-run estimates do not directly test for learning ef-
fects, the ergonomics literature reviewed above demonstrates effects of heat on mem-
ory, information retention, and information processing, suggesting the plausibility of
such an effect (Hyde et al. 1997; Hocking et al. 2001; Vasmatzidis et al. 2002). Given
uncertainties about the magnitude of this learning effect, we take the simplest ap-
proach and scale the change in performance by λ, under a variety of parameter values
λ 5 f0:1, 0:3, 0:5g. In the context of our conceptual framework, this means g(yt) 5
λ∗ yt. For example, λ 5 0:5 implies that a 10-percentage-point decrease in test per-
formance translates into a 5-percentage-point decrease in learning. We then accumu-
late the shocks between tests based on the realized weather exposure for each child to
21. The effect of the prior day’s temperature is roughly half the size of our main estimate,
suggesting that temperature impacts on cognitive function might accumulate over short periods
or that hot nights might interfere with sleep, although this effect is not significant.

22. In fact, the correlation between today’s temperature and any of the lags is never less than
0.78. Adding additional lags to our specification leads to an inconsistent pattern of results that is
the hallmark of a multicollinearity problem. We are reassured by the fact that including lagged
monthly temperature, which is much less correlated than daily lags, has a minimal impact on
our estimates (results not reported).

23. As noted earlier, approximately 80% of US households had some form of air condition-
ing in 2001, with the rate of ownership much higher in warmer regions (Graff Zivin and
Neidell 2014).
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compute the change in human capital. Our simulation based on our short-run esti-
mates under the quite conservative assumption that λ 5 0:1 implies that children’s
exposure between tests would reduce performance by 6.2 percentile points on average.
At λ 5 0:3 and 0.5, this rises to 18.6 and 31.0 percentile points, respectively, thereby
implying quite large long-run effects. If test performance is determined by factors un-
related to learning, such that the two measures are completely independent of one an-
other, this is tantamount to assuming that λ 5 0:0.

5. THE LONG RUN: CLIMATE AND HUMAN CAPITAL

The analysis thus far focused on the contemporaneous impacts of temperature on per-
formance. In this section, we turn our attention to the long-run impacts of climate on
human capital. We estimate two distinct models.

In our first approach, we estimate a “long difference” model of the following form:

yi,t – yi,t–1 5 f βLD,o
t

t–1
Tc ið Þ

� �
1 h1 Xit – Xit–1ð Þ 1 h2o

t

t–1
Zc ið Þ

1 p t, s ið Þð Þ 1 εi,t – εi,t–1ð Þ: (6)

The dependent variable is the change in performance over time, which reflects the ac-
cumulation of human capital between tests. The variable ot

t–1Tc(i) reflects our measure
of climate, which is a summary measure of temperature between successive tests. We
continue to define Tc(i) in degree days and indicator bins as before. Given the different
structure of this model, the interpretation of βLD now takes a slightly different form.
When we use degree days, we interpret βLD as the increase in human capital from a
1°C degree day increase in temperature across all days between tests. When we use
indicator bins, we interpret βLD as the increase in human capital from a 1% increase
in the number of days that the temperature falls in a certain bin (relative to 20°C–
22°C) between tests. For example, we would interpret the coefficient on the 30°C–
32°C bin as the effect from shifting 1% of all days between successive tests from
20°C–22°C to 30°C–32°C. To better align with intuition we also use seasonal average
temperature (separately for January–February and July–August). In this case, the co-
efficients reflect the impacts of a 1°C increase in the mean July–August (or January–
February) temperature between tests on human capital accumulation. The other me-
teorological variables (Z) are defined analogously, while the variables Xit and p(t,s(i))
remain unchanged from equation (5). Recall that p(t,s(i)) includes a state-by-year
dummy variable, which controls for any differential trends in warming across states.24
24. This does not completely eliminate concerns about how shared national trends in warm-
ing might influence our results, since part of our identifying variation comes from comparing
different cohorts of children. Nonetheless, that threat should be small since the United States
warmed by less than 0.5 degree Celsius, on average, during our study sample period.

This content downloaded from 137.110.035.188 on December 08, 2017 06:51:20 AM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



Temperature and Human Capital Graff Zivin, Hsiang, and Neidell 97
By defining the model in long differences (LD), the model may capture a wider
range of adaptive responses (Dell et al. 2014), where the coefficient βLD 5 dy2/dw1 1
dy2/dw2 from equation (4). For example, if parents respond to poor performance in
school with compensatory investments, regardless of whether they know the source
of the poor performance, our estimate for βLD is net of this investment. The model also
remains well identified because we are controlling for all time invariant characteristics
of the child.

In our second approach, we assign climate as the accumulated temperature from
birth until the date of the test, hence providing an even longer-term measure of climate
exposure. This necessitates the use of cross-sectional models, which leaves greater scope
for omitted variable bias since parents choose where to raise their children and thus
climate exposure may be correlated with other characteristics that influence human
capital attainment. To address this concern, we exploit the unusual richness of the
NLSY to control for a wide range of background factors in the human capital produc-
tion function (Black et al. 2005). In particular, we estimate the following regression
specification:

yi,t 5 f βCS,o
t

0
Tc ið Þ

� �
1 h1Xit 1 h2o

t

0
Zc ið Þ 1 h3Xm ið Þ 1 p t, s ið Þð Þ 1 εi,t: (7)

Climate (ot
t–1Tc(i)) is now measured as lifetime exposure from birth until the time of

the test, and we continue to specify this in terms of degree days, indicator bins, and
seasonal averages. The interpretation of coefficients is similar to the “between-test”
model except they now reflect the effect from birth until the time of the test. The other
meteorological variables (Z) are defined analogously.

Given the greater concern for omitted variable bias in this specification, we also add
several measures that reflect the child’s potential human capital endowment at birth.
The term Xi now includes the child’s birth weight, an important measure of intellec-
tual endowments (Black et al. 2007), which we control for flexibly by including a series
of indicator variables for each pound. It also includes the child’s sex, birth order indi-
cators, and maternal age at birth. The term Xm(i) includes the mother’s scores on the
armed forces qualifying test (AFQT), completed years of schooling, a measure of self-
esteem, height, weight, race/ethnicity, foreign language, the religion she was raised, and
her spouse’s level of education. We also include flexible controls by allowing for all two-
way interactions between these variables and third-order polynomials for all continuous
variables. Including grandparent characteristics (grandmother and grandfather’s years of
schooling, Duncan Socioeconomic Index (SEI), foreign born) in Xm(i) further helps to
minimize concerns about omitted variable bias. The term Z is also extended to include
numerous county-level characteristics, including the age of housing stock, birth rate,
death rate, infant mortality rate, physicians per capita, hospital beds per capita, education
per capita, household income per capita, fraction below poverty, geographic size of the
county, maximum elevation, and whether it borders an ocean or great lake.
This content downloaded from 137.110.035.188 on December 08, 2017 06:51:20 AM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



98 Journal of the Association of Environmental and Resource Economists January 2018
Table 5 presents our long-difference results based on the “between test” specifica-
tion. We focus solely on mathematical performance since this is the only outcome
where we find an effect in the short run. In contrast to the short-run results, however,
we do not find a statistically significant relationship between climate and human capital.
Column 1, which only includes degree days above 21°C (DD > 21), reveals a statis-
tically insignificant estimate of –0.63. This estimate indicates that a 1 degree day in-
crease in temperature across all days between two tests, a rather substantial change,
decreases math performance by only 0.63 percentile points. This suggests that parents
are offsetting a substantial fraction of these effects because in the absence of such off-
setting behavior we would expect substantially larger losses of human capital. For ex-
ample, under the conservative case where λ 5 0:1, a 1 cooling-degree-day increase for
all days between tests would amount to an average decline of 8.48 percentage points
between tests, since children are tested with 2.15 years between tests on average.25

This scenario would imply that parents are offsetting roughly a 7.85 percentile point
accumulated decrease in human capital due to warmer temperature exposures, equal
25. The ca
2.15 days. Th
be assumed to
capital betwee

T
All use subject
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to 92.6% of the loss due to temperature. If λ is assumed larger, then the associated
estimate for parental offsetting grows. The “residual” damage to human capital sug-
gested by the long difference result is small relative to these potential accumulated
losses.

While the long-run effects are much smaller than those found in our short-run
analysis, it is still instructive to examine the unmitigated damage to human capital
in the long run. Converting to standardized units,26 a 1 cooling-degree-day Celsius in-
crease reduces test scores by 0.017 standard deviations (SD) on average, while a large,
but not implausible, 3°C increase in temperature translates into a 0.051 SD effect.27

Thus, even in the long run, we cannot rule out economically meaningful effects on hu-
man capital under these extremes.

When we add degree days below 21°C (DD < 21), shown in column 2, our esti-
mate for warmer temperatures is even closer to zero at –0.25 and remains statistically
insignificant. Focusing on mean winter and summer temperatures yields estimates that
are again statistically insignificant and considerably smaller than the simulated long-
run estimates under even highly conservative assumptions. For example, our estimate
of –0.196 for July–August suggests that a 1°C increase for every day in those two
months decreases math performance by 0.196 percentile points. Overall, across these
models there is variation in the magnitude of the point estimate for the effect of warm
days, although this variation is consistent with sampling variability given the size of
our estimated confidence intervals.

In table 6, we show results using lifetime temperature exposure. Given that these
estimates rely on cross-sectional models, we assess the sensitivity of results to slowly
adding more controls, continuing to use different assumptions about the functional
form for temperature. In the first panel, which only uses degree days above 21°C,
we see in column 1 that temperature is negatively associated with math performance.
Adding simple controls for maternal human capital, a strong predictor of children’s
human capital attainment (Black et al. 2005), raises that coefficient to –0.463 as
26. We use the percentile measure of PIAT math scores because rank ordering of students
should remain fixed in the absence of relative human capital changes, making interpretation of
these effects intuitive. Percentile scores have an approximately uniform distribution between 0
and 100. Conversion to standardized PIATmath scores, which are approximately normally dis-
tributed, is straightforward. Near the mean score, percentile scores are linear in standardized
scores, rising 0.375 percentile points per standardized point. One standard deviation in stan-
dardized scores is 13.94 points, implying a corresponding change in percentile scores of
37.13 point. Computing a simple standard deviation of percentile scores recovers a standard de-
viation of 27.47 points.

27. Since the absence of a long-term impact is somewhat imprecise, it is also useful to look at
the lower bound of the 95% confidence interval. Focusing on the estimates from column 1 of
table 5, the lower 95% confidence interval of our estimates implies that a 1°C increase reduces
test scores by 0.035 of an SD, and a 3°C increase reduces test scores by .11 of an SD.
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Table 6. Cross-Sectional Estimates of Relationship between Lifetime Temperature Exposure
and Math Performance

(1) (2) (3) (4)

A. Cooling degree days:
Degree days ≥ 21 –1.211 –.463 –.440 –.329

[.977] [1.116] [1.087] [.999]
Observations 24,294 24,294 24,294 24,294
R-squared .151 .269 .271 .281

B. Cooling and heating degree days:
Degree days ≥ 21 .347 .0368 .102 .158

[.962] [1.009] [.970] [.918]
Degree days < 21 –1.694** –.550 –.600 –.543

[.548] [.430] [.440] [.420]
Observations 24,294 24,294 24,294 24,294
R-squared .152 .269 .271 .281

C. Seasonal temperatures:
July–August –.691* –.496 –.422 –.349

[.297] [.291] [.312] [.302]
January–February –.285 .237 .139 .125

[.281] [.237] [.235] [.230]
Observations 24,294 24,294 24,294 24,294
R-squared .155 .270 .273 .282

County characteristics Y Y Y Y
Geography Y Y Y Y
Child characteristics Y Y Y Y
Maternal human capital N Y Y Y
Grandparent human capital N N Y Y
f(maternal human capital) N N N Y
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Note. The above coefficients reflect estimates of the relationship between temperature exposure from
birth until the time of test and math performance. Standard errors clustered on state-week in brackets. All
regression models control for from-birth measures of precipitation, pressure, wind speed, humidity, and
dummy variables for day of week, month, year, and state by year. County characteristics includes county-
level measures of age of housing stock, birth rate, death rate, infant mortality rate, physicians per capita,
hospital beds per capita, education per capita, household income per capita, and fraction below poverty. Ge-
ography includes county square miles, maximum elevation, borders seas, and borders great lake. Child char-
acteristics includes sex, birth order dummies, maternal age at birth, and age of child at time of test. Maternal
human capital includes mother’s years of schooling, AFQT, self-esteem, height, weight, race, foreign lan-
guage, and religion, dummy variables to indicate when schooling, AFQT and self-esteem were imputed.
Grandparent human capital includes grandmother’s and grandfather's years of schooling, Duncan SEI, for-
eign born, and dummies if schooling missing. f(maternal human capital) includes third-order polynomial for
all continuous maternal human capital variables and all two-way interactions.

* p < .05.
** p < .01.
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shown in column 2. As we include more control variables, this estimate remains fairly
stable and far from statistically significant—although the confidence interval is fairly
wide, spanning from –2.33 to 1.67 points per cooling-degree day in the most saturated
model. Notably, however, all of these values suggest that the long-run effects are much
smaller than would be expected if the short run effects were simply to accumulate.
Panel B adds degree days below 21, while panel C uses winter and summer temper-
atures. In both cases, the estimates show the same general pattern: statistically insig-
nificant estimates that are much smaller than those implied by the simulation exercise.
Again, variation in these point estimates is substantial in percentage terms but remains
within the expected range given sampling variability.

In figure 4 we show results allowing for the flexible specification in temperature for
the “between test” and “from birth” models that matches the indicators used in the
short-run model. As with the previous long-run results, we do not find statistically
significant estimates. Moreover, we do not find a pattern in the estimates that com-
ports with the short-run results—estimates are relatively flat over the entire temper-
ature distribution. While the precise mechanism that underlies these results is not
known, the significantly smaller coefficients across our long-run models are consistent
with the notion that individuals engage in nontrivial amounts of adaptation to mini-
mize the effects of high temperature days on the human capital accumulation of chil-
dren.28

6. CONCLUSION

In this paper, we merge rich data from the NLSY with meteorological data to provide
the first economic analysis of the relationship between temperature/climate and hu-
man capital. We find that short-run changes in temperature lead to statistically signif-
icant decreases in cognitive performance on math (but not reading) beyond 26°C
(78.8°F). Notably, these results obtain despite quite high levels of air conditioning
penetration in our study region, suggesting that in the short run, individuals do not
completely insulate themselves from climatic factors. In contrast, our long-run analysis
reveals a noisy and significantly much smaller relationship between climate and human
capital than that suggested by the short-run estimates.

This set of results is important for several reasons. Our short-run results indicate
that analytical thinking is compromised at modest temperatures well below our pop-
ular conventions regarding a very hot day. Cognitive performance of this sort is the
lifeblood of homo economicus and critical for decision making in a wide range of do-
mains. That this temperature range is a regular occurrence in summer across much of
28. An analysis of our short-run estimates based on historical climate is also consistent with
adaptation. Appendix table 2 shows that the detrimental effect of warm weather on test perfor-
mance appears larger in cooler counties than warmer ones, although the estimates are not sta-
tistically different from each other.
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Figure 4. Relationship between long-run temperature and math performance. A, Temper-
ature exposure between successive tests. B, Temperature exposure from birth until time of test.
The solid line shows coefficient estimates with 95% confidence intervals in dotted lines. Panel A
focuses on measures of temperature between successive tests. Panel B focuses on measures of
temperature from birth until the time of the test. The regressions include indicators for the frac-
tion of days the temperature was in each 2°C bin, linear controls for precipitation, pressure,
wind speed, humidity (measured analogously), dummy variables for day of week, month, year,
and state by year. Panel B includes the full set of controls as used in column 4 of table 6.
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the globe and all year long in parts of the tropics portends potentially sizable impacts
on economic well-being. These findings also appear to have strong implications for the
optimal timing of cognitively demanding tasks, such as financial decision making and
significant health choices.

While cognitive performance and decision making may be compromised by warmer
weather, our long-run results demonstrate that these insults have no demonstrable ef-
fect on human capital attainment in the long run. Since permanent adaptation strat-
egies are largely held fixed in our comparisons across our short- and long-run specifi-
cations, we argue that the difference between these results is driven by compensatory
behavior. An interesting feature of this behavior is that it requires no knowledge of the
“harmful” effects of temperature since it is an ex post adaptive strategy. The feedback
from poor test performance may be sufficient to induce individuals to increase invest-
ments in learning.

It is important to note, however, that there may be an alternative explanation for
the absence of a long-run effect. Test scores are a composite measure of knowledge and
performance, and the intertemporal dependencies of one on the other are largely un-
known. Thus, it is possible that short-run changes in performance simply do not add
up to sizable long-run changes in learning. Given our parameter estimates and simu-
lations, the plausibility of this explanation hinges on a near-zero relationship between
the two. Additional research is needed to disentangle the precise mechanisms that un-
derlie the differences between our short- and long-run results and the degree to which
they are replicable in other settings.
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